
V. RathikaJournal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622 Vol. 9,Issue8 (Series -I) Aug 2019, pp 43-52

www.ijera.com DOI: 10.9790/9622- 0908014352 43|P a g e

A Novel Big Data Migration Framework With Reduced Database

Downtime

V. Rathika
1

, Dr. L. Arockiam
2

1

Research Scholar, Department of Computer Science, Mother Teresa Women’s University, Kodaikanal, Tamil

Nadu, India
2

Associate Professor, Department of Computer Science, St. Joseph’s College, Trichy, Tamil Nadu, India.

Corresponding Author: V. Rathika

ABSTRACT

This paper introduces novel big data migration architecture with its data fundamentals description, processes

and an interface related to big data migration. It describes a homogeneous novel framework for implementing

the big data migration between relational databases and non-relational databases on the on-premise server using

map reduce. The main goal of this big data migration framework is to migrate the massive data stored in

relational database to NoSQL database parallelly with minimal downtime. Another objective is to increase the

post-migration process after performing live migration. The proposed framework helps migration of big data

from a relational database to a distributed platform quickly and easily.

Keywords-NoSQL Databases, Big Data Migration, Denormalization, Association Rule Mining and Map

Reduce.

--- ---------

Date Of Submission: 25-07-2019 Date Of Acceptance: 06-08-2019

--- ----------

I. INTRODUCTION
 With the extensive spread of Cloud

Computing, Internet of Things and Big Data

Technologies, the amount of data is growing

rapidly. Due to this data deluge, the requirement of

distributed environment is not substantial for the

computing technologies. For many years, a

majority of corporations and organizations have

typically used Relational Databases to accumulate

and process their data. Even though, in this digital

era, still the structured data exists and accumulate

with the business development in settlements [2].

With the rapid growth of data size, the storage

becomes a bottleneck. Due to its huge size, the

analysis and processing have led to performance

degradation. These issues are needed to be solved

in organization level applications.

 To solve the above-mentioned issues,

distributed platform is to be developed for storing

and computation technologies. Generally, this

distributed platform denotes to a software platform

that builds data storage, data analysis, and

computations on a cluster of several hosts. The

main objective of this distributed platform is

revolving around the distributed storage and

distributed computing. In terms of storage, it is

theoretically possible to expand capacity

indefinitely, and storage can be dynamically

expanded horizontally with the increasing data. In

terms of computing, some key computing

frameworks such as Map Reduce can be used to

perform parallel computing on large-scale datasets

to improve the efficiency of massive data

processing. Therefore, when the data size exceeds

the storage capacity of a single-system or the

computation exceeds the computing capacity of a

stand-alone system, massive data can be migrated

to a distributed platform. The ability of resource

sharing and collaborative computing provided by a

distributed platform can well solve large-scale data

processing problems. This paper focuses on putting

forward a standard for implementing a big data

migration framework through web access via

Internet and considering how to help users more

easily and quickly migrate the massive data from a

traditional relational database to a cloud platform

from multiple requirements.

 There is a lack of standards for NoSQL

databases, especially in terms of data migration

from the SQL database to NoSQL database. This

deficiency causes needs for a generic migration

framework that includes all stages of data

migration, this research focuses on it. Many

frameworks have developed to solve the problem

with a different solution, characteristics and

properties [3, 4, and 5], the current implementation

of the framework for data migration supports three

different data stores: document, columnar and

graph [4].

RESEARCH ARTICLE OPEN ACCESS

V. RathikaJournal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622 Vol. 9,Issue8 (Series -I) Aug 2019, pp 43-52

www.ijera.com DOI: 10.9790/9622- 0908014352 44|P a g e

 The outline of this paper is as follows: the

second section describes a brief study of the

research literature by underliningthe

relatedcontributions of this study. The third section

describes the objective of the proposed framework.

The framework methodology and technique are

described in the fourth and fifth section

respectively. The summary of this contribution is

concluded in the sixth section.

II. LITERATURE REVIEW
The problem of data migration from SQL

databases to NoSQL databases is already being

studied by different authors, but with the many

NoSQLdata store variants currently available, it is

almost impossible to migrate data between each

NoSQL database. The most widely used

classification method is based on how they store

and manipulate data. This categorization produces

two categories: core NoSQL systems (i.e. key-

value, document, column, and graph) and

softcoreNoSQL systems (i.e. object, multivalued,

XML, grid, and cloud, etc.) [5].

There are two main methodologies

identified that are used to deal with data migration

problems which focuses on the representation or

the translation. For the translation, there are two

general approaches when trying to migrate data:

direct mapping and intermediate mapping. Direct

mapping, that is, data from the source database are

translated into the data structures of the target

database, while intermediate mapping, that is, data

are translated into an intermediate format and then

from this into the final one [6].

This paper focuses on the translation.

Scavuzzo et al [3] introduced solutions to data

migration by maintaining strong consistency and

secondary indexes in migrating data, but still

limited to the NoSQL column (column to column).

Shirazi et al [5] propose a design pattern model in

migrating data for columns to a graphical database

(column to graph) and vice versa. Bansel et al [4]

develop a framework for migrating three data

stores databases: column, graph, and document

using both approaches (direct and intermediate

mapping).

Cloud portability means the ability to

seamlessly move data and application services

from one cloud provider to another [5]. Portability

for heterogeneous public clouds has long been

considered an open problem, since distinct cloud

providers model their data structures and

implementations differently [3] and data-intensive

applications typically require sustainable

performance and scalability [6].

Thalheim and Wang [7] state that in order

to migrate the data, one need to have a thorough

understanding of the data source such as data

availability and data constraints since different data

sources are designed using different modeling

semantics. Furthermore, the data source may have

inconsistent, duplicate or inaccurate data.

Therefore, it is essential to migrate the data from

one data store to another to appreciate the growth

and requirements of the deployed application [8].

Furthermore, the framework includes

migration algorithms, migration models, and

migration schemes. The framework is tested by

migrating a certain amount of data from one data

store to another data store (i.e. Document to

Column) in the actual environment. In addition,

evaluation is also performed by comparing the

proposed framework with the current existing

framework using certain parameters [4].

NoSQL data stores have long been

considered highly available, scalable, and flexible

to handle large amounts of data and transactions

over many distributed servers [9]. NoSQL

implementations arguably provide better

performance than RDBMS, particularly for simple

read/write operations [10]. In addition, unlike the

traditional RDBMS, NoSQL does not require fixed

structures for storage [1]. While some authors have

recently recognized the importance of automatic

translation of SQL environments to NoSQL [11],

scant research has been devoted to enable the

seamless interoperability between diverse NoSQL

implementations.

Consequently, most of the large-scale

websites and cloud computing-based enterprises

applications such as eBay, Twitter, Amazon,

Google and Facebook are adopting proprietary

NoSQL-based data stores [12].

Further, we present the various NoSQL

types which model the Consistency, Availability,

and Partition Tolerance (CAP) theorem [13]:

• Key-value Stores: a data model based on

keys-values which is easy to implement, but

inefficient in updating and querying the part of

a value.

• Document-oriented databases: semi-

structured documents which are stored in

JSON format. They support efficient querying

and manage the nested values with associated

keys.

• Column family databases: an efficient data

model to store and process large amounts of

distributed data over multiple machines.

• Graph databases: enable the scalability

across multiple machines and allow data-

model specific queries.

 It is critical to study the heterogeneity

among the three essential NoSQL solutions:

document, columnar and graph. Most of the

document databases exhibit Consistency and

Partition Tolerance (CP) and master-slave

V. RathikaJournal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622 Vol. 9,Issue8 (Series -I) Aug 2019, pp 43-52

www.ijera.com DOI: 10.9790/9622- 0908014352 45|P a g e

replication. The columnar NoSQL databases

exhibit Partition Tolerance and Availability (PA)

and use peer-to-peer replication to easily handle

large amounts of data [14]. In contrast, the graph

database is the only NoSQL solution which fits

with modern workload growth and is highly

performance-oriented [15]. The graph databases

enable a fast traversal among nodes, and also can

easily model complex relationships [16]. Therefore,

companies such as Google, Facebook and Twitter

adopt graph databases as they particularly fit to

model social networks interaction as the graph data

model can describe both static and dynamic

relationships. Furthermore, the graph databases are

used across a wide range of applications domains

such as airlines, health-care, gaming, and retail [2].

Ideally, a data migration mechanism should require

little assistance from a user and should be

automatic. The authors [3] had introduced a

solution for data migration between NoSQL

columnar databases, in particular from Google App

Engine to Azure Table and vice versa.

Shiraxietetal. [5] had proposeddesign

pattern to migrate data from column databases to

graph database. Wang et a. [7] had identified three

stages for data migration: extraction,

transformation and loading. First, the data is

extracted from the source data model. Then, the

extracted data source is transformed into the new

data structure. This stage may require validation,

mapping and cleansing of data. Lastly, the

transformed data is loaded into the target data

source.

The authors [3] had proposed two main

strategies for data migration from source database

to a target database such as Direct Migration: the

translation of source database into the target

database without any intermediate stage and

Intermediate Migration: first, the data from the

source database is translated into an intermediate

format, and then the intermediate data is

transformed into the data structure supported by

target database.

III. LARA FRAMEWORK
 The proposed LARA framework has six

main phases which are presented in the Fig.1 are as

follows:

1. Select:

 This is the initial phase which identifies

the source and target database for the big data

migration to be performed. For this research work,

MySQL database is selected as the source database

on behalf of relational database and MongoDB is

selected as the target database on behalf-of the

document-oriented database.

2. Prepare:
 The second phase of the proposed LARA

framework is preparing the huge amount of

homogeneous data which are to be migrated. The

proposed ABS_DETGBalgorithm analyzes the

source database attributes using the

denormalization and association aware techniques.

This technique is explained in the succeeding

section. Based on the analysis, it prepares the

collections and fields in the target database.

3. Extract:
 The third phase is initial stage of the big

data migration. It extracts the big data from the

source database based on the information received

from the ABS_DETGBalgorithm.

4. Migrate:
 This is the key phase of the proposed

LARA framework. The data extracted from the

source database is migrated to the target database

using the MapReduce technique. It is described in

the section 6.5.5.

5. Load:
 The fifth phase of the proposed LARA

framework is to load the transferred data from the

source database into the target database using the

key-value pair technique which is explained in the

section 6.5.5.

6. Validate:
 The final phase is the validation phase

which is to validate the overall framework and

ensure the performance effectiveness and quality of

service of the big data migration.

 Each phase may have different actions

reliant on the data migration that will be executed.

Moreover, the framework comprises of query

translators, query logs and big data migration

algorithms. The proposed LARA framework is

evaluated by migrating the big data from row-

oriented database to the document-oriented

database in the actual environment. Furthermore,

evaluation is also performed by comparing the

LARA framework with the existing framework by

using certain constraints.

 The massive data migration migrates all

the data based on the Associate Aware Technique

and Query Translator. The database migration is

performed lively, where the users are able to access

the data from the target database instantly.

MongoDB does not support the join operation in

the data retrieval. This affects the post-migration

process and becomes a big challenge for the

researchers and users. To increase the post-

migration, the proposed graph based

V. RathikaJournal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622 Vol. 9,Issue8 (Series -I) Aug 2019, pp 43-52

www.ijera.com DOI: 10.9790/9622- 0908014352 46|P a g e

denormalization method is hybridized along with

the proposed associate rule mining technique.

Figure1. Process of LARA Framework

 The associate aware technique is built

inside the proposed framework. Fig. 2 represents

the LARA framework.

Figure 2. LARA Framework

Note:

• DETGB – Graph based Denormalization

Technique

• AAT – Associate Aware Technique

• ABS_DETGB – Attribute and Graph Based

Denormalization Selector

The following is the process of the proposed

LARA framework:

Step 1: De-normalize the relational database; the

information of the de-normalized attributes is

stored in a temporary file using the DETGB.

Step 2: Read the query log files; frequently

accessed queries are evaluated and ranked the

frequently appeared attributes using AAT

technique.

Step 3: ABS_DETGB technique is used to filter the

de-normalized attribute using the association aware

technique.

Step 4: The filtered attributes and tables are created

as fields and collections respectively in the NoSQL

database based on its ranking.

Step 5: The ABS_DETGB passed the Key to the

Map-Reduce function; the keys are attributes of the

data (value) to be migrated.

Step 6: The map-reduce function sends request to

the source database based on the keys received

from the ABS_DETGB technique. Later, the data

(values) are migrated parallel to the NoSQL

database.

Most of the existing framework has used the

Database Layers for migrating the data from the

relational database to non-relational database. The

novel feature of adding the denormalization

technique along with the associate-aware technique

makes the big data migration more effective. This

feature resulted with more accuracy in time

management and increased the performance of the

post-migration process. The techniques used in the

proposed framework are described in succeeding

section.

IV. LARA TECHNIQUE
 As it is presented and discussed in the

preceding section the LARA framework is built by

using the hybridization of the proposed graph based

denormalization method along with the proposed

associate rule mining technique. The following

sections describe the procedures and algorithms

used in the LARA framework.

4.1 Algorithm for LARA Technique

 The overall process of the LARA

technique is given below in the algorithm 1.

Initially the source database (MySQL) is started.

The inputs are collected from the source database

using denormalization and associate-aware

techniques to create collection in the target

database (MongoDB). Python API is used to

collect, migrate and create instances and collections

in the databases.

Algorithm 1: LARA Algorithm

Input: Database on MySQLDB must be started

Output: Collection on MongoDB must be

createdand Data Migrated

1: ConnectToMySQLDB ()

V. RathikaJournal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622 Vol. 9,Issue8 (Series -I) Aug 2019, pp 43-52

www.ijera.com DOI: 10.9790/9622- 0908014352 47|P a g e

2: ConnectToMongoDB ()

3: ForExist_MySQLDB:

4: For exist MySQL_TABLE:

5: ABS_DETGB(): // call

Association based denormalization

6: Create new_COLLECTION_MongoDB ():

7: End for

8: End for

9: MapReduce_Migrate() // call

mapreduce function for migrating the data

 In LARA algorithm, the function

ConnectToMySQLDB() establish a valid

connection with the MySQL database. The target

database MongoDB is connected using the

ConnectToMongoDB() function. The source and

target database are connected through the Python

API. It is essential to check the entities and

attributes of the source database and also it is vital

to create the relevant collections and fields in the

target database to process the data migration

effectively and efficiently. Exist_MySQLDB() is

the function to check the databases of the MySQL

database. If the database exists, then it will check

the entities in the MySQL database using the

Exist_MySQLTABLE() function.

 The proposed novelty of this work is to

reduce the downtime of the database during the

data migration by denormalizing the database using

Graph based method along with associationranked

attributes. ABS_DETGB () is the function used to

filter the entities for the above statement. This

function is discussed in the following sections.

After performing the ABS_DETGB(), the fields and

collections are created to the relevant entities and

attributes in the target MongoDB database using

the new_COLLECTION_MongoDB () function. At

last the MapReduce_Migrate () function migrate

the big data from the source MySQL database to

the target MongoDB database using the map reduce

algorithm which is discussed in the following

section.

.2 Graph Based Denormalization Technique

(DETGB)

 The process of denormalization is to

reduce the complexity of the usage of JOIN

operations and increase the query-response

performance. In the proposed LARA framework,

the RDBMS is denormalized using the following

algorithm 2. The graph-based algorithm is used to

denormalize the normalized database. This could

find the constraints efficiently based on the

attributes and relationships among the attributes in

different tables. The relationship between the

primary key and foreign key are established using

the graph and eliminated the complexity of the

constraints and keeps the remaining entities with

minimal constraints. The aim of this DETGB is to

join the entity in to a single collection. As

mentioned in the LARA technique, step 2 is

initiated by the AAT technique. The stored

information in the DETGBis then passed to the AAT

technique.

Algorithm 2: Graph Based Denormalization

(DETGB)

Input: SQL schema

Output: NoSQL schema

1: Create Relational Schema Graph G

2: Make G as acyclic graph

3: Convert G into a set of STi

4: for (each schema tree T ∈ ST) {

5: create a collection for the root of T

6: for (each non-root vertex v of T) {

7: set v into the parent node vp of v

8: remove the foreign key in vp

that refers to v

9: for (each query q ∈ Q) {

10: build a transaction-

query graph G (V, K) for q

11: add the columns of the

vertex d to the entity e

12: }

13: }

14: }

4.3 Association Aware Technique (AAT)

 The association aware technique has been

proposed to decrease the downtime of the database

access during the big data migration process. The

brief summary of the functions of AAT technique

is given below:

 Ranking the query based on its frequency of

attribute accesses

 Filtered and ranked the attribute based on

association rule

 Prioritize the attribute based on its ranking

 Convert the entity and attribute as collection

and field respectively

 The overall process of AAT is explained

in the algorithm 3. The step 6 „association rule‟ is

applied on the results of DETGB.The step 6 in the

algorithm 3 is used for filter and rank the attribute

with entity, which is evolved as ABS_DETGB in

this AAT and explained in the succeeding section.

Algorithm 3: Associate Aware Technique (AAT)

Notations used in the algorithms are described as

follows:

q query

E entity

A Attribute

Input: Sorted query from the query log files

Output: Frequently Accessed Entities (FAE)

1: Start

V. RathikaJournal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622 Vol. 9,Issue8 (Series -I) Aug 2019, pp 43-52

www.ijera.com DOI: 10.9790/9622- 0908014352 48|P a g e

2: Read Sort(qj)

 // i = 1,2,3…n

3: Tokenize entities Ei and attributes Aj

 //i =1,2,3…n and j = 1,2,3…m

4: Find the frequent of E

5: Find the frequent of A

6: Apply ABS_DETGB for E and A

7: Apply the Associated Attribute-Entity

Ranker

8: Stop

4.4 Association based Denormalization

Technique (ABS_DETGB)

Algorithm 4: Association Rule Generator

Notations used in the algorithms are described as

follows:

Q Query

C Confidence

S Support

Max Maximum

Min Minimum

T Transaction

e entity

a attribute

1. Start

2. Function ARG (Q, T, Smin, Cmin, emax, amax)

3. q ∈ Q, where q = {q1, q2, q3…...qm)

4. Let e and a = non-empty set

5. Ce|a := Si∈I{i};

6. While Fe|a ≠ ∅ and e and a are maximum

7. Check the Ci of e and a where i = {1,2, 3…. n}

8. MAX(Ci) = MAX(Ci+1) /*

Check up to n */

9. Find the Smax

10. If S and C are below minimum, remove it from

the T

11. Generate R using tf-idf

 /* explained in AER, Algorithm 5 */

12. Find most associated entity-attribute

13. Stop

4.5 Map Reduce Technique

 The document-oriented database is

practically undistinguishable to the RDBMS

database, only storing data using a document-

oriented model unlike RDBMS that storing data

using a row-oriented model [10]. The database

used for the document type is MongoDB, while the

structure of the row database is as follows:

• Table: Similar the table in RDBMS.

• Row: A Primary Key.

• Column: Field in RDBMS.

• Value: Where information is stored.

 The target database used for the document

type is MongoDB, the document database has

Embedded Documents and Reference Documents.

Reference Documents such as Foreign Keys in an

RDBMS, while Embedded Documents are like

documents in a document. The structure of the

MongoDB document is as follows:

 Collection: Same as the table in RDBMS.

 _id: A Primary Key.

 Key: Description of stored data.

 Value: Where information is stored.

V. RESULTS AND DISCUSSIONS
 In this proposed framework, table 1

represents metrics used to compare and analyze the

proposed work with the existing works.

Table 1. Evaluation Metrics

S.

No.

Metric Description

1. Total Migration

time (TMT)

Time period from

start to complete

of the live

migration.

2. Total Amount of

Migrated Data

(TMD)

Total amount of

data migrated

from source DB

to the target DB.

3. Downtime (DT) Time interval

during which the

source DB is

stopped and

unavailable to the

end user.

4. On-premise

server CPU

utilization (CPU)

Total CPU

resources

consumed by the

LARA

framework

during live

migration on the

on-premise

server.

5. On-premise

server memory

utilization

(MEM)

Total memory

resources

consumed by the

LARA

framework

during live

migration on the

on-premise

server.

 The required resources of the big data

migration are evaluated by the TMT, CPU and

MEM. The quality of service (QoS) is evaluated by

the DT of the proposed framework whereas in

possible cases, DT may affect Service Level

Agreement of the users.

 The proposed technique is evaluated with

the e-learning portal (www.examey.com) database

with more than 1 million rows. This web portal is a

Beta version which allows the public to practice

themselves for competitive exams. The datasets

used for live big data migration are described in the

V. RathikaJournal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622 Vol. 9,Issue8 (Series -I) Aug 2019, pp 43-52

www.ijera.com DOI: 10.9790/9622- 0908014352 49|P a g e

table 2. These attributes are interlinked to each

other and accessed many times as mentioned in the

values. Based on this frequency, ranking the source

database is denormalized using the association rule

mining. The frequently accessed database attributes

are denormalized to increase the post-migration

process. In the previous contribution MR-EAAT

technique, all the attributes are ranked based on the

ranking and data are migrated to the target

database.

Table 2. Dataset Description

S.

No

Database No. of

Tables

No. of

Columns

1. Before

Denormalization

84 549

2. After

Denormalization

47 416

Figure 3. Comparison of Table Structures

 The comparative results of database size

after migrating the big data from the RDBMS to

the NoSQL database is presented in the table 5.

Generally, the NoSQL database consumes more

space when compared to the RDBMS database.

The actual size of the database is 355 MB. The

MR_AAT technique which is discussed in the

previous paper occupied 651.5 MB of the disk

space. The proposed MR_ABS_DETGB technique

occupied 991.9 MB of the disk space, i.e. it is 2.78

times greater than the source database. This is due

to the denormalization technique. It generates more

redundant data and reduce collections and fields in

the target database.

Table 3. Table Structure before

Denormalization

Table 4. Table Structure after Denormalization

S. No Attribute Name

1. User_Id

2. User_First_Name

3. User_Middle_Name

4. User_Last_Name

5. User_Father_Name

6. User_Mother_Name

7. User_Name

8. User_Password

9. User_DOB

10. User_Sex

11. User_Address

12. User_Contact_Num

13. User_Email

14. User_Aadhar

15. User_Qualification

16. Roles

Table 5. Database Size Comparison after Data

Migration

S.

No

Techniques Database Size

(MB)

1. MR_ART 620

2. MR_ABS_DETGB

991.9

84

47

549

416

0

100

200

300

400

500

600

Before

Denormalization

After

Denormalization

N
u

m
b

er
s

o
f

T
ab

le
s

&
 C

o
lu

m
n

s

Techniques

Comparison of Table Structures

Tables Columns

V. RathikaJournal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622 Vol. 9,Issue8 (Series -I) Aug 2019, pp 43-52

www.ijera.com DOI: 10.9790/9622- 0908014352 50|P a g e

Figure 4. Comparison of Database Size after

Data Migration

Table 6. Comparison of Database Downtime

S.

No

Framework Database

Downtime

(Time in Secs)

1. MR_ART

140

2. MR_ABS_DETGB

129

Figure 5. Comparison of Database Downtime

during Big Data Migration

Table 7. Comparison of Select Statement

S.

No

Number

of

Records

Framework (time in

seconds)

NoSQLayer LARA

1. 20000 14.29 11.17

2. 40000 25.11 21.27

3. 60000 37.51 30.83

4. 80000 46.89 39.64

5. 100000 52.59 42.56

Figure 6. Comparison of Select Statement

Table 8. Comparison of Insert Statement

S.

No

Number of

Records

Framework (time in

seconds)

NoSQLayer LARA

1. 20000 140 129

2. 40000 149 133

3. 60000 261 245

4. 80000 472 457

5. 100000 784 769

Figure 7. Comparison of Insert Statement

0

10

20

30

40

50

60

20000 40000 60000 80000 100000

T
im

e
in

 S
ec

o
n
d

s

Number of Records

Comparison of Select Statement

MA_AAT MR_ABS_DETgb

V. RathikaJournal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622 Vol. 9,Issue8 (Series -I) Aug 2019, pp 43-52

www.ijera.com DOI: 10.9790/9622- 0908014352 51|P a g e

Table 9. Comparison of Delete Statement

S.

No

Number of

Records

Framework (time in

seconds)

NoSQLayer LARA

1. 20000 6.11 5.11

2. 40000 7.9 5.87

3. 60000 8.97 6.45

4. 80000 9.8 7.99

5. 100000 10.9 8.87

Figure 8. Comparison of Delete Statement

Table 10. Comparison of Server CPU Utilization
S.

No

Size of the

Data (MB)

CPU Usage (%)

NoSQLayer LARA

1. 71 1 1

2. 142 1 2

3. 213 2 4

4. 284 3 6

5. 355 6 8

Figure 9. CPU Utilization during Data

Migration

Table 11. Comparison of Server Memory

Utilization
S.

No

Size of

the Data

(MB)

Memory Usage (%)

NoSQLayer LARA

1. 71 27 35

2. 142 35 41

3. 213 41 47

4. 284 47 54

5. 355 52 60

Figure10. Memory Utilization during Data

Migration

VI. CONCLUSION
 This paper has described a novel

framework named LARA which is built to migrate

big data in the on-premise (standalone) operating

environment.The LARA framework is framed to

transfer the big data from the relational database to

the non-relational database system. The target

database is immature to perform the join operations

which is affected the post-migration process. The

proposed ABS_DETGB algorithm in the LARA

framework outperformed well and produced better

results when compared with the existing proposed

techniques. The CPU utilization and memory

utilization are also evaluated and compared with

the proposed techniques. The LARA framework

still requires to be tested in other cases or using

different data and other operating environments.

REFERENCES
[1]. H. M. L. Dharmasiri and M. D. J. S.

Goonetillake, “A federatedapproach on

heterogeneousNoSQL data stores,” Int. Conf.

Adv.ICTEmerg. Reg. ICTer 2013 - Conf. Proc.,

no. December,pp.234–239, 2013.

[2]. V. N. Gudivada, D. Rao, and V. V. Raghavan,

“NoSQL Systemsfor Big Data

Management,”2014 IEEE World Congr. Serv.,

pp.190–197, 2014.

[3]. M. Scavuzzo, E. Di Nitto, and S. Ceri,

“Interoperable datamigration between

NoSQLcolumnar databases,” Proc. – IEEEInt.

Enterp. Distrib. Object Comput. Work. EDOCW,

pp.154–162, 2014.

[4]. A. Bansel, H. Gonzalez-Velez, and A. E. Chis,

“Cloud-BasedNoSQL Data Migration,” Proc.-

24th Euromicro Int. Conf.Parallel, Distrib.

Network-Based Process. PDP 2016, pp. 224–231,

2016.

[5]. M. N. Shirazi, H. C. Kuan, and H. Dolatabadi,

“Design patternsto enable data

0

10

20

20000 40000 60000 80000 100000

T
im

e
in

 S
ec

o
n
d

s

Number of Records

Comparison of Delete Statement

MA_AAT MR_ABS_DETgb

1 1 2 3

6

1 2
4

6
8

0

5

10

71 142 213 284 355

C
P

U
 u

sa
g
e

in
 p

er
ce

n
ta

g
e

Data size in mb
AQM LARA

V. RathikaJournal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622 Vol. 9,Issue8 (Series -I) Aug 2019, pp 43-52

www.ijera.com DOI: 10.9790/9622- 0908014352 52|P a g e

portabilitybetweenclouds‟ databases,” Proc. -12th

Int. Conf. Comput. Sci. It's Appl. ICCSA 2012,

pp. 117–120,2012.

[6]. D. Petcu, H. Gonz´alez-V´elez, B. Nicolae, J. M.

Garc´ıa-G´omez,E. Fuster-Garcia, and C.

Sheridan, “Next generation HPC clouds: A

viewfor large-scale scientific and data-intensive

applications,” in Euro-Par2014, Revised Selected

Papers, Part II, ser. Lecture Notes

inComputerScience, vol. 8806. Porto: Springer,

pp. 26–37, Aug. 2014.

[7]. B. Thalheim and Q. Wang, “Data migration: A

theoretical perspective,”Dataand Knowledge

Engineering, vol. 87, pp. 260–278, 2013.

[8]. R. Sellami, S. Bhiri, and B. Defude, “ODBAPI: A

unified REST APIfor relational and NoSQL data

stores,” in Big Data Congress 2014.Anchorage:

IEEE, pp. 653–660, Jun. 2014.

[9]. R. Cattell, “Scalable SQL and NoSQL data

stores,” SIGMOD Rec.,vol. 39, no. 4, pp. 12–27,

May 2011.

[10]. Z. Chen, S. Yang, H. Zhao, and H. Yin, “An

objective function fordividing class family in

NoSQL database,” in CSSS 2012. Nanjing:IEEE,

pp. 2091–2094, Aug. 2012.

[11]. L. Rocha, F. Vale, E. Cirilo, D. Barbosa, and F.

Mourao, “A frameworkfor migrating relational

datasets to NoSQL,” Procedia ComputerScience,

vol. 51, pp. 2593–2602, 2015.

[12]. K. North, “The NoSQL alternative,”

[13]. C. Tauro, N. Ganesan, A. Easo, and S. Mathew,

“Convergent replicateddata structures that

tolerate eventual consistency in NoSQL

databases,”in ICACC 2013. Cochin: IEEE, pp.

70–75, Aug. 2013.

[14]. V. Abramova and J. Bernardino, “NoSQL

Databases: MongoDBvsCassandra,” in C3S2E

‟13. Porto: ACM, pp. 14–22, Jul. 2013.

[15]. W. McKnight, “Graph databases: When

relationships are the data,” inInformation

Management: Strategies for gaining a competitive

advantagewith data, W. McKnight, Ed. Boston:

Morgan Kaufmann, ch. 12, pp. 120–131, 2014.

[16]. M. Qi, “Digital forensics and NoSQL databases,”

in FSKD 2014.Xiamen: IEEE, pp. 734–739, Aug.

2014.

V. Rathika" A Novel Big Data Migrationframework With Reduced Database

Downtime"International Journal of Engineering Research and Applications (IJERA), Vol. 09,

No.08, 2019, pp. 43-52

