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ABSTRACT—Visual  speech  information  plays  an  important  role in  lipreading  under  noisy  conditions  

or  for  listeners  with  a hearing    impairment.    In    this    paper,    we    present    local spatiotemporal  de-

scriptors  to  represent  and  recognize  spoken isolated  phrases  based  solely  on  visual  input.  Spatiotemporal 

local binary patterns extracted from mouth regions are used for describing  isolated  phrase  sequences.  In  our  

experiments  with 

817  sequences  from  ten  phrases  and  20  speakers,  promising 

accuracies   of   62%   and   70%    were   obtained   in   speaker- independent and speaker-dependent 
recognition, respectively. In comparison  with  other  methods  on  AVLetters  database,  the accuracy, 62.8%, 

of our method clearly outperforms the others. Analysis of the confusion matrix for 26 English letters shows the 

good   clustering   characteristics   of   visemes   for   the   proposed descriptors.   The   advantages   of   our   

approach   include   local processing   and   robustness   to  monotonic   gray-scale   changes. Moreover, no error 

prone segmentation of moving lips is needed. 

Index       Terms—Lipreading,       local       binary       patterns, spatiotemporal descriptors, visual speech 

recognition. 

 

 

INTRODUCTION 

 

 

RESEARCH ARTICLE                    OPEN ACCESS 



International Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622 Vol. 

8, Issue 9 (Part -V) Sep 2018, pp 137-153 

 
www.ijera.com                                                                                                                    138 | P a g e  

 

 

 

 

and  cheek  [2],  [26],  and  mouth  width, mouth  

opening,  oral  cavity  area,  and  oral  cavity  

perimeter  [7]. These methods commonly require 

accurate and reliable facial and lip  feature  

detection  and  tracking,  which  are  very  difficult  

to accommodate  in  practice  and  even  impossible  

at  low  image resolution. 

A desirable alternative is to extract 

features from the gray-level data  directly.  

Appearance  features  are  based  on  observing  the 
whole  mouth  region-of-interest  (ROI)  as  

visually  informa-tive about  the  spoken  utterance.  

The  feature  vectors  are  com-puted using   all   

the   video   pixels   within   the   ROI.   The   

proposed approaches include principal component 

analysis (PCA) [5], 

 

 
Fig. 1.  (a) Basic LBP operator. (b) Circular (8,2) 

neighborhood. 
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LOCAL SPATIOTEMPORAL 

DESCRIPTORS FOR VISUAL 

INFORMATION 
The local binary pattern (LBP)  

operator is a gray-scale in- variant texture 

primitive statistic, which has shown  excellent 

performance in the classification of various 
kinds of textures [30]. For each pixel in an 

image, a binary code is produced by 

thresholding  its  neighborhood  with  the  
value  of  the  center pixel [Fig. 1(a) and (1)]: 

 

 

                                               (1) 

 
where     corresponds to the gray value 

of the center pixel            of the local 

neighborhood and    to the gray values of 
equally   spaced   pixels   on   a   circle   of   

radius      .   By considering  simply  the  signs  

of  the  differences  between  the values  of 

neighborhood  and  the center  pixel  instead  
of their exact  values,  LBP  achieves  

invariance  with  respect  to  the 

scaling of the gray scale. 
A histogram is created to collect up the 

occurrences of dif- ferent binary patterns. The 

definition of neighbors can be ex- 

 

 
 

This is different from the ordinary LBP widely 

used in many papers, and it  extends  the  
definition  of  LBP.  A  histogram  is  created  

to represent  the  occurrences  of  different  
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binary  patterns  in  these three planes. Spatial 

information such as appearance is captured 

in the   plane and temporal information such as 
horizontal or vertical  motion  is  captured  in  

the          and          planes,  respec- tively. 

Sometimes, the radii in three axes are the same 
and so do the number of neighboring points in 

XY, XT, and YT planes. 

In that case, we use for abbreviation where 
and    . Thelength  or  dimension  of  the                           

features  is          . Moreover,  region-

concatenated  descriptors  using  LBP-TOP 

features were developed for facial expression 
recognition. The results  obtained   with   the  

Cohn–Kanade   facial   expression database 

outperformed the state-of-the-art. 
Due  to  its  ability  to  describe  

spatiotemporal  signals,  robust- ness  to 

monotonic gray-scale changes  caused,  e.g.,  
by illumina- tion  variations,  the  LBP-TOP is  

utilized  to represent the  mouth movements  in  

this  paper.  Considering  the  motion  of the  

mouth region,  the  descriptors  are  obtained  
by  concatenating  local  bi- nary patterns  on  

three  orthogonal  planes  from  the  utterance  

se- quence:  XY,  XT,  and  YT,  considering  
only  the  co-occurrence statistics in these 

three directions. Fig. 2(a) 

 

 

 

volume of utterance sequence.  Fig.  

2(b)  shows image in  the XY plane. Fig. 2(c) 
is an image in the XT plane providing a visual 

impression of one row changing in time, while 

Fig. 2(d) de-scribes  the  motion  of  one  
column  in  temporal  space.  An LBP 

description computed over the whole utterance 

sequence en-codes  only the  occurrences  of  
the  micro-patterns  without any indication 

about their locations. To overcome this effect, 

a rep-resentation  which  consists  of  dividing  

the  mouth  image into  sev-eral  overlapping  
blocks  is  introduced.  Fig.  3  also gives some 

ex-amples of the LBP images. The second, 

third, and fourth rows show the LBP images 
which are drawn using LBP  code  of  every 

pixel  from  XY  (second  row),  XT  (third 

row), and YT (fourth row) planes, 
respectively, corresponding to mouth images 

in the first row. From this figure, the change in 

appearance and motion during utterance can be 

seen. 
However, taking only into account the 

locations of micro-pat- terns is not enough. 

When a person utters a command phrase, the 
words  are  pronounced  in  order,  for  

instance  ―you-see‖  or  ―see- you‖.  If  we  

do  not  consider  the  time  order,  these  two  

phrases would generate almost the same 
features. To overcome 

  

Fig. 5.  Mouth movement representation 
 

this effect, the whole sequence is not only 

divided into block volumes according to 
spatial regions but also in time order, as Fig.  

4(a)  shows.  The  LBP-TOP  histograms  in  

each  block volume   are   computed   and   

concatenated   into   a   single histogram, as 
Fig. 4 shows. All features extracted from each 

block  volume are connected  to represent  the 

appearance and motion of the mouth region 
sequence, as shown in Fig. 5. 

In this way, we effectively have a 

description of the phrase ut- terance  on  three 
different levels  of locality.  The labels  (bins) 

in the histogram contain information  from 

three orthogonal planes, describing  

appearance  and  temporal  information  at  the  
pixel level. The labels are summed over a 

small block  to produce in- formation on a 

regional level expressing the characteristics of 
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the appearance and motion in specific 

locations and time seg-ments, and  all  

information  from  the  regional  level  is  
concate-nated  to build   a   global   description   

of   the   mouth   region   mo-tion. Moreover, 

even though different utterances have different 
length, they are divided into the same number 

of block  volumes, so the lengths of their 

feature vectors are the same to compare. 
A histogram of the mouth movements can be 

defined as 

 

 
 

The histograms must be normalized to get a 
coherent descrip-tion: 

 

MULTIRESOLUTION FEATURES AND 

FEATURE SELECTION 
Multiresolution features can provide 

more information and improve     the     

analysis     of     dynamic     events.     Using 
multiresolution  features,  however,  will  also  

greatly  increase the number of features 

available. If the features from different 
resolutions  were  concatenated  directly,   the  

feature  vector would    become    very    long,    

making    the    computational complexity  too  

high.  It  is  obvious  that  all  multiresolution 
spatiotemporal   features   do  not   contribute   

equally,   either. Therefore, it is necessary to 

find out what features (in which location,  with  
what  resolutions,  and  more  importantly,  

what types:  appearance, horizontal motion,  or  

vertical motion) are more important. Feature 

selection is needed for this purpose. 
In  this  section,  we  consider  the  use  

of  spatiotemporal  local binary  patterns  

computed  at  multiple  resolutions  for  

describing dynamic events, combining static 

and dynamic information from different   
spatiotemporal   resolutions.   For   a   more   

com-plete description of this approach, see 

[41]. The whole video 
sequence can be divided into               

sub-volumes, and inside each  sub-volume,  

the  LBP-TOP  features  are  computed  to 
describe the characteristic of the sub-volume, 

and finally are connected  together  to  

represent  the  videos.  In  changing  the 

parameters, three different types of 
spatiotemporal resolution are presented: 1) 

Use of a different number of neighboring 

points when computing the features in   
(appearance), (horizontal motion), and         

(vertical motion)  slices;  2)  Use of different 

radii that can capture the occurrences in 
different space and  time scales;  3) Use  of 

blocks  of different  sizes to create  global   

and  local   statistical  features.  The  first   two 

resolutions  focus  on  the  pixel  level  in  
feature  computation, providing  different  

local  spatiotemporal  information,  while the  

third  one  focuses  on  the  block  or  volume  
level,  giving more global information in the 

space and time dimensions. 

Appearance  and  motion  are  the  key  

components  for  visual speech analysis. The 
AdaBoost algorithm is utilized for learning the  

principal  appearance  and  motion  from  

spatiotemporal  de- scriptors   derived   from   
three   orthogonal   slices   (slice-based 

method), providing important information 

about the locations and types  of  features  for  
further  analysis.  Our  approach  is  un-like 

earlier  work  [16],  [38]  (block-based  

method),  in  which  just the importance  of  

block  or  location  was  considered,  missing  
the detailed appearance and motion 

information. To keep the global description 

with histograms, and at the same time, to 
separate the appearance and  motions,  every 

slice histogram is  thought as  an element.  To  

get  the  slice  similarity  within  class  and  
diversity between classes, we compare every 

slice histogram from different samples  with  

same  multiresolution  parameters.  The  

similarity values are used as the new features. 
Several possible dissimilarity 

measures are available. In this work, Chi 

square statistic   defined below is adopted: 
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OUR SYSTEM 

Our system consists of three stages, as 
shown in Fig. 6. The first  stage  is  a  

combination  of  discriminative  classifiers  

that first detects the face, and then the eyes. 
The positions of the eyes are used to localize 

the mouth region. The second stage extracts   

the   visual   features   from   the   mouth   
movement sequence. The role of the last stage 

is to recognize the input utterance using an 

SVM classifier. 

Boosted Haar features [37] are used 
for automatic coarse face detection and 2-D 

Cascaded AdaBoost [28] is applied for local- 

izing eyes in the detected  faces. Because the 
face images in the database are  of good  

quality and  almost  all of them  are  frontal 

faces, detection of faces and eyes is quite easy. 

The positions 

of the two eyes in the first frame of 
each sequence were given by  the  eye  

detector  automatically,  and  then  these  

positions were  used  to  determine  the  fine  
facial  area  and  localize  the mouth  region  

using  predefined  ratio  parameters  [40]  for  

the whole se-quence. 
For recognition, an SVM classifier 

was selected since it is well founded in 

statistical learning theory and has  been suc-

cessfully applied  to  various  object  detection  
tasks  in  computer  vision. Since the SVM is 

only used for separating two sets of points, the 

-phrase classification problem is 
decomposed into  two-class problems, then a 

voting scheme is used to accomplish 

recognition. Here, after the comparison  of 
linear, polynomial,  and  RBF  kernels  in  

experiments,  we  use  the second degree 

polynomial kernel function, which provided 

the best re-sults. Sometimes more than one 
class gets the highest number  of  votes;  in  

this  case,  1-NN  template  matching  is 

applied  to these classes to reach  the final 
result. This means that   in   training,   the   

spatiotemporal   LBP   histograms   of 

utterance sequences be-longing to a given  

class are averaged to generate a histogram 
template for that class. In recognition, a 

nearest-neighbor clas-sifier is adopted. 

 

EXPERIMENTS 

A.  Databases 

1)  OuluVS   Database:   In   contrast   
to  the   abundance   of audio-only corpora, 

there exist only a  few databases suitable for  

visual  or  audio-visual  ASR  research.  The  

audio-visual datasets com-monly used in 
literature include [17], [18], [25], [27], [32], 

and [36]. 

A variety of audio-visual corpora have 
been created in order to obtain experimental 

results for specific tasks. Many of the them 

contain recordings  of only  one subject,  e.g.,  
[3] and  [34].  Even those  with  multiple  

subjects  are  usually  limited  to  small  tasks 

such  as  isolated  digits  [5],  or  a  short  list 

of  fixed  phrases  [25]. The  M2VTS  database  
and  the  expanded  XM2VTSDB  [25]  are 

geared  more  toward  person  authentication,  

even  though  they consist  of  37  and  295  
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subjects,  respectively.  Only  two  of  the 

audio-visual corpora published so far 

(including English, French, German,  and  
Japanese)  contain  both  a  large  vocabulary  

and  a significant number of subjects. One of 

these is IBM’s proprietary, 
290-subject,     large-vocabulary    

AV-ViaVoice    data-base    of approximately  

50  h  in   duration  [27].   The  other   one  is  
the VidTIMIT  database  [36],  which  consists  

of  43  subjects  each reciting  the  ten  

different  TIMIT  sentences.  It  has  been  

used  in multimodal person verification 
research. 

There  are  few  datasets  providing  

phrase  data  [17],  [25], [34], [36], and in 
those, the number of speakers is pretty small 

[34].   Though    AVTIMIT   [17],   

XM2VTSDB   [25],   and VidTIMIT  [36]  
include  many  speakers,  the  speakers  utter 

different  sentences or  phrases [17],  [36]  or  

small number  of sentences [25]. Due to the 

lack of publicly available databases suitable  
for  our  needs,  we  collected  our  own  visual  

speech dataset, i.e., OuluVS database, for 

performance evaluation. 
A SONY DSR-200AP 3CCD-camera 

with a frame rate 25 fps was used to collect the 

data. The image resolution was 720     576 

pixels. Our dataset includes 20 persons, each 
uttering ten 

 

 
 

everyday greetings one to five times. These 

short phrases are listed in Table I. 

The subjects were asked to sit on a chair. The 
distance be- tween  the  speaker  and  the  

camera  was  160  cm.  He/she  was then asked 

to read ten phrases which were written on a 
paper, each phrase one to five times. The data 

collection was done in two parts: the first from 

ten persons and four days later from the ten 
remaining ones. Seventeen males and three 

females are in-cluded, nine of whom wear 

glasses. Speakers are from four dif-ferent   

countries,   so  they  have   different   
pronunciation habits in-cluding different 

speaking rates. 

In total, 817 sequences from 20 speakers were 
used in the experiments. 

Fig. 7 gives some examples of the mouth 

localization. The average size of the mouth 
image is around 120    70. We know that  

using  a fixed ratio perfect  mouth  regions 

cannot always be obtained, so in  the future, a 

combination  of eye positions and mouth 
detection  will be considered to get more 

accurate mouth regions. 

2)  AVLetters Database: The AVletters  
database [24] consists of  three  repetitions  by  

each  of  ten  speakers,  five  male,  two  of 

whom  have  moustaches,  and  five  female,  

of the  isolated  letters A-Z, a total of 78 
utterances. Speakers were prompted using an 

autocue that presented each of three repetitions 

of the al-phabet in nonsequential, nonrepeating 
order. Each speaker was requested to begin 

and end each letter utterance with their mouth 

in the closed position. No head restraint was 
used, but speakers were provided with a close-

up view of their mouth and asked not to move 

out of frame.  The full face images were 

further cropped to a region  of 
80     60 pixels after manually locating the 

center of the mouth in the   middle   frame   of   

each   utterance.   Each   utter-ance   was 
temporally segmented by hand using the visual 

data so that each utterance began and ended 

with the speaker’s mouth in the closed 
position. Fig. 8 shows example images from 

the ten speakers. To make an unbiased 

comparison, we also carry out the experiments 

on this public database. 
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B.  Experimental Protocol and Results 

For  comprehensive  evaluation  of  

our  proposed  method,  we design   different   
experiments,   including   speaker-indepen-

dent, speaker-dependent,  multiresolution,  and  

one-against-one  versus one-against-rest 
experiments on these two databases. We 

also analyze the viseme confusion 

matrix to see the clustering ability of the 
proposed method. 

1)  Speaker-Independent  

Experiments:  For  the  speaker-inde- pendent  

experiments,  leave-one-speaker-out  is  
utilized.  In  the testing procedure on OuluVS 

database, in each run, training was done on 19 

speakers in the data set, while testing was 
performed on the remaining one. The same 

procedure was repeated for each speaker, and 

the overall results were obtained using           ( 
is the total number of correctly 

recognized sequences and     is the total 

number of testing sequences). 

When  extracting  the  local  patterns,  
we  take  into account  not only  locations  of  

micro-patterns  but  also  the  time  order  in  

ar- ticulation,  so the whole sequence is  
divided  into block  volumes according to not 

only spatial regions but also time order. 

According  to  tests,  parameter  values   

,  , and an  overlap ratio of 70% of the original 
non-overlapping  block  size  were  selected  

empirically.  After experimenting  with  

different  block  sizes,  we  chose  to  use 
(rows  by  columns  by  time  segments)  

blocks  in  our 

experiments. 
Fig. 9 shows the recognition results 

using three different fea- tures on OuluVS 

database. As expected, the result of the 

features from  three  planes  is  better  than  
that  just  from  the  appearance (XY) plane 

which justifies the effectiveness of the feature 

com- bining  appearance  with  motion.  The  
features  with     block volumes omitted the 

pronunciation order, providing a lower per- 

formance than those with            block 
volumes for almost all the tested phrases. It 

can be seen from Fig. 9 that the recogni- tion  

rates of phrases  ―See  you‖  (C6)  and  

―Thank  you‖  (C8) are  lower  than  others  
because  the  utterances  of  these  two phrases   

are   quite   similar,   just   different   in   the   

tongue’s position.  If  we  take  those  two  

phrases  as  one  class,  the recognition rate 

would be 4% higher. 

We   compared   the   recognition   
performance   for   automatic mouth   

localization   to   that   obtained   with   hand-

marked   eye positions.  The  results  are  given  
in  Table  II,  showing  that  au- tomatic  eye  

detection  gave  similar  performance  to  the  

manual approach.  The  second  row  
demonstrates  the  results  from  the combined  

features  of  two  kinds  of  block  features,  

which  are  a little  higher  than  those  from  

one  kind  of  block  features  (first row).  We  
also  used  the  temporal  derivatives  [15]  

which  means pixel-by-pixel  differences  

between  consecutive  frames,  optical flow 
features [22], and DCT features [27], [31], 

[34] which have been  exploited  in  early  

research.  The  DCT  features  are  first 
computed  for  every  frame,  while  the  

temporal  derivatives  and optical  flow  

features  are  computed  for  every  two  

frames  to get the frame-level features. The 
whole utterance sequence can also be divided 

into   segments in time axis, and the final 

features 
 

 
 

are  obtained  by  averaging  the  

frame-level  features  through  the segment. 
This is to keep the pronunciation order. The 

results for automatically localized mouth 

regions are listed in Table II. We have 

experimented using different parameters, and 
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here we only list  the  best  accuracy  for  

temporal  derivatives  and  optical  flow 

features,   and   some   DCT   results   with   
different   number   of coefficients, the lattice 

selection (S: square, T: triangular, 

C: circular, or  H: hyperbolic 
sublattices),  and the number  of time 

segments. (For DCT, here we list the best 

accuracies for respective  sublattice  in  our  
experiment.)  From  Table  II,  we can see our 

features perform much better than these 

features. 

On  AVLetters database, in  each run, 
training was done on nine speakers in the data 

set, while testing was performed on the 

remaining one. The same procedure was 
repeated for each individual test speaker. 

Fig. 10 demonstrates the performance 

for every speaker. As we can see, the results 
from the second speaker are the worst, mainly 

because the big moustache of that speaker (as 

shown in  Fig. 8) really influences the 

appearance and motion in the mouth region. 
Table  III  lists  the  accuracy  from  different  

parameters.  The uniform features with 

neighborhood samples number eight and 
radius three  extracted  from  blocks             

got  the  best  result43.46%, which is even 

comparable to the best accuracy 44.6%from  

the semi-speaker-dependent  evaluation  in  
[24].  Normal features even with longer feature 

vectors do not samples,  for  in- stance,  one  

or  two,  could  bias  the  recognition  rate.  In  
our  ex- periments,  every  utterance  is  left  

out,  and  the  remaining  utter- ances  are  

trained  for  every  speaker.  Fig.  11  presents  
a  detailed comparison  of the results for every 

subject. Table IV shows the overall 

recognition results. The block parameters used 

here are also     .  We  can  see  there  is  no  
significant difference  in  performance  

between  automatic  eye  detection and manual 

eye positioning. 
On the basis of AVLetters database, 

Matthews et al. [24] pre- sented two top-down 

approaches that fits a model of the inner as the 
uniform patterns. The radius with three and 

neighboring points with  eight  outperform  the 

radius with  one and neigh- boring  points  

four,  which  is  consistent  to  the  results  
from facial expression recognition. 

2)  Speaker-Dependent   Experiments:   For   

speaker-dependent experiments,  the  leave-

one  utterance-out  is  utilized  for  cross 

validation  on  OuluVS  database  because  

there  are  not  abundant samples  for  each  
phrase  of  each  speaker.  In  total,  ten  

speakers with  at least three training samples 

for  each  phrase are selected for  this  
experiment,  because  too  few  training   

 

 
 

 
 

and  outer  lip  contours and  derive lipreading  

features from  a PCA  of  shape—Active  

Shape  Model  (ASM)—or  shape  and appear-
ance—Active       Appearance       Model       

(AAM)— respectively,  and  as  well  a  

bottom-up  method  which  uses  a nonlinear   
scale-space   analysis—multiscale   spatial   

analysis (MSA)—to form features directly 

from the pixel intensity. 
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In  their  experiments,  their  training  set  was  

the  first  two utter-ances  of  each  of  the  

letters  from  all  speakers  (520 utterances)  
and  the  test  set  was  the  third  utterance  

from  all speakers   (260   utterances).   In   

this   way,   the   training   set includes the 
utterances from all speakers, so it is not 

speaker- independent.  But  it  is  not  trained  

and  tested  for  individual speakers, so it is 
also not com-pletely speaker-dependent. We 

call this evaluation setup ―semi-speaker-

dependent‖. 

We did the same evaluation using the 
same training set and test set, i.e., using the 

first two utterances of each of the letters from 

all  speakers  (520  utterances)  as  training  set  
and  the  third  ut- terance from all speakers 

(260 utterances) as test set. The results are 

listed in the second column (third-test) in 
Table V. As well, the  three-fold-cross-

validation  is  also  made  by  using  every  one 

from three repetitions as test set and the other 

two repetitions as training set. In this way, the 
overall performance could be eval- uated,  

seeing  the  third  column  (three-fold)  in  

Table  V.  Com- paring to the best results from 
ASM, AAM, and MSA proposed in [24], our 

accuracy (fifth row) from same classifier 

HMM, but with our own proposed LBP-TOP 

features, is 12.7% higher than MSA,  30.4% 
higher than  ASM.  Table V  also gives  the re-

sults from   different   parameters   of   LBP-

TOP   features   with   SVM classifiers.  The  
best  result  is  58.85% for  the  third-fold  test  

and 62.82%  for  the  three-fold  test.  The  

performance  of  commonly used features: 
temporal derivatives,  optical flow, and DCT 

with same SVM classifiers are also provided. 

Even though they work better than ASM, and 

the accuracy from DCT is even better than 
MSA,  our  method  obtained  the  best  

recognition  results  on  the same evaluation 

setup. 
Moreover,  we  also  carry  out  

experiments  on  continuous speech  

segmentation.  The  letters  are  combined  into  
longer sequences  to  be  used  for  

segmentation  and  classification. Every one 

from three repetitions for each letter is put into 

one sequence in random order for all subjects, 
so we have 30 long sequences each containing 

26 spoken letters in random order. 

The  groundtruth  for  each  sequence  is  

provided  by  the labeling of the letters in the 

AVLetters database. 
For training, these 30 sequences are divided 

into three groups, and every time, one group is 

used as test set and the other two as training  
set. That is  to say,  the   th (      ,  2,  3) test  

sequence in- cludes ten speakers with their   th 

utterances for 26 letters. This is repeated  three  
times.  In  this  way,  the  training  set  

includes  the utterances  from  all  speakers,  

not  for  every  speaker,  so  it  is  not speaker-

dependent.  This  evaluation  setup  is  semi-
speaker-inde- pendent. HMM has been used 

successfully in many different se- quence 

recognition applications. In speech 
recognition, HMM is the most common 

method of modeling. Here, based on   

features with 2    5 blocks, an HMM is utilized 
to rec- ognize and segment these longer  

sequences.  This is done by first   training  an   

HMM  for   each   letter   in  the  AVLetters 

database; these HMMs form the states of a 
larger HMM used to  model  the  tran-sitions  

between  the letters  and  decode  the long 

sequence of let-ters. 
Frame recognition  rate (FRR)  is used  

as measure.  FRR is de-fined as where   is the 

number of frames  classified correctly and      

is the total number of frames in the sequence. 
This is a measure of segmentation accuracy as 

well as classification accuracy. 

With this approach, an accuracy of 
56.09% is obtained by av- eraging the results 

from three rounds of evaluation, which shows 

promising performance for continuous speech 
segmentation. 

3)  Experiments With Feature Selection: For 

OuluVS data-base,  we  use   with            block  

volumes  in  two- fold  cross-validation  for  
the  following  unbiased  compar-ison, from 

which the baseline result is 54.22%. To learn 

more effective multiresolution  features,  the  
proposed  feature  selec-tion  method is 

utilized and a comparison is made. To get the 

multiresolution  features,  eight  groups  of                        
features from different neighboring points, 

radii, and block volume sizes with 339 slices 

in total, as shown in Table VI, were extracted 

and exploited for selection. In the 
experimental results from separate resolution 

features, the best accuracy is from 
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with   block volumes. The highest number of 

features is 

also  selected  from                             with     
block  volumes,  which proves  the  

consistency  of  the  selected  effective  

features.  To  give  a concise presentation, in 
the following parts, Figs. 13 

and 14 just show the selected features in                         

with 
block volumes while the results in 

comparisons shown in Fig. 12 are from the 

multiresolution features. 

Fig. 12 shows that the slice-based feature 
selection algorithm works  much  better  than  

the  block-based  one.  It  also  demon- strates 

that when the number of selected slices is 
quite high, e.g., 

60 slices, the All-All strategy provided better 

results than the one- one approach. This is 
perhaps because the use of too 

  

 
many slices will weaken the discrimination 
among the pairs of classes. More importantly, 

when a smaller number of selected slices is 

used, the One-One strategy will learn more 

discrimi- native features for the pairs of 
spoken phrases achieving better results than 

the All-All approach, for example 56.18% 

versus 
55.57% from just 15 slices, as well as around 

2% better than 

obtained from separate                           with 
45 slices, 54.22%. Fig. 

13 shows the selected slices for similar phrases 

―see you‖ and ―thank you‖. These phrases 

were the most difficult to recog-nize because 
they are quite similar in the latter part 

containing the same word 

―you‖. The selected slices are mainly in the 
first and second part of the phrase; just one 

vertical slice is from the last part. The selected 

features are consistent with the human 

intuition. The phrases ―excuse me‖ and ―I 

am sorry‖ shown in Fig. 14 are different 
throughout the whole utterance, and the se-

lected features also come from the whole 

pronunciation. With the proposed feature 
selection strategy, more specific and adap-tive 

features are selected for different pairs of 

phrase classes, as shown in Figs. 13 and 14, 
providing more discriminative fea- 

tures. 

4)  One-One versus One-Rest Recognition: 

We use the SVMs as  the classifiers.  Since 
SVMs are only used  for separating  two 

classes, when we have multiple classes, there 

could be different strategies.  In  the  previous  
experiments  on  our  own  dataset,  the ten-

phrase  classification  problem  is  

decomposed  into  45  two- class  problems  
(―Hello‖-  ―Excuse  me‖,  ―I  am  sorry‖-  

―Thank you‖, ―You are welcome‖- ―Have a 

good time‖, etc.). But using this multiple two-

class strategy, the number of classifiers grows 
quadratically with the number of classes to be 

recognized like in AVLetters database. When 

the class number is  , the number 
of the SVM classifiers would be  . The other 

option the number of classes is not  too  high,  

and  the  recognition  accuracy  is  much  more 

important  than  the  time  consumed,  the  
one-to-one  strategy could be utilized. 

Otherwise, one-to-rest can be a good option. 

5)  Confusion Matrix: In visual speech 
recognition, a viseme is defined as the smallest 

visibly distinguishable unit of speech 

[8]. The viseme is analogous to the phoneme 
in audio speech, as words are composed of 

phonemes, so the visual sequences used here 

are composed  of visemes.  There is  currently 

no agreement on the mapping of phonemes to 
visemes, for example, [8] 
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is one-to-rest strategy, to decompose the N-
class problem into N one-to-rest problems. 

Here we give the results from one-to- one   

and   one-to-rest   strategies   for   semi-

speaker-dependent evalua-tion on AVLetters 

database. 
It can be seen from Tables V and VII that the 

results from one-to-rest  using  the  proposed  

features  are  better  than  those from  the 
ASM,  AAM,  MSA, and other  commonly-

used  fea- tures.  However,  compared  with  

one-to-one,  the results  from one-to-rest are 
much lower. So the decision of which strategy 

to use depends on the application. If the 

number of classes is not  too  high,  and  the  

recognition  accuracy  is  much  more 
important  than  the  time  consumed,  the  

one-to-one  strategy could be utilized. 

Otherwise, one-to-rest can be a good option. 
5)  Confusion Matrix: In visual speech 

recognition, a viseme is defined as the smallest 

visibly distinguishable unit of speech 
[8]. The viseme is analogous to the phoneme 

in audio speech, as words are composed of 

phonemes, so the visual sequences used here 

are composed  of visemes.  There is  currently 
no agreement on the mapping of phonemes to 

visemes, for example, [8] 

  

 
 

groups the audio consonants into nine viseme 
groups, whereas [20]  and [19] group audio 
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phonemes into five consonant visemes and six 

vowel visemes, as shown in Table VIII. 

It is interesting to note that the distribution of 
errors in our ex- periments on the AVLetters 

database is not random. In Table IX, showing  

the  confusion  matrices  for  subjects  
pronouncing  the letters of the alphabet, we 

can see that the majority of confusion is 

between sequences consisting of the same 
visemes, for ex- ample the words   and  , 

composed of phonemes            and 

,  respectively.  If  we  take  the  mapping  of  

phonemes  to visemes from Table VIII, we can 
see that these words are visu- ally the same 

and composed of the visemes             . 

Similarly 
the words  ,   and  ,             ,             and             

, are com- 

posed of the same sequence of visemes,            
. 

While  most  confusions  in  visual  speech  

recognition  are caused  by the phonemes of  

two  words  being  mapped  to the same 
viseme, it is possible for different visemes to 

appear the same due to their context. These 

confusions are caused by the phenomena of 
co-articulation [10], where the mouth shape of 

a  particular  phoneme  can  cause  nearby 

phonemes  to  have  a similar mouth  shape. 

This is particularly true in  cases  where the 
phonemes have little visible effect on the 

shape of the lips. In the SVM confusion 

matrix, Table IX, we can see that the words     
and     ,                    and              ,  are  

confused  due  to  the rounded vowel      

causing the   in     to also be rounded. 
Similarly in the words     and   ,                and 

the  initial  vowel     governs  the  lip  shape  of  

the  whole  word. Consonants can also cause 

co-articulation  effects. In the case of   and  , 
although the final vowel is mapped to a 

different 

viseme,             and              , the sequence is 
dominated by the rounded lip shape of the 

consonant   causing the confusion between the 

two sequences. 
If  we  put  (B,P),  (C,D,T),  (Q,U),  (S,X),  

(G,J)  into  viseme groups, the recognition 

accuracy just from the visual features is up to 

75.77%. 
 

 

 

CONCLUSIONS 

A  novel  local  spatiotemporal  descriptor   for  

visual  speech recognition  was  proposed,  
considering  the  spatial  region  and 

pronunciation  order  in  the  utterance.  The  

movements  of  mouth regions  are described  
using  local binary patterns  from XY,  XT, 

and YT planes,  combining  local features  

from pixel, block,  and volume levels. Reliable 
lip segmentation and tracking is a major 

problem  in  automatic  visual  speech  

recognition,  es-pecially  in poor imaging 

conditions. Our approach avoids this using 
local spatiotemporal descriptors computed 

from mouth regions which are much easier to 

extract than lips. Automatic face and eye 
detection are exploited to extract mouth 

regions. With  our  approach,  no  error  prone  

segmentation  of  moving lips is needed. 
Experiments on a dataset collected from 20 

persons show very promising results. For ten 

spoken phrases, the obtained speaker- 

independent   recognition   rate   is   around   
62%   and   speaker- dependent  result  around  

70%.  Moreover,  62.8%  ac-curacy  is 

obtained  for AVLetters  database,  which  is  
much better than  the other  methods.  

Especially,  when  using  the  same  classifier,  

our accuracy  is  12.7%  higher  than  [24]  

under  the  same  test  setup, which   obviously   
shows   the   effectiveness   of   our   proposed 

features. Multiresolution  features and  feature 

selection  approach are presented and the 
preliminary experi-ments are carried out on 

OuluVS  database.  Results  show  the  

effectiveness  of  selecting principal 
appearance and motion for specific class pairs. 

OuluVS database includes  ten  phrases  from 

20  people,  while  AVLetters database  has  

26  letters  from  ten  people.  So  with  these  
two databases, we evaluate and report the 

performance for data with phrase  variations   

and   as   well  the  diversities   from   different 
speakers.  We  also  carried  out  continuous  

speech  segmentation experiments   on   

AVLetters   database.   The   obtained   
accuracy 

56.09% is promising for this challenging task 

using solely visual information. 

From the analysis of confusion matrix with 26 
English let- ters, we can see that the clustering 

of errors in the word recog- nition    actually   

shows    that    this    method    is    accurately 
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recognizing visemes by capturing the shape of 

the mouth. 

Compared with the state-of-the-art, our 
method does not need to 1)  segment  lip  

contours  [2],  [26];  2)  track  lips  in the  

subse- quent frames; 3) select constant 
illumination  or perform illumi- nation 

correction [34]; and 4) align lip features with 

respect to the canonical template [2], [3] or 
normalize the mouth images to 

 

 
 

a fixed size as done by most of the papers [5], 
[26], [34]. Further- more,  our  method  shows  

stability for  low-resolution  sequences. In this 

way, our experimental setup is more realistic. 
Our future plan is to research not only isolated 

phrases but also  the  continuous  speech,  e.g.,  

using  viseme  models  for recog-nition, to 

improve the quality of lipreading. Moreover, it  
is  of  interest  to  combine  visual  and  audio  

information  to promote speech recognition, 

and to apply our methodology to human-robot 
interaction in a smart environment. 
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