
Abdullah M. A. Alzafiri Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622 Vol. 9,Issue 11 (Series -III) November 2019, pp 32-38

www.ijera.com DOI: 10.9790/9622- 0911033238 32 | P a g e

A Comparative Analysis for Finding Shortest Path Problem in

Computer Networks

Abdullah M. A. Alzafiri*
*(Industrial Institute -Shuwaikh, Public Authority of Applied Education and Training, Kuwait

ABSTRACT

Network routing is an important issue in computer networks, as routingis used to transfer packets from source

node to destination node by selecting the shortest path between these nodes to increase the network’s

performance. There are many routing protocols to accomplish this task and they are divided into two main

types: distance vector routing protocols and link-state routing protocols which is the most commonly used.

Link-state routing protocols use graph search algorithms to obtain the shortest route between two nodes.

Dijkstra’s algorithm (DA) is used as a classical graph search algorithm in many famous routing protocols such

as Open Shortest Path First (OSPF). In this work, a genetic algorithm (GA) is used as an alternative graph

search algorithm to find the optimal route. Both DA and GA are implemented on three network graphs with

different sizes (small, medium, and large) to obtain the shortest route between the source and destination nodes.

The results show that both algorithms lead to optimal route but DA is faster than GA in small networks, while

GA is faster than DA in large networks.

Keywords–computer network, Dijkstra’s algorithm, genetic algorithm, routing, shortest route.

--- ----------

Date Of Submission: 10-11-2019 Date Of Acceptance: 30-11-2019

--- ---------

I. INTRODUCTION
 In the context of computer networks,

network routing is the process of selecting paths and

forwarding traffic from a source node to a

destination node. These network nodes are usually

presented by routers or switches. By exchanging

information between routers in the network, a router

usually maintains a list of Internet addresses (IPs)

and their corresponding locations in the network.

This list is called a routing table [1].A routing table

may be configured in two ways: manually or

automatically. Manual configuration for the routing

table is done by a network administrator who should

manually define the routes or paths that can reach

the destination (static routes) and each time update it

if there is a change in the network configuration or

topology. The second way is better due to the

routing table could be configured automatically

using “routing protocols” (dynamic routing).

Routing protocols such as Routing Information

Protocol (RIP), Open Shortest Path First (OSPF),

etc. create and maintain routing tables periodically

for each router. It therefore updates its own routing

table and constructs a picture of how to reach other

parts of the network [1, 2].A routing protocol

specifies how routers communicate with each other

and distributes information that enables them to

select routes between any two nodes on a computer

network, with the choice of the route being done by

routing algorithms [1, 2].There are many types of

routing protocols which are divided into two main

types depending on their functionality. The first type

is distance vector routing protocols such as Routing

Internet Protocol (RIP), Interior Gateway Routing

Protocol (IGRP), and Enhanced Interior Gateway

Routing Protocol (EIGRP). The second type is link-

state routing protocols such as Open Shortest Path

First (OSPF) and Intermediate System to

Intermediate System (IS-IS). In distance-vector

routing protocols, the best path is determined on the

basis of how far the destination is, typically, in terms

of the number of hops to the destination. Link-state

routing protocols use more advanced methods by

taking into consideration link variables or the total

cost of the path. OSPF, for example, is one of the

most popular routing protocols and uses a link-state

algorithm [1, 2].When applying link-state

algorithms, every node constructs a map of the

network connectivity in the form of a graph,

showing the nodes that are connected to other nodes.

Using this graph, each router then independently

determines the least-cost path from itself to every

other node using a graph search algorithm such as

Dijkstra’s algorithm [3, 4, and 5].Dijkstra’s

algorithm is the most popular and it is considered as

a graph search algorithm that uses to solve the

single-source shortest path problem. In this work, a

genetic algorithm (GA) [6] is suggested instead of

this search graph algorithm (Dijkstra’s algorithm) to

obtain the shortest path between two nodes in a

network graph. The performance of both algorithms

will be compared in terms of speed and accuracy to

RESEARCH ARTICLE OPEN ACCESS

Abdullah M. A. Alzafiri Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622 Vol. 9,Issue 11 (Series -III) November 2019, pp 32-38

www.ijera.com DOI: 10.9790/9622- 0911033238 33 | P a g e

decide which one is better in certain situations.The

genetic algorithm (GA) is "a search heuristic that

mimics the process of natural evolution. This

heuristic is routinely used to generate useful

solutions to optimization and search problems.

Genetic algorithms belong to the larger class of

evolutionary algorithms (EA) that generate solutions

to optimization problems using techniques inspired

by natural evolution, such as inheritance, mutation,

selection, and crossover" [7, ,8 ,9, 10, 11 and 12].

II. THE SUGGESTED GENETIC

ALGORITHM FOR SOLVING

SHORTEST PATH PROBLEM

 The network topology can be represented as

a graph G = (V, A), where V is vertices' set (e.g.,

routers or switches) and A is a set of arcs or links

that connect these nodes together (e.g., wires).

Another factor that describes the network is the cost

of each link, where the cost between the two nodes

represents the length between them. Cij is the cost of

transmitting a packet between node i to node j and

the cost matrix C = [Cij] represents the costs for our

network graph. The source node denoted by S and

the destination node denoted by D. Each arc or link

connects two nodes in the graph denoted by Iij that is

a very important matrix used to inform if the link

from node i to node j is included in the path or not.

Iij can be defined by the flowing equation [15].

We note that the elements in the diagonal of matrix

Iij are zeros because the cost between any node and

itself is zero.

2.1 Chromosome Representation

 Each solution in the suggested GA is

considered as a suggested network route that

connects the source node to destination node in the

network graph. The chromosome here consists of a

sequence of integers. These integers represent the

node number or the node ID that the path passes

through to get to destination node. The first gene in

the chromosome is always the source node ID and

the last gene is the destination node ID. The length

of the chromosome is variable depending on the

number of visited nodes in the routing path that

should not be more than the number of nodes in the

network graph. Exceeding the total number of nodes

means that there are repeated nodes in the routing

path and this will create a loop that is not acceptable

in our algorithm [13, 14, and 16].

 The routing path or the chromosome is

encoded by listing the visited nodes ID from the

source node S to the destination node D depending

on the information obtained from the routing table,

which is built and maintained by a routing protocol

such as OSPF [13, 14, and 16]. Figure 2.1 shows an

example of chromosome representation (i.e., routing

path) and the encoding scheme. The chromosome is

an array of nodes represents a routing path that starts

with the source node (S), passes through different

nodes (N1, N2,…) in the network and ends with the

destination node (D).

Figure 2.1. Example of a chromosome

representation [14]

 The first gene in the chromosome is always

reserved for the source node (S), and the next gene

represents the node randomly selected from one of

the neighbors of the previous node (now it is S). To

avoid creating loops in the path, any selected node

will not be selected again in the routing path. This

step will be repeated and the process continues until

the destination node is reached and selected. So all

suggested feasible chromosomes should have the

destination node (D) at the last locus [13, 14, and

16].

2.2 Population Initialization

 Usually the initial population is created

randomly in GAs, but in this shortest path routing

problem, it is better to use heuristic initialization

because the topological information is already

known from the routing table. Heuristic initialization

makes the algorithm more complex, but it also

pushes the population to higher fitness values and

eliminates the infeasible solutions, so the algorithm

will be more effective and the execution time will be

minimized in general. First, the source node is

chosen as the first gene in the chromosome, and then

the next gene will be one of the nodes that connect

to the previous gene that is selected randomly

depending on the topological information and so on

until the destination node is reached and selected. If

the algorithm finds that all nodes that are connected

to the previous gene in the chromosome are visited

and the previous gene is not the destination node, the

chromosome will be refreshed to avoid creating an

infeasible chromosome [13, 14, and 16].

2.3 Fitness Function

 Fitness function is the tool used to evaluate

the different chromosomes (i.e., routing paths) to

find the best of them, so it should be designed

carefully to get the best results. In shortest path

routing problems, the best solution should have the

minimal route cost from the source node to the

Abdullah M. A. Alzafiri Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622 Vol. 9,Issue 11 (Series -III) November 2019, pp 32-38

www.ijera.com DOI: 10.9790/9622- 0911033238 34 | P a g e

destination node in the network graph. So, the fitness

function is defined as in the folowing equation [14].

 where Fi is chromosome(i) fitness value, ni

is the chromosome (i) length or the number of genes

in this chromosome, gi (j) is the gene in locus

number (j) for chromosome (i), and Cij is the cost of

the link that connects node i with node j.

 The fitness function gives highest value for

the best chromosome with the lowest cost. Also, the

fitness function is important for the selection process

to select the parents that will be used to produce the

next generation. Figure 2.2 shows an example of a

small network with some initial paths.

Figure 2.2: An example of network and initial paths

2.4 Genetic Operators

 Selecting suitable genetic operators

(Selection, Crossover and Mutation) for shortest

path routing problem is a very important step that

makes the suggested GA give the best solution in

minimum execution time[13, 14, and 16].

2.4.1 Selection

 Different selection schemes can work fine

with the suggested GA, but tournament selection

without replacementseems to be more suitable

because it gives the best-fitted chromosomes more

chances to be selected for crossover operation and

keeps the selection noise very low. Selection

pressure is easily adjusted by changing the

tournament size. If the tournament size is larger,

weak individuals have a smaller chance to be

selected. The pair-wise tournament selection is used.

Two chromosomes randomly selected from the

population and select the fitter one, noting that any

chromosome selected as a parent for crossover

operation should not be picked again [9, 13, 14, and

16].

2.4.2 Crossover

 Crossover is a procedure of using solutions

from the population as parents and producing child

solutions from them. These offspring (i.e., child

solutions) used for the next generation. A one-point

crossover scheme is used in the suggested GA to

solve the shortest path routing problem, so each

parent is divided into two parts (partial route) and

these parts are exchanged to create two new

offspring. In the parent chromosomes, the first part

connects the source node with an intermediate node

and the second part connects the intermediate node

to the destination node. A crossing point is selected

randomly in each parent, so maybe we get two

children with different sizes.In this procedure, the

two-parent chromosomes selected for a crossover

operation should have one common gene (node) at

least, except the source node and the destination

node. This common node is considered to be the

intermediate node and is not required to be at same

location in both chromosomes (i.e., routing paths). If

there is more than one common node in both parents,

then one of them is randomly selected to be the

intermediate node used for the crossing site [9, 13,

14, and 16]. Figure 2.3 describes an example of the

suggested crossover process. It shows two routing

paths (chromosomes) from a source node (S) to a

destination node (D), with different size

chromosomes. Two common nodes are noticed in

the chromosomes (N2 and N5), and these nodes are

located in positions (3 and 5) for the first

chromosome and (2 and 4) for the second

chromosome. In other words, we noticed node N2 is

located in locus 3 in the first chromosome and in

locus 2 in the second chromosome, so the pair (3, 2)

represents a potential crossing site that represents the

location of the crossing of both nodes. Similarly, we

noticed N5 is located in locus 5 in the first

chromosome and locus 4 in the second one, so the

pair (5, 4) is a second potential crossing site for

these two chromosomes. Then, randomly one pair is

selected (3, 2) or N2, which represents the crossing

points of the chromosomes. Note that the crossing

points of any two chromosomes no need to be the

same. After that, the partial routes are exchanged

between the two chromosomes and reassembled to

get two new chromosomes as shown in the figure.

Sometime after crossover, the new chromosomes

contain loops that lead to infeasible solutions, and to

solve this problem we used a repair function to treat

the chromosomes and convert the infeasible

chromosomes to feasible chromosomes [9,13, 14,

and 16].

The suggested chromosomes:

Chromosome 1 = 1 2 4 6 7

Chromosome 2 = 1 2 4 5 7

Chromosome 3 = 1 2 4 5 6 7

Chromosome 4 = 1 3 4 6 7

Chromosome 5 = 1 3 4 5 7

Chromosome 6 = 1 3 4 5 6 7

Chromosome 7 = 1 3 5 7

Chromosome 8 = 1 3 5 6 7

S=1

3

2

5

4 6

D=7

Abdullah M. A. Alzafiri Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622 Vol. 9,Issue 11 (Series -III) November 2019, pp 32-38

www.ijera.com DOI: 10.9790/9622- 0911033238 35 | P a g e

Figure 2.3: Example of the crossover process [14]

2.4.3 Mutation

 Mutation is the process of flipping one gene

or making a little change on a selected chromosome.

This process is important to keep the solutions away

from local optima. In this suggested GA, a

chromosome (routing path) is selected randomly

from the current population and one intermediate

node is selected randomly also in this chromosome.

Next, the first partial route from the source node to

the mutation node is kept, but the second partial

route that forms the mutation node to the destination

node is rebuilt again, depending on the topological

knowledge about the network (as we did in initial

population step) [13, 14, and 16]. Figure 2.4 shows

an example of the suggested mutation operation.

This example shows a chosen chromosome with a

randomly selected gene or mutation point (node N2).

The partial route from the source node (S) to the

mutation point (N2) is kept for the new chromosome

and completed as follows: the next gene will be one

of the neighbors of the mutation node. This is

selected randomly, depending known network

topology. Then the process continues as same as the

initial population process to get a new feasible route

has same upper partial route (before mutation point)

but different lower partial route [13, 14, and 16].

Figure 2.4. Example of the mutation operation [14]

2.5 Repair Function

 In generating the initial population, all

chromosomes are feasible without any repeated

nodes in the chromosomes because once the node is

selected for the path it will not selected again in the

same path; also same idea happens with mutation

process. But during crossover operation, an

infeasible chromosome may be produced when a

node is repeated in this chromosome (if this node

was located in the first part of the first parent and in

the second part of the second parent) and loops will

be generated, which is not accepted in our algorithm.

To keep the suggested GA effective and produce a

feasible solution in an optimal time, we need a

function to repair the infeasible chromosomes and

convert them to feasible chromosomes. A repair

function used in the suggested GA is easy and

simple. The idea behind the repair function is

finding and eliminating loops in the routing paths

(i.e., chromosomes) [13, 14, and 16].Figure 2.5

shows an example of the repair function. The

example shows an offspring produced from the

crossover operation. It is infeasible because a loop

appears when node (N2) is repeated twice in the new

routing path (i.e., chromosome). The repair function

searches the offspring and finds this loop, then

eliminates the genes (nodes) between the repeated

nodes (N2) and one of the repeated nodes. In this

example, the repair function deletes nodes (N3 and

N2) from that chromosome to eliminate the loop and

make the chromosome is feasible [13, 14, 16].

Figure 2.5 Example of the repair function [14]

III. RESULTS AND DISCUSSION
 In this Section, Dijkstra’s algorithm and the

suggested GA will be tested on three networks with

different sizes to obtain the shortest route between

two nodes (source node and destination node). Both

algorithms will be applied first on a small network

(10 nodes) for 100 iterations, then on a medium size

network (60 nodes) for 100 iterations, and then on a

large network (100 nodes) for 100 iterations. The

iterations can help in taking the average results by

running the algorithms 100 times to insure accuracy

for these results. In the suggested GA, the crossover

probability is set to 1 and the mutation probability is

set to 0.05. The population size is set to 100

chromosomes and the algorithm is terminated after

15 generations. Matlab is used to implement the

algorithms and the results were exported to an Excel

file to be compared. The experiment was done on a

laptop with a core i5 CPU and 4 GB RAM.

3.1 GA and DA on a Small Size Network

In this section, a small network is used to test both

graph search algorithms, Dijkstra’s and GAs. This

network as shown in Figure 3.1 consists of 10 nodes

and 14 arcs connecting these nodes. Each node in the

Abdullah M. A. Alzafiri Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622 Vol. 9,Issue 11 (Series -III) November 2019, pp 32-38

www.ijera.com DOI: 10.9790/9622- 0911033238 36 | P a g e

graph is denoted by a number that represents the

node’s ID. This is a weighted graph, so the numbers

on the arc which connecting two nodes represents

the cost for transferring a packet between these two

nodes.

Figure 3.1: Small network [15]

 In the small network, the node number 1 is

used as the source node and node number 10 is used

as the destination node. The shortest optimal path

between source node and destination node is (1-3-5-

7-9-10) with total costs equal (39).Dijkstra’s

algorithm and the suggested GA have been applied

on this network to find the shortest path. Both

algorithms are implemented for 100 iterations on

this network. The results show that Dijkstra’s

algorithm always returns the optimal shortest path

with the lowest cost, while the suggested GA returns

the optimal shortest path in 97 iterations and in three

iterations it gives longer paths. In other words, the

accuracy of Dijkstra’s algorithm is 100%, while the

accuracy of the suggested GA is 97% here.

 Table 3.1 concludes the results obtained

from this experiment. GA accuracy is the percentage

of the suggested algorithm iterations that returned

the optimal shortest path. This table also shows the

minimum, maximum, and average execution time

needed for both DA and the suggested GA to find

the shortest route in the 100 iterations. It is clear that

the average execution time for running Dijkstra’s

algorithm on this small network (0.00215 seconds) is

much lower than the average execution time for

running the suggested GA (0.0628 seconds). So, in

small networks, Dijkstra’s algorithm is faster than

GA.

Table 3.1: Concluded results of DA and GA applied

on a small network

3.2 GA and DA on a Medium Size Network

 In this section, a medium network is used to

test both graph search algorithms, Dijkstra’s

algorithm and the suggested GA. This network is

shown in Figure 3.2 and consists of 60 nodes and 92

arcs connecting these nodes.

Figure 3.2: Medium network

 In this implementation, node number 1 is

used as the source node and node number 60 is used

as the destination node. The shortest optimal path

between source node and destination node is (1-2-5-

31-32-33-60) with total costs equal (123).Dijkstra’s

algorithm and GA have been applied on this network

to determine the shortest path. Both of them are

implemented for 100 iterations, The obtained results

indicate that Dijkstra’s algorithm always returns the

optimal shortest path with the lowest cost, while the

suggested GA returns the optimal shortest path in 93

iterations and in 7 iterations it produces longer paths.

In other words, the accuracy of Dijkstra’s algorithm

is 100%, while the accuracy of the suggested GA is

93% here.The results are summarized in Table 3.2.

GA accuracy is the percentage of the suggested

algorithm iterations that returned the optimal

shortest path. This table also shows the minimum,

maximum, and average execution time needed for

both DA and the suggested GA to find the shortest

route in the 100 iterations. We noticed that the

average execution time for running Dijkstra’s

algorithm on this medium network (0.121357

seconds) exceeds the average execution time for

running the suggested GA (0.096952 seconds). So in

medium networks, GA is little faster than Dijkstra’s

algorithm.

number of nodes = 10

 DA GA

results accuracy 100% 97%

minimum exe time 0.00210 sec 0.06110 sec

maximum exe time 0.00388 sec 0.06970 sec

average exe time 0.00215 sec 0.06280 sec

Abdullah M. A. Alzafiri Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622 Vol. 9,Issue 11 (Series -III) November 2019, pp 32-38

www.ijera.com DOI: 10.9790/9622- 0911033238 37 | P a g e

Table 3.2: Concluded results of DA and GA applied

on a medium network.

3.3 GA and DA on a large network

 In this section, a large network is used to

test both graph search algorithms. Such network is

shown in Figure 3.3; it consists of 100 nodes and

158 arcs connecting these nodes.

Figure 4.3. Large network

 In this implementation node number 1 is

used as the source node and node number 100 is

used as the destination node. The shortest optimal

path between source node and destination node is (1-

2-6-7-9-11-12-39-40-42-44-46-72-73-74-100) with

total costs equal (43). Dijkstra’s algorithm and the

suggested GA have been applied on this network to

find the shortest path. Both algorithms are

implemented for 100 iterations on this network.

 The obtained results indicate that Dijkstra’s

algorithm always returns the optimal shortest path

with the lowest cost, while the suggested GA returns

the optimal shortest path in 94 iterations and in 6

iterations it produces longer paths. In other words,

the accuracy of Dijkstra’s algorithm is 100%, while

the accuracy of the suggested GA is 94% here.

 The results are summarized in Table 3.3.

GA accuracy is the percentage of the suggested

algorithm iterations that returned the optimal

shortest path. This table also shows the minimum,

maximum, and average execution time needed for

both DA and the suggested GA to find the shortest

route in the 100 iterations. We noticed that the

average execution time for running Dijkstra’s

algorithm on this medium network (0.404134

seconds) is more than the average execution time for

running the suggested GA (0.140085 seconds). So in

large networks, GA is faster than Dijkstra’s

algorithm.

Table 3.3. Concluded results of DA and GA applied

on a large network.

IV. CONCLUSION

 Genetic algorithm (GA) is tested as an

alternative algorithm used to obtain the lowest cost

route from source node to destination node in

computer networks instead of Dijkstra’s algorithm,

which is the classical graph search algorithm used by

most routing protocols (such as OSPF).

 The suggested GA uses Munetomo’s

techniques; it uses real numbers for chromosome

encoding, heuristic initialization depending on the

knowledge of network topology, tournament

selection, one-point crossover, and the mutation

method proposed by Munetomo. A repair function is

used to treat the infeasible chromosomes and make

them feasible.

 Dijkstra’s algorithm and the suggested GA

are tested on three different networks: a small

network containing 10 nodes, a medium network

containing 60 nodes, and large network containing

100 nodes. DA always finds the correct shortest

path, while GA finds it at a percentage of more than

92%. So both algorithms almost find the same path,

but the difference is in the execution time needed by

the algorithms to find the shortest path. The results

obtained show that in a small network, DA is much

faster than GA in finding the shortest path and in a

medium network, GA is faster than GA but with

little difference. While in a large network, GA is

faster than DA in finding the shortest path with a

clear difference in time.

 It can be concluded that DA is better for

use in the case of small networks because it finds the

shortest path faster than GA, while GA is better in

the case of large networks.

REFERENCES
[1]. B. A. Forouzan, “Data Communications and

Networking,” Fourth Edition, McGraw Hill, 2007.

[2]. W. Stalling, “High-Speed Networks: TCP/IP and

ATM Design Principles,” Englewood Cliffs, NJ:

Prentice-Hall, pp. 131-214, 1998.

[3]. E. W. Dijkstra, “A Note on Two Problems in

Connexion with Graphs,” Numerische

Mathematlk, 1: 269–271, l 959.

[4]. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and

C. Stein, Section 24.3: Dijkstra’s algorithm.

Introduction to Algorithms (Second ed.), MIT

Press and McGraw-Hill, pp. 595–601, 2001.

number of nodes = 60

 DA GA

results accuracy 100% 93%

minimum exe time 0.120402 sec 0.089947 sec

maximum exe time 0.123683 sec 0.121872 sec

average exe time 0.121357 sec 0.096952 sec

number of nodes = 100

 DA GA

results accuracy 100% 94%

minimum exe time 0.401095 sec 0.135918 sec

maximum exe time 0.454732 sec 0.153171 sec

average exe time 0.404134 sec 0.140085 sec

Abdullah M. A. Alzafiri Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622 Vol. 9,Issue 11 (Series -III) November 2019, pp 32-38

www.ijera.com DOI: 10.9790/9622- 0911033238 38 | P a g e

[5]. M. Sniedovich, “Dijkstra’s algorithm revisited: the

dynamic programming connexion.” Journal of

Control and Cybernetics 35 (3): 599–620, 2006.

[6]. J. H. Holland, Adaptation in Natural and Artificial

Systems, Ann Arbor, MI, The University of

Michigan Press, 1975.

[7]. D. E. Goldberg, Genetic Algorithms in Search,

Optimization, andMachine Learning, Addison-

Wesley Publishing Company, 1989.

[8]. Mitchell, M. “An introduction to Genetic

Algorithms.” MIT Press, Cambridge MA, 1996.

[9]. S. N. Sivanandam and S. N. Deepa, “Introduction

to Genetic Algorithms,” First Edition, Springer,

2008.

[10]. Michalewicz, Z., “Genetic Algorithm + Data

Structure = Evolution Programs,” Third Edition,

Springer-Verlag, New York, pp. 13- 55, 1996.

[11]. Randy L. Haupt and Sue Ellen Haupt, “Practical

Genetic Algorithms,” second edition, Wiley, 2004.

[12]. Back, T., Fogel, D. B. and Michalewicz, Z.,

“Handbook of Evolutionary Computation.” New

York: Institution of Physics Publishing and Oxford

University Press, 1997.

[13]. M. Munetomo, Y. Takai, Y. Sato, “A migration

scheme for the genetic adaptive routing algorithm,”

IEEE International Conference on Systems, Man

and Cybernatics, vol. 3, pp. 2774 – 2779, October

1998.

[14]. S.C. Nanayakkara, D. Srinivasan, L.W. Lup, X.

German, E. Taylor, and S.H. Ong, “Genetic

Algorithm based route planner for large urban

street networks”; in Proc. IEEE Congress on

Evolutionary Computation, 2007, pp.4469–4474.

[15]. Gihan Nagib and wahied G. Ali, “Network Routing

Protocol Using Genetic Algorithms.” International

Journal of Electrical & Computer Sciences, IJECS-

IJENS vol:10 No: 02, March, 2010.

[16]. Yagvalkya Sharma, Subhash Chandra Saini,

Manisha Bhandhari,” Comparison of Dijkstra’s

Shortest Path Algorithm with Genetic Algorithm

for Static and Dynamic Routing Network,”

International Journal of Electronics and Computer

Science Engineering, pp. 416–425, 2012

Abdullah M. A. Alzafiri "A Comparative Analysis for Finding Shortest Path Problem in

Computer Networks" International Journal of Engineering Research and Applications (IJERA),

vol. 9, no. 11, 2019, pp 32-38

