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Abstract— Reduction of computational complexity is one 

of the active research areas in engineering fields. Several 

efforts have been made in this direction. Solution of non- 

linear transient heat conduction problems is not only 

complex but also a time consuming process. In the present 

study, effort is made to reduce the complexity in the solution 

of non-linear heat conduction transient problems, by using 

the tangent stiffness matrix and the results obtained has been 

compared with ANSYS results. 
 
Index Terms—Ansys, tangent stiffness matrix, Matlab. 
 

1. INTRODUCTION 

  Solutions of large nonlinear transient systems are 

expensive both with respect to storage and 

computational time and costs. Hence it is difficult 

though not impossible to deal with situations 

containing a large number of parameters and bodies 

meshed into a large number of nodes with multiple 

degrees of freedom. Though computational methods 

and devices have improved tremendously but still 

reducing the computational time and complexity 

remains a very active field of research and analysis. 

To reduce the computational time and complexity of 

transient non-linear problems several efforts are made. 

One of the methods used here is to derive the tangent 

stiffness matrix and the use the matrix after linearising 

the equation about the previous time step.  

2. PROBLEM DEFINITION 

The one dimensional body has cold gas (Tc) flowing at 

one surface and hot gas (TH) flowing at the other 

surface. The temperatures at the various locations are 

to be determined. Heat transfer is at both the faces of 

the body, the upper and the lower surfaces of the body 

are insulated as shown. The complexities involved in 

solving the problem are: 

1. The body has temperature varying 

coefficients of thermal conductivity (K) 

and  heat capacity(C).  

2. Time varying heat transfer coefficients. 

3. The convection and radiations as 

boundary conditions. The radiation loss 

is always non linear in nature.    

 
 

 

Fig. 1 shows the cross sectional view of the  body used 

for the analysis.  Fig 2a and 2b represents the variation 

of the heat transfer coefficients and the temperature at 

both ends with time.    

 
               A                         Insulation                               B 

        Tc                                                                                  TH      

                                                                                                                                      

                     

                                          Insulation           

     

Figure 1: Cross sectional area of an one dimensional 

body 
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Fig.2a Variation of Heat transfer coefficient with 

time 

Fig 2bVariation of Bulk Temperature with time 

 

3.  LITERATURE SURVEY 

One of the ways to reduce the computational time in 

transient non-linear problems is to use the novel time 

integration schemes. The governing equation of Heat 

transfer is first linearized. Secondly the temperature at 

the first time step is determined by one of the two level 

time integration schemes like Euler’s forward 

difference, Euler’s backward difference or the 

Crank-Nicolson scheme. Each step requires the 

calculation of the tangent stiffness matrix. 

Akrivis et al [1] has tried to solve non-linear parabolic 

equations by using linear multistep scheme. In this 

scheme part of the equation is discretized implicitly 

and another part explicitly. Fairweather and Johnson 

[2] used the extrapolation in conjunction with discrete 

time. Galerkin methods for the approximate solution 

of non-linear equations.  
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4.    FINITE ELEMENT METHOD FOR 

TRANSIENT NON-LINEAR HEAT TRANSFER 

PROBLEMS  

 

4.1     GOVERNING EQUATION 

 

The basic idea of Finite element [3] is to subdivide a 

given domain Ω into an assembly of simple geometric 

shapes called finite elements, for which it is possible to 

systematically generate the approximation function 

needed in the solution of the differential equations by 

weighted – residual method. The approximation 

functions are constructed using the interpolation 

theory and hence are also called interpolation 

functions.  

 

The major steps in Finite element analysis (FEA) are: 

1. Discretization of the domain into a set of 

finite elements. 

2. Weak formulation of the differential 

equation to be analyzed. 

3. Development of the finite element model 

using its weak form. 

4. Assembly of the finite elements. 

5. Imposition of the boundary conditions. 

6. Solution of the equation. 

The governing equation for heat transfer analysis of a 

body idealized by a system of finite elements can be: 

 )= 

                                

                                                              in  Ω           (1) 

 

where ρ = density, C = specific heat capacity,  

T(x,y,z,t)= temperature, 

t= time, Q= heat source in the body 

K11 , K22 and  K33  =  coefficient of heat conduction in 

x,y and z directions, 

Ω = orthotropic medium with boundary Γ 

 

Equation (1) is solved in conjunction with the specified 

boundary conditions 

                                              

                                                         

(Temperature) Γ1                              Γ2(Conduction) 

                                        

                                                         

                                                            

 (Convection) Γ3                                 Γ4 (Radiation) 

 

 

Figure 3. Boundary condition 

 

 

T = T(s,t) on Г1 

Г2, Г3 and Г4 are disjoint portions of the boundary and 

represent heat transfer due to conduction, convection 

and radiation respectively. 

 

 + qc 

+qr = q(s,t)  = qn  on Г2, Г3, Г4 

 

Where Г1, Г2, Г3 and Г4 are disjoint portions of the 

boundary (fig. 3) Г such that 

Г = Г1 U Г2 U Г3 U Г4 

 

qc  =  heat transfer due to convection = hc(s,T,t) 

(TH-Tc) 

qr = heat transfer due to radiation  

= hr(s,T,t) (TH-Tc) = σЄ (TH
 2 + Tc2) (TH + Tc) (TH – 

Tc) 

hc = convective heat transfer coefficient 

hr = radiative heat transfer coefficient 

 ,   = direction cosines of the unit normal 

vectors on the boundary. 

 

 

4.2  FINITE ELEMENT APPROXIMATION 

 

Here domain of a typical element will be denoted by Ω 
e and its boundary by Γ e. The element Ω e can be a 

triangle or quadrilateral in shape and the degree of 

interpolation over it can be linear, quadratic and so on. 

The Temperature can be approximated as 

T (x,y,z,t) ≈ T e (x,y,z,t)  ≈        

(2)                                                 

where T e (x,y,z,t) represents an approximation of 

T(x,y,z) over  the element Ω e 

 represents the value of function T(x,y,z) (at node j 

in the element Ω e) 

 represents the approximation function associated 

with the element. 

n= number of nodes considered. 

 

4.3  WEIGHTED – RESIDUAL FORMULATION  

 

Transient problems are solved in two stages. The first 

stage is spatial discretization which involves the 

development of the weak form of the equation over the 

element. The second stage consists of the time 

approximation i.e. numerical integration of the 

equation by a suitable scheme.The weak form is 

developed in three steps 

 

1. Multiply the residual obtained due to the 

temperature approximation by a weighted  
 

Ω 
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function φ and integrate the resulting equation 

over the element domain. 

- 

( ) + Q)] dx dy dz = 0                                  (3) 

 

2. Distribute the differentiation between T and φ 

equally. 

 

3. Formulate the finite element model using the 

boundary conditions. 

Using Galerkin’s method and Integration by parts 

of Eq. (1)   

 

 + φ( ) - Q)] dx dy dz =  

ds                                                                                                (4) 
 

 

4.4 TEMPORAL APPROXIMATION 

 

For the time dependent problem no integration by parts 

is used for the time function and the weight function is 

not a function of time. In selecting the approximation 

for T (temperature) the time dependence is separated 

from the spatial variable as follows. 

 

T (x,y,z,t) ≈     

 

The i-th differential equation in time of the finite 

element model is obtained by substituting 

 

 φ =  and replacing Tn and is given as, 

0 =              

(5)                                                 

 

In Matrix formulation 

[Me]{ } + [Ke]{Te} = {Qe} + {qe}                                (6)  

                                    

[Me] =  

 

[K
e
]=  

 

{Qe} =  

 

{qe} =  

 

Equation (6) can be rewritten as 
  

 [Me]{ } + [ e]{Te} = { e}                                           (7)   

                                     

Where [ e] = Stiffness matrix + matrix due to 

convective and radiation losses 

[ e] = [Ke] + [Ce] + [Re]  

 

And { e}= Q – q o + Fc + Fr = Heat source + 

convective and radiation loads. 

 

Equation (7) is the elemental equation. All the 

elemental equations are then assembled to obtain an 

equation of the form 

[M]{ T } + [ ]{T} = { }                                                 (8) 

 

This equation (8) is then integrated using a time 

integration scheme. The time integration is done by 

dividing the time period into a number of discrete 

steps. The time steps are denoted by Δt = t n+1 – t n,
 

where t = time and n = the number of time step.  

Different time integration schemes are available like 

the Euler’s Forward method, Euler’s backward 

method, Crank-Nicolson method etc. For the study 

Euler’s Backward method is used. 

 

 The Euler’s formulation of Equation (8) gives: 

                           
 

Linearising the above equation at T n 

(9)  

Where  is the Tangent stiffness matrix 

Δt  =  time step,  

  =  temperature difference at time n+1 

 = Temperature at time n 

 

4.5   IMPLEMENTATION OF FINITE 

ELEMENT METHOD TO   ONE 

DIMENSIONAL PROBLEM 
 

4.5.1   STEADY STATE 

To gain familiarity with FEA, code is developed in 

MATLAB for a steady state condition.  Code is 

developed for a one dimensional rod (figure 4) of 

uniform cross section and having constant coefficient 

of thermal conductivity (K). The rod is insulated 

longitudinally and has a constant temperature of 

300oK at end A and a gas with ambient temperature of 



International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622                       

National Conference on Emerging Trends in Engineering & Technology (VNCET-30 Mar’12) 

Vidyavardhini’s College of Engineering and Technology, Vasai Page 93 

1000oK flowing at the end B with heat transfer due to 

convection and radiation at end B. 

 

 

  A                          Insulation                   B 

                                                                                                                                  

                                                             

 
Tc= 1000                        
 

Figure 4. One Dimensional rod 

 

The heat flux is equal to both convection and radiation 

losses at end B. 

 - K  = hc (TL - Tc) + hr (TL - Tc) 

 

Where hr = σЄ (TL
 2 + Ts2) (TL + Ts) = Heat transfer 

coefficient by radiation 

hc = Heat transfer coefficient by convection, 

K = Coefficient of thermal conductivity 

TL = Temperature at end B,  Tc = Bulk temperature 

and  

Ts = Surrounding temperature. 

 

To solve this Picards iterative method is used with 

initial value of radiation loss (hr = 0)  

as zero. The convergence is achieved with a tolerance 

value of     

 

4.5.2   TRANSIENT STATE 

 

For the Transient state a variable coefficient of thermal 

conductivity (K) is used; here K is a function of 

temperature. Euler’s Backward difference scheme is 

used for the time integration. The problem is solved 

using Newton Raphson’s iterative method. To solve by 

this scheme the Tangent stiffness matrix is derived for 

the one dimensional problem with variable K and 

having heat transfer by both conduction and radiation. 

 

Here we assume that there is no heat source in the 

body. Note that the stiffness matrix includes both the 

heat transfer due to convection and radiation. Hence 

equation (7) can be rewritten as  

 

[Me]{ } + [Ko + h + hr]{T} = {q} ={F + h + hr}   

       

And from equation (9)  

             

 

The tangent stiffness matrix used for the computation 

is as given below. 

 

 ( )  =  

  

                                                                                                                   

where K = Ko + aT with T as the temperature 

(subscript denotes the node number) and le denotes the 

element length. 

 

The convergence was achieved with a tolerance value 

of   

 

5.0 RESULTS AND ANALYSIS 

 

For this particular case the total time period is assumed 

to be 10sec and the time interval 1sec. The results 

obtained are compared with ANSYS solution and are 

shown in Table 1. 

 Also the boundary conditions which are the bulk 

temperature (Tc and TH) (Figure 2a and 2b) and the 

convective heat transfer coefficient (h) vary with time 

and are given in Table2. 

Since the boundary conditions are time variant the 

results at 7th second has only been tabled below. The 

results at all the other time intervals have not been 

tabled.  Instead the results at all the other time 

intervals have been displaced in the form of a graph 

(Figure5). 

 

Table 1: Comparison of Ansys results and the 

Matlab results 

No of 

Elements 

Ansys 

solution( ) at 

7sec 

Matlab 

solution( ) at 

7sec 

1 515 515 

2 563 563 

3 612 612 

4 665 665 

5 720 721 

6 780 781 

7 844 844 

8 907 908 

9 970 971 

            

 

Table 2: The Time varying parameters 

 

Time 

(sec) 

h (W/ m2 
0K) 

T H (0K) Tc 

(0K) 

0 100 500 300 

2 200 1000 400 

6 200 1000 400 

To=300  
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10 100 500 300 

10.6 100 500 300 

       

 

The following values are taken for the analysis: 

 

1) K = Ko + aT where Ko = 6 and a = 0.1 = 

Thermal conductivity (W/m 0K) 

2) Ts = 300 0 K (radiation) = Surrounding 

Temperature 

3) C = 50 = Specific heat (J/Kg 0K) 

4) ρ = 1 = density (Kg/m3) 

 

 
 

Figure 5:  Variation of Temperature at each node 

with time 

 

 

6.0  CONCLUSION AND FUTURE SCOPE  

 

From the above analysis it can be seen that the results 

obtained by using the tangent stiffness matrix is 

comparable with the Ansys results. Similar efforts can 

be made to derive the Tangent stiffness matrix for 

Axisymmetric body also. Also for the present study a 

two level time integration scheme i.e. Euler Backward 

method is used, instead a three level time integration 

scheme can be used to reduce the computational time 

further. 
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