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ABSTRACT 

This paper introduces novel big data migration architecture with its data fundamentals description, processes 

and an interface related to big data migration. It describes a homogeneous novel framework for implementing 

the big data migration between relational databases and non-relational databases on the on-premise server using 

map reduce. The main goal of this big data migration framework is to migrate the massive data stored in 

relational database to NoSQL database parallelly with minimal downtime. Another objective is to increase the 

post-migration process after performing live migration. The proposed framework helps migration of big data 

from a relational database to a distributed platform quickly and easily. 

Keywords-NoSQL Databases, Big Data Migration, Denormalization, Association Rule Mining and Map 

Reduce. 
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I. INTRODUCTION 
 With the extensive spread of Cloud 

Computing, Internet of Things and Big Data 

Technologies, the amount of data is growing 

rapidly. Due to this data deluge, the requirement of 

distributed environment is not substantial for the 

computing technologies. For many years, a 

majority of corporations and organizations have 

typically used Relational Databases to accumulate 

and process their data. Even though, in this digital 

era, still the structured data exists and accumulate 

with the business development in settlements [2]. 

With the rapid growth of data size, the storage 

becomes a bottleneck. Due to its huge size, the 

analysis and processing have led to performance 

degradation. These issues are needed to be solved 

in organization level applications.  

 To solve the above-mentioned issues, 

distributed platform is to be developed for storing 

and computation technologies. Generally, this 

distributed platform denotes to a software platform 

that builds data storage, data analysis, and 

computations on a cluster of several hosts. The 

main objective of this distributed platform is 

revolving around the distributed storage and 

distributed computing. In terms of storage, it is 

theoretically possible to expand capacity 

indefinitely, and storage can be dynamically 

expanded horizontally with the increasing data. In 

terms of computing, some key computing 

frameworks such as Map Reduce can be used to 

perform parallel computing on large-scale datasets 

to improve the efficiency of massive data 

processing. Therefore, when the data size exceeds 

the storage capacity of a single-system or the 

computation exceeds the computing capacity of a 

stand-alone system, massive data can be migrated 

to a distributed platform. The ability of resource 

sharing and collaborative computing provided by a 

distributed platform can well solve large-scale data 

processing problems. This paper focuses on putting 

forward a standard for implementing a big data 

migration framework through web access via 

Internet and considering how to help users more 

easily and quickly migrate the massive data from a 

traditional relational database to a cloud platform 

from multiple requirements. 

 There is a lack of standards for NoSQL 

databases, especially in terms of data migration 

from the SQL database to NoSQL database. This 

deficiency causes needs for a generic migration 

framework that includes all stages of data 

migration, this research focuses on it. Many 

frameworks have developed to solve the problem 

with a different solution, characteristics and 

properties [3, 4, and 5], the current implementation 

of the framework for data migration supports three 

different data stores: document, columnar and 

graph [4]. 
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 The outline of this paper is as follows: the 

second section describes a brief study of the 

research literature by underliningthe 

relatedcontributions of this study. The third section 

describes the objective of the proposed framework. 

The framework methodology and technique are 

described in the fourth and fifth section 

respectively. The summary of this contribution is 

concluded in the sixth section. 

 

II. LITERATURE REVIEW 
The problem of data migration from SQL 

databases to NoSQL databases is already being 

studied by different authors, but with the many 

NoSQLdata store variants currently available, it is 

almost impossible to migrate data between each 

NoSQL database. The most widely used 

classification method is based on how they store 

and manipulate data. This categorization produces 

two categories: core NoSQL systems (i.e. key-

value, document, column, and graph) and 

softcoreNoSQL systems (i.e. object, multivalued, 

XML, grid, and cloud, etc.) [5]. 

There are two main methodologies 

identified that are used to deal with data migration 

problems which focuses on the representation or 

the translation. For the translation, there are two 

general approaches when trying to migrate data: 

direct mapping and intermediate mapping. Direct 

mapping, that is, data from the source database are 

translated into the data structures of the target 

database, while intermediate mapping, that is, data 

are translated into an intermediate format and then 

from this into the final one [6]. 

This paper focuses on the translation. 

Scavuzzo et al [3] introduced solutions to data 

migration by maintaining strong consistency and 

secondary indexes in migrating data, but still 

limited to the NoSQL column (column to column). 

Shirazi et al [5] propose a design pattern model in 

migrating data for columns to a graphical database 

(column to graph) and vice versa. Bansel et al [4] 

develop a framework for migrating three data 

stores databases: column, graph, and document 

using both approaches (direct and intermediate 

mapping). 

Cloud portability means the ability to 

seamlessly move data and application services 

from one cloud provider to another [5]. Portability 

for heterogeneous public clouds has long been 

considered an open problem, since distinct cloud 

providers model their data structures and 

implementations differently [3] and data-intensive 

applications typically require sustainable 

performance and scalability [6]. 

Thalheim and Wang [7] state that in order 

to migrate the data, one need to have a thorough 

understanding of the data source such as data 

availability and data constraints since different data 

sources are designed using different modeling 

semantics. Furthermore, the data source may have 

inconsistent, duplicate or inaccurate data. 

Therefore, it is essential to migrate the data from 

one data store to another to appreciate the growth 

and requirements of the deployed application [8]. 

Furthermore, the framework includes 

migration algorithms, migration models, and 

migration schemes. The framework is tested by 

migrating a certain amount of data from one data 

store to another data store (i.e. Document to 

Column) in the actual environment. In addition, 

evaluation is also performed by comparing the 

proposed framework with the current existing 

framework using certain parameters [4].  

NoSQL data stores have long been 

considered highly available, scalable, and flexible 

to handle large amounts of data and transactions 

over many distributed servers [9]. NoSQL 

implementations arguably provide better 

performance than RDBMS, particularly for simple 

read/write operations [10]. In addition, unlike the 

traditional RDBMS, NoSQL does not require fixed 

structures for storage [1]. While some authors have 

recently recognized the importance of automatic 

translation of SQL environments to NoSQL [11], 

scant research has been devoted to enable the 

seamless interoperability between diverse NoSQL 

implementations. 

Consequently, most of the large-scale 

websites and cloud computing-based enterprises 

applications such as eBay, Twitter, Amazon, 

Google and Facebook are adopting proprietary 

NoSQL-based data stores [12].  

Further, we present the various NoSQL 

types which model the Consistency, Availability, 

and Partition Tolerance (CAP) theorem [13]: 

• Key-value Stores: a data model based on 

keys-values which is easy to implement, but 

inefficient in updating and querying the part of 

a value. 

• Document-oriented databases: semi-

structured documents which are stored in 

JSON format. They support efficient querying 

and manage the nested values with associated 

keys. 

• Column family databases: an efficient data 

model to store and process large amounts of 

distributed data over multiple machines. 

• Graph databases: enable the scalability 

across multiple machines and allow data-

model specific queries. 

 It is critical to study the heterogeneity 

among the three essential NoSQL solutions: 

document, columnar and graph. Most of the 

document databases exhibit Consistency and 

Partition Tolerance (CP) and master-slave 
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replication. The columnar NoSQL databases 

exhibit Partition Tolerance and Availability (PA) 

and use peer-to-peer replication to easily handle 

large amounts of data [14]. In contrast, the graph 

database is the only NoSQL solution which fits 

with modern workload growth and is highly 

performance-oriented [15]. The graph databases 

enable a fast traversal among nodes, and also can 

easily model complex relationships [16]. Therefore, 

companies such as Google, Facebook and Twitter 

adopt graph databases as they particularly fit to 

model social networks interaction as the graph data 

model can describe both static and dynamic 

relationships. Furthermore, the graph databases are 

used across a wide range of applications domains 

such as airlines, health-care, gaming, and retail [2]. 

Ideally, a data migration mechanism should require 

little assistance from a user and should be 

automatic. The authors [3] had introduced a 

solution for data migration between NoSQL 

columnar databases, in particular from Google App 

Engine to Azure Table and vice versa. 

Shiraxietetal. [5] had proposeddesign 

pattern to migrate data from column databases to 

graph database. Wang et a. [7] had identified three 

stages for data migration: extraction, 

transformation and loading. First, the data is 

extracted from the source data model. Then, the 

extracted data source is transformed into the new 

data structure. This stage may require validation, 

mapping and cleansing of data. Lastly, the 

transformed data is loaded into the target data 

source. 

The authors [3] had proposed two main 

strategies for data migration from source database 

to a target database such as Direct Migration: the 

translation of source database into the target 

database without any intermediate stage and 

Intermediate Migration: first, the data from the 

source database is translated into an intermediate 

format, and then the intermediate data is 

transformed into the data structure supported by 

target database. 

 

III. LARA FRAMEWORK 
 The proposed LARA framework has six 

main phases which are presented in the Fig.1 are as 

follows:  

 

1. Select: 

 This is the initial phase which identifies 

the source and target database for the big data 

migration to be performed. For this research work, 

MySQL database is selected as the source database 

on behalf of relational database and MongoDB is 

selected as the target database on behalf-of the 

document-oriented database. 

 

 

2. Prepare: 
 The second phase of the proposed LARA 

framework is preparing the huge amount of 

homogeneous data which are to be migrated. The 

proposed ABS_DETGBalgorithm analyzes the 

source database attributes using the 

denormalization and association aware techniques. 

This technique is explained in the succeeding 

section. Based on the analysis, it prepares the 

collections and fields in the target database. 

 

3. Extract: 
 The third phase is initial stage of the big 

data migration. It extracts the big data from the 

source database based on the information received 

from the ABS_DETGBalgorithm. 

 

4. Migrate:  
 This is the key phase of the proposed 

LARA framework. The data extracted from the 

source database is migrated to the target database 

using the MapReduce technique. It is described in 

the section 6.5.5. 

 

5. Load: 
 The fifth phase of the proposed LARA 

framework is to load the transferred data from the 

source database into the target database using the 

key-value pair technique which is explained in the 

section 6.5.5.  

 

6. Validate: 
 The final phase is the validation phase 

which is to validate the overall framework and 

ensure the performance effectiveness and quality of 

service of the big data migration. 

 Each phase may have different actions 

reliant on the data migration that will be executed. 

Moreover, the framework comprises of query 

translators, query logs and big data migration 

algorithms. The proposed LARA framework is 

evaluated by migrating the big data from row-

oriented database to the document-oriented 

database in the actual environment. Furthermore, 

evaluation is also performed by comparing the 

LARA framework with the existing framework by 

using certain constraints. 

 The massive data migration migrates all 

the data based on the Associate Aware Technique 

and Query Translator. The database migration is 

performed lively, where the users are able to access 

the data from the target database instantly. 

MongoDB does not support the join operation in 

the data retrieval. This affects the post-migration 

process and becomes a big challenge for the 

researchers and users.  To increase the post-

migration, the proposed graph based 
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denormalization method is hybridized along with 

the proposed associate rule mining technique.  

 

 
Figure1. Process of LARA Framework 

 

 The associate aware technique is built 

inside the proposed framework. Fig. 2 represents 

the LARA framework. 

 

 
Figure 2. LARA Framework 

 

Note: 

• DETGB – Graph based Denormalization 

Technique 

• AAT – Associate Aware Technique 

• ABS_DETGB – Attribute and Graph Based 

Denormalization Selector 

The following is the process of the proposed 

LARA framework: 

Step 1: De-normalize the relational database; the 

information of the de-normalized attributes is 

stored in a temporary file using the DETGB. 

Step 2: Read the query log files; frequently 

accessed queries are evaluated and ranked the 

frequently appeared attributes using AAT 

technique. 

Step 3: ABS_DETGB technique is used to filter the 

de-normalized attribute using the association aware 

technique.  

Step 4: The filtered attributes and tables are created 

as fields and collections respectively in the NoSQL 

database based on its ranking. 

Step 5: The ABS_DETGB passed the Key to the 

Map-Reduce function; the keys are attributes of the 

data (value) to be migrated.  

Step 6: The map-reduce function sends request to 

the source database based on the keys received 

from the ABS_DETGB technique. Later, the data 

(values) are migrated parallel to the NoSQL 

database. 

Most of the existing framework has used the 

Database Layers for migrating the data from the 

relational database to non-relational database. The 

novel feature of adding the denormalization 

technique along with the associate-aware technique 

makes the big data migration more effective. This 

feature resulted with more accuracy in time 

management and increased the performance of the 

post-migration process. The techniques used in the 

proposed framework are described in succeeding 

section.  

 

IV. LARA TECHNIQUE 
 As it is presented and discussed in the 

preceding section the LARA framework is built by 

using the hybridization of the proposed graph based 

denormalization method along with the proposed 

associate rule mining technique. The following 

sections describe the procedures and algorithms 

used in the LARA framework. 

 

4.1 Algorithm for LARA Technique 

 The overall process of the LARA 

technique is given below in the algorithm 1. 

Initially the source database (MySQL) is started. 

The inputs are collected from the source database 

using denormalization and associate-aware 

techniques to create collection in the target 

database (MongoDB). Python API is used to 

collect, migrate and create instances and collections 

in the databases. 

 

Algorithm 1: LARA Algorithm 

Input:  Database on MySQLDB must be started 

Output:  Collection on MongoDB must be 

createdand Data Migrated 

1: ConnectToMySQLDB ()  
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2: ConnectToMongoDB ()  

3: ForExist_MySQLDB: 

4: For exist MySQL_TABLE: 

5: ABS_DETGB():  // call 

Association based denormalization 

6: Create new_COLLECTION_MongoDB (): 

7: End for 

8:  End for 

9: MapReduce_Migrate() // call 

mapreduce function for migrating the data 

 In LARA algorithm, the function 

ConnectToMySQLDB() establish a valid 

connection with the MySQL database. The target 

database MongoDB is connected using the 

ConnectToMongoDB() function. The source and 

target database are connected through the Python 

API. It is essential to check the entities and 

attributes of the source database and also it is vital 

to create the relevant collections and fields in the 

target database to process the data migration 

effectively and efficiently. Exist_MySQLDB() is 

the function to check the databases of the MySQL 

database. If the database exists, then it will check 

the entities in the MySQL database using the 

Exist_MySQLTABLE() function.  

 The proposed novelty of this work is to 

reduce the downtime of the database during the 

data migration by denormalizing the database using 

Graph based method along with associationranked 

attributes. ABS_DETGB () is the function used to 

filter the entities for the above statement. This 

function is discussed in the following sections. 

After performing the ABS_DETGB(), the fields and 

collections are created to the relevant entities and 

attributes in the target MongoDB database using 

the new_COLLECTION_MongoDB () function. At 

last the MapReduce_Migrate () function migrate 

the big data from the source MySQL database to 

the target MongoDB database using the map reduce 

algorithm which is discussed in the following 

section. 

 

.2 Graph Based Denormalization Technique 

(DETGB) 

 The process of denormalization is to 

reduce the complexity of the usage of JOIN 

operations and increase the query-response 

performance. In the proposed LARA framework, 

the RDBMS is denormalized using the following 

algorithm 2. The graph-based algorithm is used to 

denormalize the normalized database. This could 

find the constraints efficiently based on the 

attributes and relationships among the attributes in 

different tables. The relationship between the 

primary key and foreign key are established using 

the graph and eliminated the complexity of the 

constraints and keeps the remaining entities with 

minimal constraints. The aim of this DETGB is to 

join the entity in to a single collection. As 

mentioned in the LARA technique, step 2 is 

initiated by the AAT technique. The stored 

information in the DETGBis then passed to the AAT 

technique. 

 

Algorithm 2: Graph Based Denormalization 

(DETGB) 

Input: SQL schema   

Output: NoSQL schema  

1: Create Relational Schema Graph G 

2: Make G as acyclic graph 

3: Convert G into a set of STi 

4: for (each schema tree T ∈ ST) {  

5:       create a collection for the root of T  

6:            for (each non-root vertex v of T) {  

7: set v into the parent node vp of v  

8:                  remove the foreign key in vp 

that refers to v   

9:                        for (each query q ∈ Q) {  

10:                              build a transaction-

query graph G (V, K) for q  

11:                              add the columns of the 

vertex d to the entity e  

12:                         }  

13:                }  

14:    } 

 

4.3 Association Aware Technique (AAT) 

 The association aware technique has been 

proposed to decrease the downtime of the database 

access during the big data migration process. The 

brief summary of the functions of AAT technique 

is given below: 

 Ranking the query based on its frequency of 

attribute accesses 

 Filtered and ranked the attribute based on 

association rule 

 Prioritize the attribute based on its ranking 

 Convert the entity and attribute as collection 

and field respectively 

 The overall process of AAT is explained 

in the algorithm 3. The step 6 „association rule‟ is 

applied on the results of DETGB.The step 6 in the 

algorithm 3 is used for filter and rank the attribute 

with entity, which is evolved as ABS_DETGB in 

this AAT and explained in the succeeding section. 

 

Algorithm 3: Associate Aware Technique (AAT) 

Notations used in the algorithms are described as 

follows: 

q query 

E  entity 

A  Attribute 

 

Input: Sorted query from the query log files 

Output: Frequently Accessed Entities (FAE) 

1: Start 
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2: Read Sort(qj)   

  // i = 1,2,3…n 

3: Tokenize entities Ei and attributes Aj

  //i =1,2,3…n and j = 1,2,3…m 

4: Find the frequent of E 

5: Find the frequent of A 

6: Apply ABS_DETGB for E and A    

7: Apply the Associated Attribute-Entity 

Ranker 

8: Stop 

 

4.4 Association based Denormalization 

Technique (ABS_DETGB) 

Algorithm 4: Association Rule Generator 

Notations used in the algorithms are described as 

follows: 

Q  Query 

C  Confidence 

S  Support 

Max  Maximum 

Min  Minimum 

T  Transaction 

e entity 

a attribute 

 

1. Start 

2. Function ARG (Q, T, Smin, Cmin, emax, amax) 

3. q ∈ Q, where q = {q1, q2, q3…...qm) 

4. Let e and a = non-empty set 

5. Ce|a := Si∈I{i}; 

6. While Fe|a ≠ ∅ and e and a are maximum 

7. Check the Ci of e and a where i = {1,2, 3…. n} 

8. MAX(Ci) = MAX(Ci+1)  /* 

Check up to n */ 

9. Find the Smax 

10. If S and C are below minimum, remove it from 

the T 

11. Generate R using tf-idf  

 /* explained in AER, Algorithm 5 */ 

12. Find most associated entity-attribute 

13. Stop 

 

4.5 Map Reduce Technique 

 The document-oriented database is 

practically undistinguishable to the RDBMS 

database, only storing data using a document-

oriented model unlike RDBMS that storing data 

using a row-oriented model [10]. The database 

used for the document type is MongoDB, while the 

structure of the row database is as follows:  

• Table: Similar the table in RDBMS.  

• Row: A Primary Key.  

• Column: Field in RDBMS. 

• Value: Where information is stored. 

 The target database used for the document 

type is MongoDB, the document database has 

Embedded Documents and Reference Documents. 

Reference Documents such as Foreign Keys in an 

RDBMS, while Embedded Documents are like 

documents in a document. The structure of the 

MongoDB document is as follows:  

 Collection:  Same as the table in RDBMS.  

 _id: A Primary Key.  

 Key: Description of stored data.  

 Value: Where information is stored. 

 

V. RESULTS AND DISCUSSIONS 
 In this proposed framework, table 1 

represents metrics used to compare and analyze the 

proposed work with the existing works. 

 

Table 1. Evaluation Metrics 

S. 

No. 

Metric Description 

1.  Total Migration 

time (TMT) 

Time period from 

start to complete 

of the live 

migration. 

2.  Total Amount of 

Migrated Data 

(TMD) 

Total amount of 

data migrated 

from source DB 

to the target DB. 

3.  Downtime (DT) Time interval 

during which the 

source DB is 

stopped and 

unavailable to the 

end user. 

4.  On-premise 

server CPU 

utilization (CPU) 

Total CPU 

resources 

consumed by the 

LARA 

framework 

during live 

migration on the 

on-premise 

server. 

5.  On-premise 

server memory 

utilization 

(MEM) 

Total memory 

resources 

consumed by the 

LARA 

framework 

during live 

migration on the 

on-premise 

server. 

 

 The required resources of the big data 

migration are evaluated by the TMT, CPU and 

MEM. The quality of service (QoS) is evaluated by 

the DT of the proposed framework whereas in 

possible cases, DT may affect Service Level 

Agreement of the users. 

 The proposed technique is evaluated with 

the e-learning portal (www.examey.com) database 

with more than 1 million rows. This web portal is a 

Beta version which allows the public to practice 

themselves for competitive exams. The datasets 

used for live big data migration are described in the 
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table 2. These attributes are interlinked to each 

other and accessed many times as mentioned in the 

values. Based on this frequency, ranking the source 

database is denormalized using the association rule 

mining. The frequently accessed database attributes 

are denormalized to increase the post-migration 

process. In the previous contribution MR-EAAT 

technique, all the attributes are ranked based on the 

ranking and data are migrated to the target 

database.  

 

Table 2. Dataset Description 

S. 

No 

Database No. of 

Tables 

No. of 

Columns 

1. Before 

Denormalization 

84 549 

2. After 

Denormalization 

47 416 

 

 
Figure 3. Comparison of Table Structures 

 

 The comparative results of database size 

after migrating the big data from the RDBMS to 

the NoSQL database is presented in the table 5. 

Generally, the NoSQL database consumes more 

space when compared to the RDBMS database. 

The actual size of the database is 355 MB. The 

MR_AAT technique which is discussed in the 

previous paper occupied 651.5 MB of the disk 

space. The proposed MR_ABS_DETGB technique 

occupied 991.9 MB of the disk space, i.e. it is 2.78 

times greater than the source database. This is due 

to the denormalization technique. It generates more 

redundant data and reduce collections and fields in 

the target database. 

Table 3. Table Structure before 

Denormalization 

 
 

Table 4. Table Structure after Denormalization 

S. No Attribute Name 

1.  User_Id  

2.  User_First_Name 

3.  User_Middle_Name 

4.  User_Last_Name 

5.  User_Father_Name 

6.  User_Mother_Name 

7.  User_Name 

8.  User_Password 

9.  User_DOB 

10.  User_Sex 

11.  User_Address 

12.  User_Contact_Num 

13.  User_Email 

14.  User_Aadhar 

15.  User_Qualification 

16.  Roles 

  

Table 5. Database Size Comparison after Data 

Migration 

S. 

No 

Techniques Database Size 

(MB) 

1. MR_ART  620 

2. MR_ABS_DETGB

  

991.9 
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Figure 4. Comparison of Database Size after 

Data Migration 

 

Table 6. Comparison of Database Downtime 

S. 

No 

Framework Database 

Downtime 

(Time in Secs) 

1. MR_ART

  

140 

2. MR_ABS_DETGB

  

129 

 

 
Figure 5. Comparison of Database Downtime 

during Big Data Migration 

 

Table 7. Comparison of Select Statement 

S. 

No 

Number 

of 

Records 

Framework (time in 

seconds) 

NoSQLayer LARA 

1. 20000 14.29 11.17 

2. 40000 25.11 21.27 

3. 60000 37.51 30.83 

4. 80000 46.89 39.64 

5. 100000 52.59 42.56 

 

 
Figure 6. Comparison of Select Statement 

 

Table 8. Comparison of Insert Statement 

S. 

No 

Number of 

Records 

Framework (time in 

seconds) 

NoSQLayer LARA 

1. 20000 140 129 

2. 40000 149 133 

3. 60000 261 245 

4. 80000 472 457 

5. 100000 784 769 

 

Figure 7. Comparison of Insert Statement 
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Table 9.  Comparison of Delete Statement 

S. 

No 

Number of 

Records 

Framework (time in 

seconds) 

NoSQLayer LARA 

1. 20000 6.11 5.11 

2. 40000 7.9 5.87 

3. 60000 8.97 6.45 

4. 80000 9.8 7.99 

5. 100000 10.9 8.87 

 

 
Figure 8. Comparison of Delete Statement 

 

Table 10. Comparison of Server CPU Utilization 
S. 

No 

Size of the 

Data (MB) 

CPU Usage (%) 

NoSQLayer LARA 

1. 71 1 1 

2. 142 1 2 

3. 213 2 4 

4. 284 3 6 

5. 355 6 8 

 

 
Figure 9. CPU Utilization during Data 

Migration 

 

Table 11. Comparison of Server Memory 

Utilization 
S. 

No 

Size of 

the Data 

(MB) 

Memory Usage (%) 

NoSQLayer LARA 

1. 71 27 35 

2. 142 35 41 

3. 213 41 47 

4. 284 47 54 

5. 355 52 60 

 

 

 

 
Figure10. Memory Utilization during Data 

Migration 

 

VI. CONCLUSION 
 This paper has described a novel 

framework named LARA which is built to migrate 

big data in the on-premise (standalone) operating 

environment.The LARA framework is framed to 

transfer the big data from the relational database to 

the non-relational database system. The target 

database is immature to perform the join operations 

which is affected the post-migration process. The 

proposed ABS_DETGB algorithm in the LARA 

framework outperformed well and produced better 

results when compared with the existing proposed 

techniques. The CPU utilization and memory 

utilization are also evaluated and compared with 

the proposed techniques. The LARA framework 

still requires to be tested in other cases or using 

different data and other operating environments.  
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