
International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute Of Technology, Lonara, Nagpur 37 | P a g e

*

Analysis on MPTCP combining Congestion Window Adaptation and

Packet Scheduling for Multi-Homed Device

Mr. Prathmesh A. Bhat, Prof. Girish Talmale
Dept. of Computer Science and Technology , GHRCE Nagpur University, Nagpur

Email: prathmabhat28@gmail.com, girish.talmale@raisoni.

ABSTRACT
Evolution of use of wireless technologies in laptops and mobile terminals, which are equipped with several

network interfaces, has provided users to take advantage from multi-homing to access network services

anywhere, at any time and from any network. Advantage with multihomed host is that some of the traffic from

more congested paths can be shifted to less congested path, thus controls congestion. In this paper we consider

about Multipath TCP (MPTCP), which suffers from the degradation of goodput in the presence of changing

network conditions on the available subflows due to out-of-order received packets. Cause of degradation is the

large variation of end-to-end delay for multiple paths over wireless channels. To diminish the variation of end-

to-end path delay, the proposed scheme uses congestion window adaption (CWA) algorithm to employ MPTCP

source. Also to reduce the time of packet reordering at the receiver, a scheduling algorithm is employed for the

MPTCP sender. Experiments are conducted to evaluate the goodput performance of the two enhancements to

MPTCP. Significant performance gain is achieved in terms of good put, while the reordering time is minimized.

Keywords - Goodput, Congestion, Reordering, MPTCP

I. INTRODUCTION
Modern laptops have often found more

than one network interface for accessing the

Internet. Also in the case with mobile, there are

more than one network interface. A mobile user

access the Internet via a wireless wide area network

such as general packet radio service [GPRS].Such

laptops and mobiles are referred as “Multi-Homed

devices”. Today’s processor are has fast enough to

handle data transfer on multiple network interface

simultaneously. This provides a good prospect to

explore several interfaces for multipath

transmission, so as to aggregate the bandwidth

among multiple wireless links and further improve

the quality of service (QoS) for bandwidth-

intensive applications, such as video streaming and

video conference. The standard for the transport

layer is the Transport Control Protocol [TCP]. TCP

however, fails to transmit packet over multiple

paths for Multi-Homed Device due to the high

level of out-of-order packets. In conventional TCP,

such as TCP Reno and selective acknowledgment

(SACK), the source node decreases its congestion

window once three duplicate acknowledgments

(ACK) are received from the sink node. That is,

three duplicate ACKs are viewed as an indicator of

packet loss in transmission. In a multipath

transmission scenario, because the round-trip time

(RTT) of each path varies, there is a high

probability that packets with lower sequence

numbers sent over a slower path arrive at the sink

later than packets with higher sequence numbers

sent over a faster path. As a result, the sink node

receives out-of-order packets and then returns

duplicate ACKs, which is misinterpreted by the

source as packet loss. Then, the source reduces its

congestion window and enters fast retransmit and

recovery stage. This behavior puts the efficiency of

TCP transmission in danger because the sending

window can be mistakenly set to a small value [1]

Fig. 1 Multi-home scenario in wireless network

Fig. 1 shows a multi-home scenario where

a Mobile device is connected to both Base Station

and Access point via its multiple interfaces.

MPTCP works well for multi-homed mobile

devices to simultaneously deliver TCP packets over

multiple paths and pool the available bandwidth

together. Although MPTCP has a better available

throughput for the upper layer, there

RESEARCH ARTICLE OPEN ACCESS

mailto:prathmabhat28@gmail.com

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute Of Technology, Lonara, Nagpur 38 | P a g e

is still another unresolved issue caused by out-of-

orders packets. Throughput represents the overall

receiving capacity of successful packet delivery

over multiple paths. Nonetheless, it is goodput that

reflects the real application-level throughput, which

is the amount of useful data available to the receiver

application per time unit. Specifically, in-order

packets received at the transport layer can be

forwarded to the application layer and counted for

goodput. Most recent study [7] introduced CWA

with a proactive scheduler for wired

communication. This study show that MPTCP

goodput is near optimal when the end-to end delays

of two transmission paths are very close. However

these study show that it takes a lot of time to reorder

packets at receiving end. Some more recent work in

2012 tries to improve goodput for MPTCP, by using

network coding [2] and packet retransmission over

fast path [3]. However, these studies only show the

average goodput improvement over a long term. In

fact, stable goodput with minimal variation is

preferable for QoS assurance to real-time

applications. Author in [6] has studied different

congestion control variants for Multipath TCP have

been compared. Also author has
to balance the traffic load on each path and improve

throughput without exposing regular TCP users.
MPTCP sublayer is responsible for

coordinating data packets on multiple paths, such as

reordering packets received from each path at the

sink, scheduling packets toward each path at the

source, and balancing the congestion window of

each subflow TCP. MPTCP also look after packet

reordering for multiple paths. Since each TCP

subflow maintains an independent sequence number

space, the sink may receive two packets of the same

sequence number. Further, packets received at the

sink can be out-of-order because of mismatched

round-trip time (RTT) of multiple paths. Therefore,

the source needs to address the sink about the

reassembly of the data forwarded to the application.

MPTCP solves this problem by using two levels of

sequence numbers. First, the sequence number for

TCP subflow is referred to as subflow sequence

number (SSN), which is similar to the one in regular

TCP. The subflow sequence number independently

works within each subflow and ensures that data

packets of each subflow are successfully transmitted

to the sink in order.
investigated a couple of relevant hybrid scheduler

algorithms that are based on the two implementation

strategies, Push and Pull.
In this paper, we use CWA-MPTCP, in

which the MPTCP source dynamically adjusts the

congestion window of each TCP subflow so as to

maintain similar end-to-end delays over multiple

paths, and packet scheduling algorithm, which

reduces time required at to rearrange packets at

receiving end.

II. OVERVIEW OF MPTCP

MPTCP is an extension to TCP that

allows the concurrent data transmission. From the

performance perspectives, MPTCP has two main

objectives:
a) Improve the throughput by combining

bandwidth over multiple available paths.

b) Improve the reliability by providing multiple

paths and switching traffic upon path failure.

As shown in Fig. 2, MPTCP roughly divides

the transport layer into two sublayers, specifically,

MPTCP and subflow TCP. Based on this

architecture, MPTCP can be easily employed

within current network stack. Each path has its

subflow to reuse most function of regular TCP.

The key transformation between subflow TCP and

regular TCP is that congestion control on each

path is assigned to MPTCP sublayer [5]. Although

each subflow TCP maintains a congestion window

at the source, the congestion window is updated by

a coupled congestion control algorithm which aims

Fig. 2 Network protocol stack with MPTCP

The sequence number at the MPTCP level

is called data sequence number (DSN). Each packet

received at the sink has a unique DSN no matter

which path it is sent over. Hence, the sink can easily

sequence and reassemble packets from different

paths by DSN.

III. GOODPUT

IMPROVEMENT FOR

MPTCP

A. Problem Analysis

In this work, we give special attention on

important performance metric, i.e., goodput. The

goodput of MPTCP is defined as the data

throughput of inorder packets forwarded by MPTCP

to the application layer. Intuitively, we have,
Goodput = Size of N in-order packets (1) Total

receiving time of N packets

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute Of Technology, Lonara, Nagpur 39 | P a g e

Next, to find out reasons for poor goodput

performance, consider two special scenarios of

MPTCP.

Suppose that there are two available paths. Let Γi

denote the packet sending interval at the MPTCP

source for path i, i = 1, 2. Consider that the

throughput of path 2 is smaller than that of path

1. Denoting the end-to-end delay of path i by di,

we have d1 < d2. Consider a block of N packets

with continuous DSN numbers, among which N

− 1 packets are received on path 1 and only 1

packet is from path 2. Such a block of data

packets is referred to as an in-order unit. Let S

and T denote the total size in the unit of

maximum segment size (MSS) and the total

receiving time of an in-order unit, respectively.

Then, we can evaluate the goodput by G = S/T.

Consider two special cases illustrated in

Fig. 3. The in order unit comprises 4 packets of

DSN numbers 1, 2, 3, and 4.Suppose that packet

1 and packet 2 are sent at the same time to path 1

and path 2, respectively. Fig. 3(a) shows the case

with D, |d2 − d1| > Γ1. We can easily obtain T =

D and the goodput, given by

G = S = Γ2/ Γ1 + 1 (2)

T ∆D

1

3

4
2

(a) General case with ∆D > Γ1

1

2

3

4

(b) Near Optimal case with ∆D <= Γ1

Fig. 3 Special cases with two transmission

path for goodput analysis
Fig. 3(b) shows another special scenario with D ≤

Γ1. In this case, the MPTCP sink needs less time

to receive all packets within the in-order unit.

Here, the total time to receive all N
packets of the in-order unit is just the time for path 1

to receive all N-1 packets re-sent over it. Obviously,

G = S = Γ2/ Γ1 + 1 (3)

T Γ2

Actually, Eq. (3) is also the aggregate throughput

(denoted by

 γ) over two paths. That is,

Γ= 1 + 1 (4)

Γ2 Γ1

This observation implies that goodput is

inversely proportional to the end-to-end path delay

difference ∆D.

B. Congestion Window Adaptation

In conventional TCP, the TCP sender

maintains a congestion window to control the

maximum amount of packets to send at a time. The

indication for packet loss is either Timeout or triple

duplicate ACKs received from receiver. The source

node reacts on packet loss and reduces its

congestion window to bring the traffic load to

stability. In MPTCP, each TCP subflow maintains

its own congestion window and triggers a decrease

of the congestion window by receiving duplicate

ACKs. In contrast, the increase of the congestion

windows of all subflows is controlled by a coupled

algorithm [4] at the MPTCP flow level. This

congestion window control algorithm can combine

the available bandwidth of each path and prevent a

MPTCP source from taking up too much resource to

assure TCP friendliness. In this congestion control

algorithm, the only reason to decrease the

congestion window is packet loss indicate d by

duplicate ACKs. Consequently, the congestion

window of each path may greatly differ from each

other and lead to a large path delay difference,

which is harmful to the goodput performance.

MPTCP Source MPTCP Sink

MPTCP Source MPTCP Sink

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute Of Technology, Lonara, Nagpur 40 | P a g e

Algorithm: Congestion Window

Adaptation.

1. if θ min < θ < θmax then //High delay ratio

detected

2. i= arg maxp (end-to-end delay of path p)

3. m=max adaptation limit

4. if counti < m then

5. cwndi


 cwndi/ θ

6. if ssthreshi > cwndi then

7. ssthreshi = cwndi

8. end if

9. counti


 counti + 1

10. else

11. counti =0

12. end if

13. end if

The algorithm monitors the end-to-end

delays of multiple paths. Whenever large delay ratio

is detected, congestion window adaptation takes

place at source compared with regular TCP, where

adaptation takes place only when source receives

three duplicate ACK. Here, delay ratio refers to

ratio of maximum path delay over minimum path

delay. The objective is to decrease the delay ratio in

order to increase goodput.

Check for delay ratio between multiple paths

Is

High Delay No

Ratio Detected

?

Yes

Select the path with High RTT

Reduce the

congestion

window of that

path by cwnd/θ

If

ssthreshi > cwndi? No

Yes

ssthreshi =cwndi cwndi += 1

Check for window

adaption times with

max. adaptation

limit

No If

Limit exceeded?

Stop window adaptation

Block the path for some period

Fig. 4 Flowchart for Congestion Window

Adaptation

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute Of Technology, Lonara, Nagpur 41 | P a g e

Delay ratio range is from θmin to θmax.

Whenever delay ratio θ falls in the range,

congestion window adaptation takes place.

Assume path i has maximum delay, so congestion

window (cwndi) is decreased proportionally to the

delay ratio. This is done because a larger delay ratio

indicates that the high delay path is congested. Its

congestion window needs to be decreased to release

traffic and reduce path delay. Here, θmax is

presented to avoid over-blocking slow path and

severely risking aggregate throughput. Meanwhile,

if ssthreshi > cwndi then the TCP slow start

threshold (ssthreshi) is updated with the new cwndi.

Otherwise, cwndi will be recovered quickly with the

slow start procedure (i.e. cwndi is linearly increased

by 1 for each successful ACK received at the

source). As a consequence, it would be hard to

guarantee that the congestion window of the slow

path is decreased for sufficient time to reduce the

end-to-end delay.
The above procedure alone cannot reduce

the end-to-end delay variation of multipath

variation. This is because there are other sources

affecting end-to-end delay. The sources causing

problem are transmission, processing, and queuing

delays at routers, base stations, and intermediate

nodes between communication peers. The path

delay variation can be reduced by decreasing the

congestion window of the slow path and relieving

its carried traffic load. Since the transport-layer

control itself cannot completely eliminate the path

delay variation, the parameter counti is used to

restrict the number of continuous reductions of

congestion window for a single path i by m, which

is the maximum adaptation limit.
After the cwnd of a high-delay path is

reduced according to Algorithm, the corresponding

TCP subflow is blocked from sending more packets,

because of the gap between the original cwnd and

the adapted new one, i.e., (cwndi − cwndi/θ). The

TCP subflow is blocked since the highest

acknowledged DSN plus the adapted smaller cwnd

becomes less than the highest DSN of packets that

are sent to the sink node. This subflow is then

blocked for a period T, given by

∆T = (cwndi – cwndi/θ) * Γi. (5)

For instance, when 1 ≤ θ ≤ 3, Γi = 5 ms,

and cwndi = 100 packets, ∆T ranges from 170 ms to

340 ms. During this short period, although one slow

path is blocked and the overall throughput slightly

decreases, more significant performance gain is

achieved for goodput.

C. Scheduling Algorithm

The key design objective for a multipath solution is

that it should be able to give a good performance

under various network constraints of dissimilar

subflows. Therefore, the scheduler, which performs

the distribution of the individual packets of an

application flow over several available subflows, is

a critical design issue for efficient operation of

multipath TCP. As Multipath TCP makes use of

several paths between two endpoints to transmit

data

simultaneously, an efficient multipath scheduler is

required at the sender. The scheduler should specify

the order in which the new data is scheduled on the

different flows of an MPTCP connection. The

scheduling decision is done based on several

variables such as the capacity of the subflow, the

delay on the subflow, queue size at the sender or

buffer size of a subflow.
The best approach for an MPTCP scheduler

is based on hybrid strategy using both push and pull

strategy [11]. This strategy operates efficiently by

allocating data segments to active flows with

dynamic size. The authors had recognized in [11]

that the Push strategy based on the Delivery Delay

of the data segment earns the best performance. In

this work, the Hybrid Delivery Delay scheduler is

presented and compared with the Hybrid

Acknowledgement (ACK) Delay scheduler as well

as the basic Pull strategy based scheduler. The

operation of the different schedulers is showed with

the help of Figures 5 and 6 where it is assumed that

the one path has 10 times the round trip time (RTT)

when compared to the other. The Pull scheduler

simply allocates segments as soon as an

acknowledgement arrives and hence the cwnd is

open to transmit new data segments, refer Figure

5(a). On the other hand, the Hybrid

Acknowledgement Delay scheduler aims at

allocating data segments in an ordered way based on

the expected acknowledgment over the two paths.

(a) Pull Strategy Scheduler (b) Hybrid Ack

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute Of Technology, Lonara, Nagpur 42 | P a g e

Delay Scheduler Fig. 5 Pull and Hybrid

Ack Delay Scheduler

(a)Hybrid Ack Delay Scheduler (b) Hybrid Delivery

Delay

Scheduler
As showed in Figure 5(b), due to an

RTT ratio of 10 between the two paths, the

data segments that would have been sent in the

11
th

 RTT slot (shown in red color) are

scheduled on the path with higher RTT so that

its acknowledgment arrives near to the

acknowledgment of the data segments that are

scheduled on the lower RTT path in the 10th

RTT slot, as shown in Figure 6(a). It is also

clear from Figure 6(a) that this strategy will

lead to a reordering delay for the data

segments transmitted on the path with higher

RTT as it arrives earlier at the receiver than the

other data segments that are still queued at the

lower RTT path. The scheduler variant that

aims at removing the reordering delay at the

receiver will have to follow the trend presented

in Figure 3b i.e., the Hybrid Delivery Delay

scheduler. Thus this scheduler will reduce the

packet reordering time at the receiver.

IV. Results and Discussion
To assess the performance of the proposed

scheme, we extend MPTCP in NS-2 with

congestion window adaptation and packet

scheduler. Performance is access on the basic

of goodput and reordering time at receiver for

wireless scenario. In Wireless scenario, the

multi-radio receiver is equipped with multiple

interfaces and connected to a base station over

wireless links. The detailed system parameters

are given in table1.

Table 1

Fig. 6 Message Sequence Diagram

First we compare the goodput when

regular MPTCP and CWA-MPTCP are used.

The goodput of MPTCP combining CWA and

packet scheduler is better when compared with

regular MPTCP. The goodput of CWA-MPTCP

is consistent over a period of time whereas in

original MPTCP, goodput rises in some part and

falls in other. This is due to the large delay of the

slow path in some periods introduce out-of-order

packets. In CWA-MPTCP, the end-to-end delay

difference between the two paths is reduced to

some extend and thus improved and consistent

goodput.

Fig. 7 compares the goodput when original MPTCP

and CWA-MPTCP are used.

Fig. 7 Compared Goodput of MPTCP and

CWA-MPTCP After goodput, reordering time is

considered for analysis. Packet Scheduling used

in the paper is Push strategy based on the

Delivery Delay of the data segment. This

scheduler based on the acknowledgement delay

has a very low reordering delay. For analysis,

the Delivery Delay scheduler is compared with

the scheduler based on the Pull Strategy. The

Parameter Sample Value

Number of Transmission Path 2

Avg. Bandwidth on path 1 8Mbit/s

Avg. Bandwidth on path 2 2Mbit/s

Application Used FTP

Min Delay Ratio θmin 1

Max Delay Ratio θmax 3

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute Of Technology, Lonara, Nagpur 43 | P a g e

pull strategy scheduler have high reordering

time since the segments on the lower delay path

have to wait, but this time decreases with each

segment as the latter segments are transmitted

later in time. Fig. 8 compares both these

schedulers.

Fig. 8 Comparison of Pull and Delivery Delay

Scheduler

The results show that Delivery Delay

scheduler has less reordering time when

compared to pull scheduler.
Simulation results show that MPTCP

combining both CWA and packet scheduler may

give better goodput than the previous work.

Goodput may approach the upper bound of

aggregate throughput.

V. Conclusion

In this paper, we combined a congestion

window adaptation algorithm (CWA-MPTCP) and

packet scheduling technique to enhance the goodput

of MPTCP and decrease the receive buffer

requirement for the sink node. The adaptation takes

place only when high delay ratio is detected. By

reducing delay ratio, high goodput can be achieved

for multipath transmission over wireless links. The

scheduling at the sender side helps to reduce

reordering time at receiver end.
Simulation results demonstrate that our

solutions achieve stable goodput with significant

improvement and reduced reordering time

requirement for the sink node.

REFERENCES

[1] M. Zhang, B. Karp, S. Floyd, and L. Perterson,

“RR-TCP: A re ordering robust TCP with

DSACK,” in Proc. IEEE ICNP, Nov. 2003.

[2] M. Li, A. Lukyanenko, and Y. Cui, “Network

coding based multipath TCP,” in Proc. IEEE

INFOCOM Computer Communication

Workshop, Mar. 2012.

[3] C. Raiciu, C. Paasch, S. Barre, and A. Ford,

“Designing and implementing a deployable

multipath TCP,” in Proc. USENIX NSDI, Apr.

2012.
[4] C. Raiciu, M. Handley, and D. Wischik, “Coupled

congestion control for multipath transport

protocols,” IETF

RFC 6356, Oct. 2011.

[5] Sébastien Barré, Christoph Paasch, and Olivier

Bonaventure “MultiPath TCP: From Theory to

Practice”

[6] Amanpreet Singh, Mei Xiang, Andreas

Konsgen and
Carmelita Goerg, Yasir Zaki “Enhancing

Fairness and Congestion Control in Multipath

TCP” in WMNC,2013
[7] Dizhi Zhou, Wei Song, Minghui Shi

“Goodput

Improvement for Multipath TCP by Congestion

Window Adaptation in Multi-Radio Devices” in

IEEE CCNC-Wireless Networking Track 2013.

[8] D. Zhou, P. Ju, and W. Song, “Performance

enhancement of multipath TCP with

cooperative relays in a collaborative

community,” in Proc. IEEE PIMRC, Sep. 2012.

[9] Y. Cui, X. Wang, H. Wang, G. Pan, and Y.

Wang, “FMTCP: A fountain code-based

multipath transmission control protocol,” in

Proc. IEEE ICDCS, Jun. 2012.

[10] Ford, C. Raiciu, M. Handley, S. Barre, and

J. Iyengar,

“Architectural guidelines for multipath TCP

development,”

IETF RFC 6182, Mar. 2011.

[11] Amanpreet Singh, Carmelita Goerg Andreas

Timm-Giel Michael Scharf,Thomas-Rolf

Banniza “Performance Comparison of

Scheduling Algorithms for Multipath Transfer,”

in

[12] IEEE Globecom 2012

