
International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Advancement in Information Technology(ICAIT- 23 February 2013)

Poornima Institute of Engineering & Technology Page 37

Word Proximity Integration in Word Cloud

Ansuya Ahluwalia
*
, Chaitanya

**
, Shailendra Singh

(Department of Computer Science, PEC University of Technology, Chandigarh-12)

ABSTRACT

 Word clouds are used for giving a quick

overview of textual content based on the

frequency of the terms that occur. The

conventional visualization displays the most

frequent words by reflecting it in the font sizes.

In this project, we introduce a new methodology

for calculating the semantic proximity between

frequently occurring words by considering the

horizontal radial distance of the high frequency

word pairs. The proximity counts are then

integrated in the word cloud visualization by

varying the color intensity of the close-distanced

words.

Keywords - colour intensity, term frequency, term

proximity, word cloud

1. Introduction

A word cloud is a visual representation for text data,

typically used to depict a focused view of a

document by displaying words that are most often

used in the entire document. Tag clouds have

completely redefined the orthodox wisdom about

how visualizations ought to work. [1].These high

frequency single-word tags highlight the importance

of each word/tag by reflecting it in the font size or

color. Word clouds have been subject of

investigation in several usability studies [2] [3] [4].

 In this paper, we have focused on how to utilize

both the font size as well as color to get a deeper

insight into the association of words in an input

document. We integrate other novel aspects to our

word cloud algorithm such as visualization of co-

occurring or closely located high frequency terms

based on how far apart they are in the input corpus;

they commensurate with each other in visual

parameters.

 Some work has been done in this field as well.

One such method of integrating the semantic

proximity of words in a document is by using a tree

cloud [5]. Here, the words are arranged on a tree to

reflect their semantic proximity according to the

text. In contrast, our methodology focuses on

integrating the semantic counts in the conventional

word cloud visualization i.e. a bubble looking figure

integrating term frequencies by varying font size [6].

Doing so we are

exploiting the potential of the conventional

visualization and varying color shades to reflect

word proximities.

 Other exploitations of word cloud have also been

made such as establishing relations among tags by

taking into consideration the textual content of

documents [7]. Such approaches are based on

qualitative rather than quantitative analysis of the

text.

2. Methodology

Figure 1. Methodology

Fig.1 depicts a flowchart of the methodology we

have employed. We start off by reading an input file

containing text using Python’s input functions [8],

subsequently tokenization of the text using regular

expressions is done [9], followed by removal of stop

words [10] from the list of tokens generated.

 Term frequency is calculated for each of the

tokens and saved in a Python dictionary in the

manner token: frequency. We then calculate the

term proximity of the high frequency terms. These

weighted lists of terms are further fed into our Java

program to generate a visualization that depicts the

high frequency terms by adjusting the font sizes, and

the proximity between these terms by adjusting the

color shade intensities.

 For programming the graphics, prerequisite

knowledge is required in the areas of Object

Oriented Programming, in particular the concepts of

inheritance and polymorphism for designing classes,

GUI and custom graphics programming [11],

graphics programming using Java 2D [12], 2-

Dimesional representation or coordinate

representation and orientation of terms – angles,

size, etc.

3. Weighted List of Tokens

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Advancement in Information Technology(ICAIT- 23 February 2013)

Poornima Institute of Engineering & Technology Page 38

Concepts of Natural Language Processing and

statistics were highly crucial for tokenizing text into

sentences and sentences into words, and subsequent

generation of weighted frequency and proximity

count lists. The following concepts were

implemented in Python:

a) Tokenization: the process of breaking a

stream of text up into words, phrases,

symbols, or other meaningful elements

called tokens [13].

b) Stop words: are words that are filtered out

prior to, or after, processing of natural

language data. Any group of words can be

chosen as the stop words for a given

purpose. For e.g. – ‘is’, ‘that’, ‘which’,

‘the’, etc. [10].

c) Term Frequency: (TF) is a measure of how

often a term is found in a collection of

documents or a specific document.

d) Co-occurrence of tokens: in

this linguistic sense can be interpreted as an

indicator of semantic proximity or

an idiomatic expression.

e) Term proximity measures: to measure how

close two terms are to each other. This is

determined by either the number of

characters or the number of words present

between those two terms.

f) Regular Expressions: are required to

perform tokenization of words in the input

corpus [9]. Regex is implemented using

methods given in re python library.

g) Dynamic data structures: such as

dictionaries are needed for storing terms

and their frequencies. Python libraries like

defaultdict are used for working with

dictionaries and Counter are used for

calculating term frequencies for the terms

listed in the dictionary [8].

h) Sorting techniques

3.1 Tokenization and Frequency Count

To calculate the frequencies of the terms, we first

tokenized the entire text corpus using the regular

expression "[\\w-]*\\w" which parses the text to take

out terms that start with any character from the set

{A-Z, a-z, 0-9, _} or contains a dash, repeating for

as many multiple occurrences and terminates with

any character from the former set. Then we remove

the stop words in this list of terms [10] and sort the

terms in descending order, based on the number of

times they occur in the corpus. We use at least 50

high frequency words (arbitrary) in our visualization

if they contain at least 5 different frequencies in the

list, up to at most 70 high frequency words if the

number of different frequencies is less than 5 in the

initial list of 50.

3.2 Proximity Count of Tokens

We came up with a novel algorithm for calculating

word proximity between two high frequency words.

We calculate the proximity between two words

based on the radial distance between them (default is

taken as 2). If a word is immediately adjacent to the

word in consideration, then its proximity value is

taken as 20. Alternatively if a word is one hop away

from the word in consideration, then its proximity

value is taken as 10. Any words out of this range are

not considered. Also, even if a word is one hop or

two hops away from the word in consideration but is

present in the next sentence, then its proximity count

is not considered. Summarily this algorithm only

applies to high frequency words that are present in

the same sentence [13]. For each distinct pair, we

calculate the term proximity as;

 (1)

where < 20 and is the

proximity of terms to calculated by the number

of tokens present between terms and . If two

terms are adjacent to each other then they are

assigned a value of 20; each increasing distance is

denoted by decreasing multiples of ten; if a term is

two terms away from the concerned term, then the

proximity value is taken as 10. For all terms that fall

outside the horizontal radial distance of the

concerned term, their proximity count is taken as

zero.

 is the aggregate of all these values

for all values less than 30. The pair of terms having

high values are generally present in close

proximity in the corpus and has one similar visual

attribute to represent them as closely occurring

terms. An aggregate of all the proximity counts

between all the word pairs gives us an overall idea of

how frequently and closely the two words in each

pair occur in the piece of text.

 We have also removed duplicate considerations

of the same word pairs in a sentence, based on their

positioning in the sentence and inclusion in the high

frequency word list. Therefore, for a list of n high

frequency terms, there are n*(n-1)/2 word pairs that

are examined for proximity calculation.

 The result is stored as a list of terms tab spaced

with their frequencies in a .txt file. This file is

utilized in the Java code for creating the world cloud

visualization.

4. Visualization of Close Distanced Terms

Visualization for the word cloud is based on the

frequencies and proximities given as the weighted

list in the .txt file. The weighted lists are stored as

http://en.wikipedia.org/wiki/Semantic_proximity

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Advancement in Information Technology(ICAIT- 23 February 2013)

Poornima Institute of Engineering & Technology Page 39

HashMaps [14]. Following concepts are crucial for

designing the word cloud visualization [15]:

a) Tag size: Large tags attract more user

attention than small tags.

b) Scanning: Users scan rather than read tag

clouds. Larger font size helps to determine

the title/story/topic of the document and

related color intensity symbolizes the close

relation of the words.

c) Position: The upper left quadrant receives

more user attention than the others as

observed in the western reading habits.

d) Exploration: Tag clouds also provide

suboptimal support when searching for

specific tags, which do not have a very

large font size.

e) Integrating word proximity using color: A

HashMap of colors is maintained; every

element of this HashMap contains the list

of hex codes of colors of same

configurations but with varying intensities.

Standard deviation is used to calculate the

cut off proximity value.

 The visualization is based on font size, font, word

positioning and color.

4.1 Word Font Size

As mentioned before, large tags attract more user

attention than small tags. The font size of the word is

determined by the word frequency given by equation

(2), accessed from the HashMap;

 (2)

 For the less frequent words, resulting font size

comes out to be very less. For more readability of

the low frequency words, a constant is also added to

the above equation. The font of the word is set as

Calibri by default. User can select the word font as

per their requirements.

4.2 Word Positioning

Positioning of every term is done by setting (x, y)

coordinates for them. The word frequency and the

length of the word determine coordinates [15].

Different algorithms have been used to calculate the

x-coordinate and y-coordinate.

 X-coordinate directly depends on the frequency

of occurrence and the number of alphabets in the

particular word. The space occupied by the word is

directly proportional to the word length and to the

word font size that is determined by the word

frequency. We are using equation (3) for

determining x-coordinates for the terms;

 (3)

where is the term length, . is the term

frequency, and is taken as 3 and as 4.5.

 Y-coordinate for every single row is adjusted as

the maximum height of the word in that row; height

of the word directly depends on its frequency of

occurrence in the specified text; hence y-coordinate

is determined by the word frequency using equation

(4);

 (4)

where is taken as 5.

4.3 Word Integrating Word Proximity using Color

Word proximity integration is done by reading the

weighted proximities list stored in a .txt file.

word_proximity_map is a HashMap that maintains

the information about term proximities.

list_of_colors is a HashMap that maintains the list of

colors to be used. Every element of this

list_of_colors is mapped onto the list of hex codes of

colors of same configurations but with varying

intensities in the increasing order. The

word_proximity_map is accessed sequentially.

 For every term t that has not been assigned the

color code yet, a color c is selected from the

list_of_colors and assigned to the word t;

 (5)

where t(i), x(i) denotes the term and its proximity

with the concerned term t;

(6)

where stdDev is the standard deviation of the term

proximities with term t.

 Standard deviation shows how much variation or

dispersion exists form the mean; low standard

deviation indicates that the data points tend to be

very close to the mean; high standard deviation

indicates that data points are spread out over a range

of values [16]. Hence, standard deviation is used to

calculate the cut off proximity value. For every x(i)

> stdDev, t(i) is assigned a color from the color set.

Color intensity varies proportionally with the

proximity value as specified in the equation below;

greater proximity value means greater intensity and

lower the proximity value, lower is the intensity.

Higher the word proximity, higher is the color

intensity. The color codes are arranged in the

increasing order of their intensity in the color set.

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Advancement in Information Technology(ICAIT- 23 February 2013)

Poornima Institute of Engineering & Technology Page 40

Hence, the index selected from the color set is

determined by the proximity value.

 For other terms that have already been assigned

the same color, we calculate the standard deviation

of the term proximities with the concerned term as

described and assign them a color again using the

above stated formulae.

5. Results

Figure 2. Word cloud visualization

Fig.2 represents the visualization of the 70 most high

frequency words by adjusting it in the corresponding

font sizes. The Fig.2 also demonstrates the proximity

between all these terms by adjusting the color shades

and intensities. In Fig.3 are specified few of the most

frequent terms from the example document. Taking

an example, consider the term princeton. It has a

fairly decent frequency count as shown in Fig.3 and

has a fairly decent font size corresponding to it. The

term attend has a low frequency count and thus

appears smaller in the visualization.

Figure 3. Few high frequency terms

 However, the terms princeton and attend have the

highest proximity among all high frequency term

pairs, with a value of 60 as shown in Table 1. Thus,

we have considered an arbitrary, relatively dark

color to represent this proximity from our list of

colors. Furthermore, after separating all the terms

that have high and low proximity with the concerned

term i.e. princeton in this case, we allot

corresponding, varying color intensities to the

different terms that pair with it. Different colors

appear in the visualization, as we have not

considered terms paired with the concerned term,

that fall too below the calculated standard deviation,

otherwise the entire visualization would have been

of different shade intensities of a single color.

Table 1. Few Proximity Counts

Term 1 Term 2 Proximity

princeton attend 60

sam austin 50

sam finds 40

school football 30

identity austin 30

sam rhonda 30

sam confronts 30

sam sees 30

sam reluctant 30

fiona dance 20

girl diner 20

fiona save 20

carter rhonda 20

sam day 20

named fiona 20

girl named 20

6. Conclusion

We have successfully implemented Natural

Language Processing techniques for parsing text and

calculated the term proximity values successfully by

devising a novel algorithm. Finally, we successfully

integrated these proximity values into our word

cloud visualization by using a color intensity

variation approach.

 The visualization is extremely useful in

understanding the overview of documents and

demonstrating the semantic closeness between

important words found in the text. However, the

visualization technique used can achieve higher

resolution and optimal space coordination by

employing sophisticated mathematical equations like

spiral equations for better emphasis of the high

frequency words [17] [18] [19]. Also, the variation

in color shades is not as prominent due to the choice

of color shades. One can refer to a better-resolved

color shades template for showing the decreasing

proximity between words. This way closely related

words would appear highly distinct and discernable.

Although our algorithm does succeed in computing

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Advancement in Information Technology(ICAIT- 23 February 2013)

Poornima Institute of Engineering & Technology Page 41

semantic proximity count between high frequency

terms and integrates it in the visualization, more

rigorous methods as suggested can be employed for

designing the visualization.

REFERENCES

[1] Fernanda B. Viégas, Martin Wattenberg,

Timelines tag clouds and the case for

vernacular visualization, Magazine

interactions – Changing energy use

through design Interactions, ACM, New

York, USA, 2008, vol. 15, issue 4, 49-52.

[2] Seifert, C., Kump, B., Kienreich W.,

Granitzer, G., Granitzer, M., On the Beauty

and Usability of Tag Clouds, Information

Visualisation, 2008. IV '08. 12th

International Conference , 17-25.

[3] Cui, Weiwei, Yingcai Wu, Shixia Liu, Furu

Wei, Michelle X. Zhou, Huamin Qu,

Context preserving dynamic word cloud

visualization, Pacific Visualization

Symposium (PacificVis), IEEE 2010, , 121-

128.

[4] Cidell, Julie, Content clouds as exploratory

qualitative data analysis, 2010, Area

42.4: 514–523.

[5] Gambette, Philippe, Jean Véronis.,

Visualising a text with a tree cloud,

Classification as a Tool for Research, 2010,

561-569.

[6] Wordle - Beautiful Word Clouds,

http://www.wordle.net/, 22-01-2013.

[7] Zubiaga, Arkaitz, et al., Content-based

clustering for tag cloud visualization, Social

Network Analysis and Mining,

ASONAM'09, International Conference on

Advances in IEEE,2009, 316-319.

[8] Python Documentation contents,

http://docs.python.org/2/contents.html, 22-

01-2013.

[9] Regular Expression Tutorial - Learn How

to Use Regular Expressions,

http://www.regular-

expressions.info/tutorial.html, 22-01-2013.

[10] English Stopwords, http://www.ranks.nl/

resources/stopwords.html, 22-01-2013.

[11] Custom Graphics Programming - Java

Programming Tutorial, view-

source:http://www3.ntu.edu.sg/home/ehchu

a/programming/java/J4b_CustomGraphics.

html, 22-01-2013.

[12] 2D Graphics; Java2D,

http://www3.ntu.edu.sg/

home/ehchua/programming/java/J8b_Game

_2DGraphics.html, 22-01-2013.

[13] Natural Language Toolkit; NLTK 2.0

documentation, http://nltk.org/, 22-01-2013.

[14] Java HashMap- Java Tutorial,

http://www.rose

india.net/javatutorials/javahashmap.shtml,

23-01-2013.

[15] Bateman, Scott, Carl Gutwin, Miguel

Nacenta, Seeing things in the clouds: the

effect of visual features on tag cloud

selections, Proceedings of the nineteenth

ACM conference on Hypertext and

hypermedia, ACM, New York, NY,

USA,2008, 193-202.

[16] Standard Deviation,

http://en.wikipedia.org/wiki/

Standard_deviation, 23-01-2013.

[17] Spirals, http://www.mathematische-

basteleien.de /spiral.htm, 22-01-2013.

[18] Mathematica,

http://mathematica.stackexchange

.com/questions/2334/how-to-create-word-

clouds /2360#2360, 22-01-2013.

[19] WhyDoIDoIt.com, http://whydoidoit.com/,

22-01-2013.

http://www.wordle.net/
http://docs.python.org/2/contents.html
http://www.regular-expressions.info/tutorial.html
http://www.regular-expressions.info/tutorial.html
http://www.ranks.nl/resources/stopwords.html
http://www.ranks.nl/resources/stopwords.html
http://www3.ntu.edu.sg/home/ehchua/programming/java/J8b_Game_2DGraphics.html
http://www3.ntu.edu.sg/home/ehchua/programming/java/J8b_Game_2DGraphics.html
http://www3.ntu.edu.sg/home/ehchua/programming/java/J8b_Game_2DGraphics.html
http://nltk.org/
http://www.roseindia.net/javatutorials/javahashmap.shtml
http://www.roseindia.net/javatutorials/javahashmap.shtml
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Standard_deviation
http://www.mathematische-basteleien.de/spiral.htm
http://www.mathematische-basteleien.de/spiral.htm
http://mathematica.stackexchange.com/questions/2334/how-to-create-word-clouds/2360#2360
http://mathematica.stackexchange.com/questions/2334/how-to-create-word-clouds/2360#2360
http://mathematica.stackexchange.com/questions/2334/how-to-create-word-clouds/2360#2360
http://whydoidoit.com/

