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ABSTRACT 
Evolution of use of wireless technologies in laptops and mobile terminals, which are equipped with several 

network interfaces, has provided users to take advantage from multi-homing to access network services 

anywhere, at any time and from any network. Advantage with multihomed host is that some of the traffic from 

more congested paths can be shifted to less congested path, thus controls congestion. In this paper we consider 

about Multipath TCP (MPTCP), which suffers from the degradation of goodput in the presence of changing 

network conditions on the available subflows due to out-of-order received packets. Cause of degradation is the 

large variation of end-to-end delay for multiple paths over wireless channels. To diminish the variation of end-

to-end path delay, the proposed scheme uses congestion window adaption (CWA) algorithm to employ MPTCP 

source. Also to reduce the time of packet reordering at the receiver, a scheduling algorithm is employed for the 

MPTCP sender. Experiments are conducted to evaluate the goodput performance of the two enhancements to 

MPTCP. Significant performance gain is achieved in terms of good put, while the reordering time is minimized. 

Keywords - Goodput, Congestion, Reordering, MPTCP 

 

I. INTRODUCTION 
Modern laptops have often found more 

than one network interface for accessing the 

Internet. Also in the case with mobile, there are 

more than one network interface. A mobile user 

access the Internet via a wireless wide area network 

such as general packet radio service [GPRS].Such 

laptops and mobiles are referred as “Multi-Homed 

devices”. Today’s processor are has fast enough to 

handle data transfer on multiple network interface 

simultaneously. This provides a good prospect to 

explore several interfaces for multipath 

transmission, so as to aggregate the bandwidth 

among multiple wireless links and further improve 

the quality of service (QoS) for bandwidth-

intensive applications, such as video streaming and 

video conference. The standard for the transport 

layer is the Transport Control Protocol [TCP]. TCP 

however, fails to transmit packet over multiple 

paths for Multi-Homed Device due to the high 

level of out-of-order packets. In conventional TCP, 

such as TCP Reno and selective acknowledgment 

(SACK), the source node decreases its congestion 

window once three duplicate acknowledgments 

(ACK) are received from the sink node. That is, 

three duplicate ACKs are viewed as an indicator of 

packet loss in transmission. In a multipath 

transmission scenario, because the round-trip time 

(RTT) of each path varies, there is a high 

probability that packets with lower sequence 

numbers sent over a slower path arrive at the sink 

later than packets with higher sequence numbers 

sent over a faster path. As a result, the sink node 

receives out-of-order packets and then returns 

duplicate ACKs, which is misinterpreted by the 

source as packet loss. Then, the source reduces its 

congestion window and enters fast retransmit and 

recovery stage. This behavior puts the efficiency of 

TCP transmission in danger because the sending 

window can be mistakenly set to a small value [1] 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Multi-home scenario in wireless network 

 

Fig. 1 shows a multi-home scenario where 

a Mobile device is connected to both Base Station 

and Access point via its multiple interfaces. 

MPTCP works well for multi-homed mobile 

devices to simultaneously deliver TCP packets over 

multiple paths and pool the available bandwidth 

together. Although MPTCP has a better available 

throughput for the upper layer, there 
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is still another unresolved issue caused by out-of-

orders packets. Throughput represents the overall 

receiving capacity of successful packet delivery 

over multiple paths. Nonetheless, it is goodput that 

reflects the real application-level throughput, which 

is the amount of useful data available to the receiver 

application per time unit. Specifically, in-order 

packets received at the transport layer can be 

forwarded to the application layer and counted for 

goodput. Most recent study [7] introduced CWA 

with a proactive scheduler for wired 

communication. This study show that MPTCP 

goodput is near optimal when the end-to end delays 

of two transmission paths are very close. However 

these study show that it takes a lot of time to reorder 

packets at receiving end. Some more recent work in 

2012 tries to improve goodput for MPTCP, by using 

network coding [2] and packet retransmission over 

fast path [3]. However, these studies only show the 

average goodput improvement over a long term. In 

fact, stable goodput with minimal variation is 

preferable for QoS assurance to real-time 

applications. Author in [6] has studied different 

congestion control variants for Multipath TCP have 

been compared. Also author has 
to balance the traffic load on each path and improve 

throughput without exposing regular TCP users. 
MPTCP sublayer is responsible for 

coordinating data packets on multiple paths, such as 

reordering packets received from each path at the 

sink, scheduling packets toward each path at the 

source, and balancing the congestion window of 

each subflow TCP. MPTCP also look after packet 

reordering for multiple paths. Since each TCP 

subflow maintains an independent sequence number 

space, the sink may receive two packets of the same 

sequence number. Further, packets received at the 

sink can be out-of-order because of mismatched 

round-trip time (RTT) of multiple paths. Therefore, 

the source needs to address the sink about the 

reassembly of the data forwarded to the application. 

MPTCP solves this problem by using two levels of 

sequence numbers. First, the sequence number for 

TCP subflow is referred to as subflow sequence 

number (SSN), which is similar to the one in regular 

TCP. The subflow sequence number independently 

works within each subflow and ensures that data 

packets of each subflow are successfully transmitted 

to the sink in order. 
investigated a couple of relevant hybrid scheduler 

algorithms that are based on the two implementation 

strategies, Push and Pull. 
In this paper, we use CWA-MPTCP, in 

which the MPTCP source dynamically adjusts the 

congestion window of each TCP subflow so as to 

maintain similar end-to-end delays over multiple 

paths, and packet scheduling algorithm, which 

reduces time required at to rearrange packets at 

receiving end. 

 
II. OVERVIEW OF MPTCP 

MPTCP is an extension to TCP that 

allows the concurrent data transmission. From the 

performance perspectives, MPTCP has two main 

objectives: 
a) Improve the throughput by combining 

bandwidth over multiple available paths.  

b) Improve the reliability by providing multiple 

paths and switching traffic upon path failure.  

 

As shown in Fig. 2, MPTCP roughly divides 

the transport layer into two sublayers, specifically, 

MPTCP and subflow TCP. Based on this 

architecture, MPTCP can be easily employed 

within current network stack. Each path has its 

subflow to reuse most function of regular TCP. 

The key transformation between subflow TCP and 

regular TCP is that congestion control on each 

path is assigned to MPTCP sublayer [5]. Although 

each subflow TCP maintains a congestion window 

at the source, the congestion window is updated by 

a coupled congestion control algorithm which aims  

 

 

 

 

 

 
 

 

 

 

Fig. 2 Network protocol stack with MPTCP 
 

The sequence number at the MPTCP level 

is called data sequence number (DSN). Each packet 

received at the sink has a unique DSN no matter 

which path it is sent over. Hence, the sink can easily 

sequence and reassemble packets from different 

paths by DSN. 
 

III. GOODPUT 

IMPROVEMENT FOR 

MPTCP 
 

A. Problem Analysis  

In this work, we give special attention on 

important performance metric, i.e., goodput. The 

goodput of MPTCP is defined as the data 

throughput of inorder packets forwarded by MPTCP 

to the application layer. Intuitively, we have, 
Goodput = Size of N in-order packets (1) Total 

receiving time of N packets 
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Next, to find out reasons for poor goodput 

performance, consider two special scenarios of 

MPTCP. 

Suppose that there are two available paths. Let Γi 

denote the packet sending interval at the MPTCP 

source for path i, i = 1, 2. Consider that the 

throughput of path 2 is smaller than that of path 

1. Denoting the end-to-end delay of path i by di, 

we have d1 < d2. Consider a block of N packets 

with continuous DSN numbers, among which N 

− 1 packets are received on path 1 and only 1 

packet is from path 2. Such a block of data 

packets is referred to as an in-order unit. Let S 

and T denote the total size in the unit of 

maximum segment size (MSS) and the total 

receiving time of an in-order unit, respectively. 

Then, we can evaluate the goodput by G = S/T. 
 

Consider two special cases illustrated in 

Fig. 3. The in order unit comprises 4 packets of 

DSN numbers 1, 2, 3, and 4.Suppose that packet 

1 and packet 2 are sent at the same time to path 1 

and path 2, respectively. Fig. 3(a) shows the case 

with D, |d2 − d1| > Γ1. We can easily obtain T = 

D and the goodput, given by 
 

G = S = Γ2/ Γ1 + 1 (2) 

T ∆D  
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(a) General case with ∆D > Γ1 
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(b) Near Optimal case with ∆D <= Γ1 

 
Fig. 3 Special cases with two transmission 

path for goodput analysis 
Fig. 3(b) shows another special scenario with D ≤ 

Γ1. In this case, the MPTCP sink needs less time 

to receive all packets within the in-order unit. 

Here, the total time to receive all N 
packets of the in-order unit is just the time for path 1 

to receive all N-1 packets re-sent over it. Obviously, 
 

G = S = Γ2/ Γ1 + 1 (3) 

T Γ2  

 
Actually, Eq. (3) is also the aggregate throughput 

(denoted by 
 
     γ) over two paths. That is,  

Γ= 1 +  1 (4) 
 

Γ2    Γ1 
 

This observation implies that goodput is 

inversely proportional to the end-to-end path delay 

difference ∆D. 
 
B. Congestion Window Adaptation 

In conventional TCP, the TCP sender 

maintains a congestion window to control the 

maximum amount of packets to send at a time. The 

indication for packet loss is either Timeout or triple 

duplicate ACKs received from receiver. The source 

node reacts on packet loss and reduces its 

congestion window to bring the traffic load to 

stability. In MPTCP, each TCP subflow maintains 

its own congestion window and triggers a decrease 

of the congestion window by receiving duplicate 

ACKs. In contrast, the increase of the congestion 

windows of all subflows is controlled by a coupled 

algorithm [4] at the MPTCP flow level. This 

congestion window control algorithm can combine 

the available bandwidth of each path and prevent a 

MPTCP source from taking up too much resource to 

assure TCP friendliness. In this congestion control 

algorithm, the only reason to decrease the 

congestion window is packet loss indicate d by 

duplicate ACKs. Consequently, the congestion 

window of each path may greatly differ from each 

other and lead to a large path delay difference, 

which is harmful to the goodput performance. 
 

MPTCP Source  MPTCP Sink 

   

MPTCP Source  MPTCP Sink 
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Algorithm: Congestion Window 

Adaptation. 

1. if θ min  <  θ < θmax then  //High delay ratio 

detected  

 

2. i= arg maxp (end-to-end delay of path p)  

 

3. m=max adaptation limit  

4. if counti < m then  

5. cwndi   


 cwndi/ θ  

6. if ssthreshi > cwndi then  

 

7. ssthreshi = cwndi  

 

8. end if  

9. counti  


 counti + 1  

10. else  

11. counti =0  

 

12. end if  
 

13. end if  
 

The algorithm monitors the end-to-end 

delays of multiple paths. Whenever large delay ratio 

is detected, congestion window adaptation takes 

place at source compared with regular TCP, where 

adaptation takes place only when source receives 

three duplicate ACK. Here, delay ratio refers to 

ratio of maximum path delay over minimum path 

delay. The objective is to decrease the delay ratio in 

order to increase goodput. 
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Fig. 4 Flowchart for Congestion Window 

Adaptation 
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Delay ratio range is from θmin to θmax. 

Whenever delay ratio θ falls in the range, 

congestion window adaptation takes place. 

Assume path i has maximum delay, so congestion 

window (cwndi) is decreased proportionally to the 

delay ratio. This is done because a larger delay ratio 

indicates that the high delay path is congested. Its 

congestion window needs to be decreased to release 

traffic and reduce path delay. Here, θmax is 

presented to avoid over-blocking slow path and 

severely risking aggregate throughput. Meanwhile, 

if ssthreshi > cwndi then the TCP slow start 

threshold (ssthreshi) is updated with the new cwndi. 

Otherwise, cwndi will be recovered quickly with the 

slow start procedure (i.e. cwndi is linearly increased 

by 1 for each successful ACK received at the 

source). As a consequence, it would be hard to 

guarantee that the congestion window of the slow 

path is decreased for sufficient time to reduce the 

end-to-end delay. 
The above procedure alone cannot reduce 

the end-to-end delay variation of multipath 

variation. This is because there are other sources 

affecting end-to-end delay. The sources causing 

problem are transmission, processing, and queuing 

delays at routers, base stations, and intermediate 

nodes between communication peers. The path 

delay variation can be reduced by decreasing the 

congestion window of the slow path and relieving 

its carried traffic load. Since the transport-layer 

control itself cannot completely eliminate the path 

delay variation, the parameter counti is used to 

restrict the number of continuous reductions of 

congestion window for a single path i by m, which 

is the maximum adaptation limit. 
After the cwnd of a high-delay path is 

reduced according to Algorithm, the corresponding 

TCP subflow is blocked from sending more packets, 

because of the gap between the original cwnd and 

the adapted new one, i.e., (cwndi − cwndi/θ). The 

TCP subflow is blocked since the highest 

acknowledged DSN plus the adapted smaller cwnd 

becomes less than the highest DSN of packets that 

are sent to the sink node. This subflow is then 

blocked for a period T, given by 

∆T = (cwndi – cwndi/θ) * Γi. (5) 
 

For instance, when 1 ≤ θ ≤ 3, Γi = 5 ms, 

and cwndi = 100 packets, ∆T ranges from 170 ms to 

340 ms. During this short period, although one slow 

path is blocked and the overall throughput slightly 

decreases, more significant performance gain is 

achieved for goodput. 
 

 

 
C. Scheduling Algorithm  

 

The key design objective for a multipath solution is 

that it should be able to give a good performance 

under various network constraints of dissimilar 

subflows. Therefore, the scheduler, which performs 

the distribution of the individual packets of an 

application flow over several available subflows, is 

a critical design issue for efficient operation of 

multipath TCP. As Multipath TCP makes use of 

several paths between two endpoints to transmit 

data 

simultaneously, an efficient multipath scheduler is 

required at the sender. The scheduler should specify 

the order in which the new data is scheduled on the 

different flows of an MPTCP connection. The 

scheduling decision is done based on several 

variables such as the capacity of the subflow, the 

delay on the subflow, queue size at the sender or 

buffer size of a subflow. 
The best approach for an MPTCP scheduler 

is based on hybrid strategy using both push and pull 

strategy [11]. This strategy operates efficiently by 

allocating data segments to active flows with 

dynamic size. The authors had recognized in [11] 

that the Push strategy based on the Delivery Delay 

of the data segment earns the best performance. In 

this work, the Hybrid Delivery Delay scheduler is 

presented and compared with the Hybrid 

Acknowledgement (ACK) Delay scheduler as well 

as the basic Pull strategy based scheduler. The 

operation of the different schedulers is showed with 

the help of Figures 5 and 6 where it is assumed that 

the one path has 10 times the round trip time (RTT) 

when compared to the other. The Pull scheduler 

simply allocates segments as soon as an 

acknowledgement arrives and hence the cwnd is 

open to transmit new data segments, refer Figure 

5(a). On the other hand, the Hybrid 

Acknowledgement Delay scheduler aims at 

allocating data segments in an ordered way based on 

the expected acknowledgment over the two paths. 

 

 

 

 

 

 

 

 

 

 
(a) Pull Strategy Scheduler (b) Hybrid Ack 
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Delay Scheduler Fig. 5 Pull and Hybrid 

Ack Delay Scheduler 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a)Hybrid Ack Delay Scheduler (b) Hybrid Delivery 

Delay 
 

Scheduler 
As showed in Figure 5(b), due to an 

RTT ratio of 10 between the two paths, the 

data segments that would have been sent in the 

11
th

 RTT slot (shown in red color) are 

scheduled on the path with higher RTT so that 

its acknowledgment arrives near to the 

acknowledgment of the data segments that are 

scheduled on the lower RTT path in the 10th 

RTT slot, as shown in Figure 6(a). It is also 

clear from Figure 6(a) that this strategy will 

lead to a reordering delay for the data 

segments transmitted on the path with higher 

RTT as it arrives earlier at the receiver than the 

other data segments that are still queued at the 

lower RTT path. The scheduler variant that 

aims at removing the reordering delay at the 

receiver will have to follow the trend presented 

in Figure 3b i.e., the Hybrid Delivery Delay 

scheduler. Thus this scheduler will reduce the 

packet reordering time at the receiver. 
 

IV. Results and Discussion 
To assess the performance of the proposed 

scheme, we extend MPTCP in NS-2 with 

congestion window adaptation and packet 

scheduler. Performance is access on the basic 

of goodput and reordering time at receiver for 

wireless scenario. In Wireless scenario, the 

multi-radio receiver is equipped with multiple 

interfaces and connected to a base station over 

wireless links. The detailed system parameters 

are given in table1. 
 

Table 1 

 
Fig. 6 Message Sequence Diagram 

 
First we compare the goodput when 

regular MPTCP and CWA-MPTCP are used. 

The goodput of MPTCP combining CWA and 

packet scheduler is better when compared with 

regular MPTCP. The goodput of CWA-MPTCP 

is consistent over a period of time whereas in 

original MPTCP, goodput rises in some part and 

falls in other. This is due to the large delay of the 

slow path in some periods introduce out-of-order 

packets. In CWA-MPTCP, the end-to-end delay 

difference between the two paths is reduced to 

some extend and thus improved and consistent 

goodput. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 7 compares the goodput when original MPTCP 

and CWA-MPTCP are used. 

 
Fig. 7 Compared Goodput of MPTCP and 

CWA-MPTCP After goodput, reordering time is 

considered for analysis. Packet Scheduling used 

in the paper is Push strategy based on the 

Delivery Delay of the data segment. This 

scheduler based on the acknowledgement delay 

has a very low reordering delay. For analysis, 

the Delivery Delay scheduler is compared with 

the scheduler based on the Pull Strategy. The 

Parameter Sample Value 
  

Number of Transmission Path 2 
  

Avg. Bandwidth on path 1 8Mbit/s 
  

Avg. Bandwidth on path 2 2Mbit/s 
  

Application Used FTP 
  

Min Delay Ratio θmin 1 

Max Delay Ratio θmax 3 
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pull strategy scheduler have high reordering 

time since the segments on the lower delay path 

have to wait, but this time decreases with each 

segment as the latter segments are transmitted 

later in time. Fig. 8 compares both these 

schedulers. 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8 Comparison of Pull and Delivery Delay 

Scheduler 
 

The results show that Delivery Delay 

scheduler has less reordering time when 

compared to pull scheduler. 
Simulation results show that MPTCP 

combining both CWA and packet scheduler may 

give better goodput than the previous work. 

Goodput may approach the upper bound of 

aggregate throughput. 
 

V. Conclusion 

In this paper, we combined a congestion 

window adaptation algorithm (CWA-MPTCP) and 

packet scheduling technique to enhance the goodput 

of MPTCP and decrease the receive buffer 

requirement for the sink node. The adaptation takes 

place only when high delay ratio is detected. By 

reducing delay ratio, high goodput can be achieved 

for multipath transmission over wireless links. The 

scheduling at the sender side helps to reduce 

reordering time at receiver end. 
Simulation results demonstrate that our 

solutions achieve stable goodput with significant 

improvement and reduced reordering time 

requirement for the sink node. 
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