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ABSTRACT 

Evaluation of past, present, and future streamflow within the North Platte River Basin (NPRB) is presented. 

Reconstructed streamflow using tree rings provided a proxy for the long-term variability in the region. Observed 

(USGS) streamflow was used to analyze patterns and extremes in recent decades. Projected streamflow data 

from the Community Climate System Model (CCSM) was extracted to provide future insight of the 

hydroclimatic variability in the region. The streamflow reconstruction dated back to 1383 (617 years) and 

accounted for 69% of the overall variance. Drought analysis indicated numerous droughts occurred during the 

1700s and only two droughts have occurred in the past century. Rescaling and mean bias correction methods 

were applied to adjust the CCSM streamflow datasets. A cyclical (10-year) correlation pattern was found 

between observed and modeled datasets. However, no significant trends were found when correlating the 

observed and modeled datasets with previous year major climate indices. Weibull exceedance probability plots 

were constructed to analyze the differences between past, present, and projected streamflow datasets. The 

average absolute difference between observed and modeled (CCSM) datasets for the overlapping period (1940–

1999) was 7%, indicating CCSM modeled flow behaved similarly to observed flow. A1B projected streamflow 

implies the NPRB is currently in the wettest period in the next 100 years and the B1 scenario predicts the 

wettest period will occur within the next 20 years. Projected water-year streamflow from the A1B and A1FI 

datasets suggest the driest period will occur near the end of this century. 
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I. INTRODUCTION 
 The future challenges to provide water in 

the western U.S. are compounded by projections of 

continued population growth and forecasts of 

increased temperatures (climate change). The 

Intergovernmental Panel on Climatic Change (IPCC) 

noted the general pattern (trend) of drier conditions 

in the mid-latitudes and the consensus of these 

studies is increased temperatures will result in 

decreased streamflow. One of the most important 

impacts on society of future climatic changes will be 

changes in regional water availability. Such 

hydrologic changes will affect nearly every aspect of 

human well-being, from agricultural productivity 

and energy use to flood control, municipal and 

industrial water supply, and fish and wildlife 

management [1]. Improved understanding of the 

climate system could have substantial impact on the 

economic well-being of the nations of the world and 

numerous climate models have been developed to 

model future projections of atmospheric, 

biogeochemical, and hydrologic processes. 

 Few studies [2, 3] have been completed 

comparing reconstructed climate with projected 

climate. Furthermore, no study has been done 

comparing reconstructed streamflow with projected 

streamflow within a river basin. Increased value is 

added by comparing observed climate with projected 

and reconstructed climate because the length of the 

dataset is significantly lengthened. Evaluating the 

current and projected changes in climate provides 

important information for future mitigation and the 

management of water resources. However, the 

majority of recent studies are focused on climactic 

datasets over the past century based on instrumental 

records. Analyzing climactic patterns on a greater 

timescale (i.e., greater than 500 years based on a 

tree-ring reconstruction) is essential to understand 

current and future climate conditions. Forecasted 

changes in climate are often analyzed with respect to 

observational datasets because it is imperative to 

study and understand climate that has already 

occurred (observed climate) before making 

assumptions about climate that is projected to 

happen. However, most observational datasets have 
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a relatively short period of record (~100 years). 

Reconstruction of past climates, based on multiple 

paleo indicators demonstrates that the historic record 

of roughly 100 years does not adequately capture the 

range of climatic variability observed during even 

the last 2000 years [4].  

 The first contribution developed a water-

year streamflow reconstruction for the NPRB 

utilizing data developed from tree-ring records on a 

timescale (e.g., centennial) longer than the 

instrumental record. It was hypothesized that a 

successful streamflow reconstruction can be made in 

the NPRB based on the number of regional tree-ring 

chronologies available and the moisture sensitivity 

of western U.S. tree species. Additionally, valuable 

climate reconstructions have been published in 

surrounding regions [5, 6]. The second contribution 

evaluated past, present, and future temporal and 

spatial variability of climate systems and how they 

relate to extreme events (e.g., droughts in the 

NPRB). Past extremes were analyzed based on a 

streamflow reconstruction from tree-rings. Present 

extremes were analyzed based on instrumental 

streamflow data. Future extremes were analyzed 

based on projected climate model (i.e., CCSM) 

output data. It was hypothesized that the uncertainty 

with projected streamflow will be greater than the 

uncertainty associated with the reconstruction of 

streamflow, however, projected extremes in regional 

streamflow would have increased validation because 

it will be verified by a lengthened dataset. 

Furthermore, it was hypothesized that extreme 

events will be less intense in future years (i.e., 2010–

2100) than projected because the lengthened dataset 

will show more hydroclimatic variability than what 

appears in the instrumental record. Finally, 

exceedance probability curves were constructed for 

each of the three periods (reconstructed, observed, 

and projected) to analyze the possible shifts in 

climate within the basin. While there are 

uncertainties in climate reconstructions and 

projected data from climate models, these datasets 

serve as the basis for policy and decision making 

and valuable information can still be extracted from 

them. 

 

II. DATA 
2.1 USGS Streamflow Data 

 Within the U.S., the United States 

Geological Survey (USGS) collects surface-water 

data that describe stream levels, streamflow 

(discharge), reservoir and lake levels, surface-water 

quality, and rainfall. Data is collected by automatic 

recorders and manual measurements. [7] identified a 

Hydro-Climatic Data Network (HCDN) of stream 

gages as being relatively free of significant human 

influences and, therefore, appropriate for climate 

studies. Streamflow measurements from one of these 

gages (USGS 06630000, Fig. 1) were incorporated 

in this study. The average water-year (October of 

previous year to September of following year) 

streamflow in the region was used in this study. This 

gage is important because it is the last streamflow 

gage before the North Platte flows through a series 

of five large reservoirs (with a combined capacity of 

3.4 x 109 m3) that provide water supply and 

hydroelectric power for much of southern Wyoming 

[8]. Further downstream, the Platte River riparian 

corridor has been identified as critical habitat for 

several species of endangered birds and fish [9]. A 

principal focus of ecosystem restoration is controlled 

releases from upstream reservoirs [9, 10] which in 

turn depend strongly on seasonal reservoir inflows 

from headwater streams. Understanding the 

hydrology of the North Platte River headwaters is 

critically important for water resource planning in 

the Rocky Mountains and Great Plains regions [11]. 

 

2.2 Tree-Ring Data 

 Approximately 150 regional tree-ring 

chronologies were collected for the streamflow 

reconstruction. All ring width series were uniformly 

processed using the ARSTAN program [12] as 

follows. Measured series were standardized using 

conservative detrending methods (negative 

exponential/straight line fit or a cubic spline two 

thirds the length of the series) before using a robust 

weighted mean to combine all series into a single 

site chronology [13]. Low-order autocorrelation in 

the chronologies that may, in part, be attributed to 

biological factors [14] were removed, and the 

resulting residual chronologies were used. 

 

2.3 CCSM Data 

 The projected streamflow dataset was 

extracted from the Community Land Model (CLM) 

within the Community Climate System Model 

(CCSM). Currently, the CCSM is a fully-coupled, 

global climate model that provides state-of-the-art 

computer simulations of the Earth’s past, present, 

and future climate studies. Model components 

within CLM include biogeophysics, hydrologic 

cycle, biogeochemistry, and dynamic vegetation. 

The model parameterizes interception, throughfall, 

canopy drip, snow accumulation and melt, water 

transfer between snow layers, infiltration, surface 

runoff, sub-surface drainage, and redistribution 

within the soil column to simulate changes in canopy 

water, snow water, soil water, and soil ice [15]. A 

river transport model (RTM) synchronously couples 

to the CLM for hydrologic applications (i.e., 

streamflow) as well as for improved land-ocean-sea-

ice-atmosphere coupling in the CCSM. [15] provides 

a technical description of the CLM. Based on the 

resolution of the CCSM model, a single grid cell 

(Fig. 1) was used. Four CCSM streamflow datasets 
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were collected. The first was the CCSM hindcast 

control run for the 20th century. This dataset was 

used to investigate the similarities and differences 

between observed and modeled streamflow. 

Projected CCSM streamflow datasets included the 

A1B, B1, and A1FI climate scenarios. A detailed 

description of these climate scenarios can be found 

in IPCC (2000). 

 

 
Figure 1:  Location Map 

 

III. METHODS 
 Water-year streamflow was obtained for 

three intervals. The first interval consisted of a 

newly developed streamflow reconstruction for the 

using tree-rings and provided streamflow data before 

the instrumental record. The instrumental 

streamflow record (1940–1999) comprised the 

second interval. The last interval consisted of 

projected streamflow data from CCSM (2001–2099). 

 

3.1 Reconstruction Methods 

 The period of 1940–1999 (n = 60) was used 

for model calibration and verification. Significant 

(95%) and stable tree chronologies were considered 

as initial predictors in model calibration. Stability 

analysis consisted of performing a 10-year moving 

correlation window, similar to [16], between 

streamflow and tree-ring widths. Chronologies 

containing insignificant 10-year r-values were 

removed from analysis. Regression approaches are 

the most common statistical method in climate 

reconstructions. In the simplest case, a linear 

regression equation is used to reconstruct past values 

of a single climatic variable from ring-width indices 

of a single tree-ring chronology, or from a mean of 

two or more chronologies which have been merged 

to form a single chronology [17]. Following the 

procedure of [5], the F level for a predictor was 

allowed to have a maximum p value of 0.05 for 

entry and 0.10 for retention in the stepwise 

regression model. Verification statistics calculated to 

check for model validation included R
2
, R

2
-

predicted, Variance Inflation Factor (VIF), and the 

Durbin-Watson statistic. 

R
2
 measures the proportion of variation in the 

response that is accounted for by the predictor 

variables; a higher R
2
 indicates a better fit of the 

model to the data. R
2
-predicted is calculated from 

the Predicted REsidual Sums of Squares (PRESS) 

statistic. PRESS is based upon a leave-one-out cross-

validation in which a single year or observation is 

removed when fitting the model. As a result, the 

prediction errors are independent of the predicted 

value at the removed observation [18]. VIF indicates 

the extent to which multicollinearity is present in a 

regression analysis. A VIF value close to 1.0 

indicates low correlation between predictors, and is 

the ideal value for a reconstruction model. The 

Durbin-Watson statistic was used to analyze the 

autocorrelation structure of model residuals. It was 

imperative that the predictor chronologies and 

reconstruction residuals contained similar 

autocorrelation structures for model validation. The 

length of the streamflow reconstruction was directly 

related to the age of the chronologies retained by the 

stepwise regression model. 

 

3.2 Statistical Analysis 

 Calculated statistical parameters for each 

streamflow time series included mean, median, 

minimum, and maximum. Annual, 5-year, and 

decadal extreme periods were also determined. The 

significance and reliability of past and projected 

extreme events depended on the uncertainty 

associated with each calibrated model. The 

presented methods determined the direct effect 

climate change is projected to have on water 

resources within the NPRB based on an extended 

period of record (>500 years). 

 

3.3 Weibull Exceedance Probability 

 The most efficient formula for computing 

plotting positions for unspecified distributions and 

the one now commonly used for most sample data, is 

the Weibull equation [19]: 

 

P = m/(n+1)……. (1) 

 

 where m is the rank of descending values 

and n is the number of values. P is an estimate of the 

probability of values being equal to or more than the 

ranked value. Weibull exceedance probability plots 

provide water managers good estimates of average 

flows as well as extreme flows. Weibull plots were 

constructed to analyze possible shifts in flow 

regimes between past, present, and projected flow 

within the NPRB. 

 

IV. RESULTS 
4.1 Reconstruction Results and Drought Analysis 

 Two water-year streamflow reconstructions 

were found to be feasible in the region (Table 1). 
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Reconstruction possibilities were as follows: 1487 

(three chronology predictors retained by stepwise 

regression); 1383 (two chronology predictors). We 

determined that reconstructing streamflow back to 

1383 (617 years) in the region would provide the 

most value based on the length of the reconstruction 

and the predictability (R
2
-predicted) of the model. 

The calibrated model (Fig. 2) explained 69% of the 

overall variance in water-year streamflow records 

from 1940–1999. The Variance Inflation Factor 

(VIF) and Durbin-Watson statistic concluded there 

were no issues with multicollinearity and 

autocorrelation, respectively. The two chronologies 

(Fig. 1) retained after performing stepwise 

regression were Encampment, a Douglas-fir species 

(Pseudotsuga menziesii M.) and Pumphouse (Pinus 

edulis E.).  

 

Table 1: Streamflow reconstruction verification and 

validation statistics. 

 

 
Figure 2: Calibrated Reconstruction Model 

explaining 69% of the variance in streamflow 

records. 

 

 Reconstructed water-year streamflow in the 

NPRB, smoothed with five and 25-year filters is 

shown in Fig. 3. A noticeable oscillation (e.g., 

around 30 years) was found to occur based on the 

reconstruction. This oscillation began at the 

beginning of the reconstruction (1383) and 

continued to 1700. The oscillation is less evident for 

the next 200 years but appears to begin again around 

1900 and continue to the end of the reconstruction. 

Possible explanations for this oscillation are 

discussed in subsequent sections. Extreme (drought) 

events in past centuries based on the reconstruction 

were determined applying a simple technique. A 

drought was defined as a period of at least 3 years in 

which the water-year streamflow was below the 

overall average. Two main findings were 

discovered: droughts occurred most frequently in the 

1700s while only two droughts occurred in the past 

century based on the reconstruction (Fig. 4). 

 

 
Figure 3: Complete streamflow reconstruction 

smoothed with five- and 25-year filters. 

 

 
Figure 4: Periods of drought found in the past 600 

years in the NPRB, based on the streamflow 

reconstruction, where the length of each bar 

represents the severity of the drought while the 

width represents the length of the drought. 

 

4.2 CCSM Rescaling and Bias Correction 

 Differences in streamflow magnitude were 

found between observed (USGS) and modeled 

(CCSM) datasets. Two methods were applied to 

adjust (i.e., correct) modeled streamflow data from 

CCSM. First, a rescaling method was applied [20, 

21]. CCSM streamflow values before the 

instrumental record (1871–1939) were rescaled to 

have the same variance as reconstructed flow (i.e., 

paleo-conditioned). CCSM streamflow values during 

the instrumental record (1940–2009) were rescaled 

to have the same variance as observed flow. The 

mean of the CCSM series was subtracted from each 

value. Each centered observation was then 

multiplied by a scaling factor, k, defined as: 

 



SallyRose Anderson Journal of Engineering Research and Application                          www.ijera.com   

ISSN : 2248-9622 Vol. 9,Issue 3 (Series -IV) March 2019, pp 01-08 

 
www.ijera.com                                                     DOI: 10.9790/9622- 0903040108                   5 | P a g e  

 

 

k = sx / sp……… (2) 

 

 where sx is the standard deviation of the 

observed or reconstructed values (depending on the 

period) and sp is the standard deviation of the 

modeled values. Finally, the mean was added back 

to each modeled value. The rescaling method 

applied results in more realistic modeled streamflow 

without affecting the overall correlation between 

datasets. To correct the bias (i.e., magnitude) within 

the CCSM streamflow dataset, the average 

difference between the observed or reconstructed 

dataset (depending on the period) and modeled 

dataset was added to the modeled dataset. Projected 

CCSM flows were rescaled based on the mean and 

standard deviation of observed flow only. 

 The overall correlation between observed 

(USGS) and modeled (CCSM) streamflow from 

1940–1999 was not significant. This result was not 

unexpected based on the uncertainties and resolution 

of current climate models. However, when analyzed 

further, an important discovery was found. When 

performing a 10-year moving correlation window on 

the datasets, an oscillation appeared (Fig. 5). There 

were periods in which the datasets behaved opposite 

and similarly to each other. This was first discovered 

between the instrumental and modeled datasets 

(1940–1999). Using the reconstruction, this 

oscillation was found to continue back to the 

beginning of the modeled dataset (1871). 

Confirming these results is the period of 2000–2010 

in which the observed and projected (A1B) datasets 

maintain the oscillation. A possible explanation for 

this oscillation as well as the oscillation found in the 

reconstruction was hypothesized to be the influence 

of climate indices (AMO/PDO/ENSO) on regional 

streamflow. To investigate this oscillation in more 

depth, observed and modeled flows were correlated 

with major climate indices. Previous year climate 

indices were correlated with following year 

streamflow to determine the possibility of sea 

surface influence on observed and modeled flow in 

the region. However, virtually all correlation values 

were found to be insignificant between streamflow 

and the major sea surface oscillations. The only 

significant (95%) outcome occurred between 

previous year AMO and following year 

reconstructed streamflow values. It is unknown to 

the authors the cause of this 10-year oscillation 

between observed and modeled flows, however this 

finding should assist in the improvement of modeled 

CCSM streamflow. 

 
Figure 5: 10-year correlation plot showing an 

oscillation found between observed and modeled 

water-year flows from 1880 - 2009. 

 

4.3 Weibull Exceedance Probability 

 Weibull exceedance probability plots were 

created during the overlapping period (1940–1999) 

for observed and reconstructed flows (Fig. 6) and 

observed and modeled (CCSM) flows (Fig. 7). The 

reconstruction model tended to overestimate low 

flows and underestimate high flows. The average 

absolute difference between observed and 

reconstructed flows was 7%. While there was no 

significance between observed and modeled flow 

based on correlation, the average absolute difference 

from the Weibull distribution was also 7% between 

the datasets, indicating that the modeled data follows 

a similar flow regime to observed data (Fig. 7). This 

similarity also suggests that projected modeled flows 

from CCSM can be analyzed with comparable 

accuracy and uncertainty. Furthermore, CCSM 

tended to overestimate extreme flows while 

underestimating average flows. A Weibull 

exceedance probability was created comparing 

observed flows with projected flows (Fig. 8). 

Projected flows included three climate scenarios: 

A1B, B1, and A1FI. Results indicate relatively 

minor deviations between instrumental and projected 

flow patterns. Most differences occurred below the 

exceedance probability of 60%. This indicates low 

flows are projected to remain close to the same 

while higher flows are expected to change slightly 

(Fig. 8). 
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Figure 6: Weibull exceedance probability plot for 

observed and reconstructed water-year flow during 

the calibrated period (1940-1999) where 

reconstructed flow overestimates low flows and 

underestimates high flows. 

 

 
Figure 7: Weibull exceedance probability for 

observed and modeled water-year flow during the 

calibrated period (1940-1999) where modeled flow 

overestimated extreme flows and underestimates 

average flows. 

 

 
Figure 8: Weibull exceedance probability plot for 

observed and projected water-year flow based on 

three difference climate scenarios. 

V. EVALUATION OF PAST, PRESENT, 

AND FUTURE CLIMATE IN THE 

NORTH PLATTE RIVER BASIN 
 Streamflow extremes and patterns within 

the NPRB based on reconstructed, instrumental, and 

projected datasets (Tables 2 and 3) was evaluated 

from 1383–2099. The streamflow reconstruction 

contains the highest annual flow value of all 

datasets, and it occurred in 1843. This year was the 

last of the wettest 10-year period (1835–1844). 

However, the driest 5-year period during the 

reconstructed record started the following year 

(1844–1848). The instrumental dataset indicates that 

2002 was the driest year on record and 1984 was the 

wettest year on record. Furthermore, the driest 

consecutive years on record within the NPRB 

occurred in the past 12 years (1998–2007) and the 

wettest time was from 1978–1987. 

 

Table 2: Reconstructed and instrumental water-tear 

streamflow statistics and extreme periods. 

 
 

Table 3: Projected water-year streamflow statistics 

and extreme periods. 

 
 

 The authors acknowledge projected climate 

contains more uncertainties than reconstructed 

climate, however, it should be noted that interesting 

similarities and differences in streamflow within the 

NRPB were discovered between the three climate 

scenarios. Based on the rescaling methods applied in 

this study, differences in magnitude between 

observed and projected streamflow was not 

considered. Instead, possible periods in which 

extreme streamflow is projected to occur was 

examined (Fig. 9). The A1B and A1FI datasets agree 

on when the driest phase will likely occur in the next 

100 years. Both scenarios suggest the driest time 
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will occur near the end of the century (2085–2095). 

The A1B scenario projects that the NRPB is 

currently in the wettest period of the century (2007–

2016) and the B1 scenario suggests the wettest 

period is likely to occur within the next 20 years 

(2011–2030). Contrary to the A1B and A1FI 

scenarios, the B1 scenario projects the driest period 

to occur from 2045–2055. The wettest 5-year period 

from the A1FI scenario is also likely to occur in the 

next 20 years (2019–2023) but the wettest 10-year 

period is projected to occur from 2064–2073.  

 

 
Figure 9: Projected water-year streamflow 

smoothed with a 10-year filter, showing that the 

wettest period is most likely to occur within the next 

20 years while the driest period is projected to 

happen near the end of the century. 

 

VI. CONCLUSIONS 
 A thorough study has been completed 

evaluating the past, present, and future climate 

within the NPRB. The first accurate climate 

reconstruction was developed for the region and 

explained 69% of the variance in streamflow 

records. Drought analysis was performed on the 

reconstructed record and discovered numerous 

drought periods, most notably during the 1700s. 

Based on the streamflow reconstruction, only two 

droughts have occurred in the past century with 

respect to the lengthened dataset. Weibull 

exceedance probability plots were created to analyze 

possible shifts in the flow regime of the basin. 

Modeled streamflow data from CCSM was rescaled 

and used to recognize when extreme events are most 

likely to occur in the next century. It was discovered 

that the NPRB is likely to experience the wettest 

period of this century in the next 20 years. Two of 

the three climate scenarios suggest the driest time is 

projected to occur in the last 20 year of this century. 

As the resolution of climate models become finer 

and water cycle algorithms become more accurate, 

future streamflow predictions of streamflow within 

the NPRB can compared to the findings presented 

here. Future work may apply a downscaling method 

into a physical model to obtain more accurate 

projected streamflow in the region. Lastly, the 

methods and concepts presented in this research can 

be applied to any region in which successful climate 

reconstructions can be attained to examine past, 

present, and projected climate variables. 
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