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ABSTRACT 

Many datasets of interest today are best described as  a linked collection of interrelated objects. These may 

repre- sent homogeneous networks, in which there is a single-object type and link type, or richer, 

heterogeneous networks, in which there may be multiple object and link types (and possibly other semantic 

information) . Examples of homo- geneous networks include single mode social networks, such as people 

connected by friendship links, or the WWW, a collection of linked web pages. Examples of heterogeneous 

networks include those in medical domains describing pa- tients, diseases, treatments and contacts, or in 

bibliographic domains describing publications, authors, and venues. Link rnininq refers to data mining 

techniques that explicitly con- sidertheselinkswhenbuildingpredictiveordescriptivemod- els of the linked 

data. Commonly addressed  link  mining tasks include object ranking, group detection, collective clas - 

sification, link prediction and subgraph discovery. While network analysis has been studied in depth in 

particular ar- eas such as social network analysis, hypertext mining, and webanalysis, 

onlyrecentlyhastherebeenacross-fertilization of ideas among these different communities. This is an ex- 

citing, rapidly expanding area. In this article,  we  review some of the common emergingthemes.  

 

I. INTRODUCTION 
“Links,” or more genetically 

relationships, among data in- stances are 

ubiquitous. These links often exhibit patterns 

that can indicate properties of the data instances 

such as the importance, rank, or category of the 

object. In some cases, not all links will be 

observed; therefore, we may be inter- ested in 

predicting the existence of links between 

instances. In other domains, where the links are 
evolving over time, our goal may be to predict 

whether a link will exist in the future, given the 

previously observed links. By taking links into 

ac- count, more complex patterns arise as well. 

This leads to other challenges focused on 

discovering substructures, such as communities, 

groups, or commonsubgraphs. 

Traditional data mining algorithms such as 

association rule mining, market basket analysis, 

and cluster analysis com- monly attempt  to  find  

patterns  in  a  dataset  characterized  by a 
collection  of  independent  instances  of  a  single  

rela- tion. This is  consistent  with  the  classical  

statistical  infer- ence problem of trying to identify 

a model given a indepen- dent, identically 

distributed (IID) sample. One can thinkofthis  

process  as  learning  a  model  for  the  node  

attributes  of a homogeneous graph while ignoring 

the links between the nodes. 

A key emerging challenge for data mining is 

tackling the  

 

problemofminingrichlystructured,heterogeneous
datasets. These kinds of datasets are best 

described as networks or graphs. The domains 

often consist of a variety of object types; the 

objects can be linked in a variety of ways. Thus, 

the graph may have different node and edge (or 

hyperedge) types. Naively applying traditional 

statistical inference pro- cedures, which assume 

that instances are independent, can lead to 

inappropriate conclusions about the data /57 . 

Care must be taken that potential correlations 

due to links are handled appropriately. In fact, 
object linkage is knowledge that should be 

exploited. This information can be used to 

improve the predictive accuracy of the learned 

models: at- tributes of linked objects are often 

correlated, and links are more likely to exist 

between objects that have some com- monality. 

In  addition,  the  graph  structure  itself  may  be 

an important element to include in the model. 

Structural properties such as degree and 

connectivity can be important indicators. 

Link rnininq is a newly emerging research 
area that is at the intersection of the work in link 

analysis [58, 40] ,  hypertext and web mining /16] , 

relational learning and inductive logic 

programming [38a , and graph mining [23] . We 

use the term link mining to put a special emphasis 

on the links—moving them up to first-class  

citizens  in  the data  analysis  endeavor. In recent 

years, there have been several workshop series de- 

voted to topics related to link mining. One of the 
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earliest workshops was the 1998 AAAI Fall  

Symposium  on  AI  and Link Analysis [58] . Other 

workshop series include the work- shops on 

Statistical Relational Learning [48, 49, 28] , Multi- 

Relational   Data  Mining    [65,   39, 36, 37] ,   

LinkKDD   [ 35, 1,3] ,  Link  Analysis,   Counter-

terrorism  and  Security   [104,26,103] , and Mining 

Graphs, Trees and Sequences [ 94,66,  85]. The 

objective of this survey is to provide a perspective 

on re- search within the relevant communities that 
are addressing current link mining challenges. Link 

mining encompasses a wide range of tasks; 

therefore, our review will cover the core challenges 

addressed by a majority of ongoing research in the 

field. We begin by describing some of the 

challenges in data representation for link mining. 

Then we  progress  through eight link mining tasks 

that can be  broadly  categorized  as tasks that focus 

on objects, links, or  graphs  (Table  1).  Fi-  nally, 

we close with a discussion  of  areas  that  we  

believe have not yet received sufhcientattention. 
 

Table 1: A taxonomy of common link mining 

tasks. 

1. Object-RelatedTasks 

(a) Link-Based ObjectRanking 

(b) Link-Based ObjectClassification 

(c) Object Clustering (GroupDetection) 

(d) Object Identification 

(EntityResolution) 

2. Link-RelatedTasks 

(a) LinkPrediction 

3. Graph-RelatedTasks 
(a) SubgraphDiscovery 

(b) GraphClassification 

(c) Generative Models forGraphs 

 

II. DATAREPRESENTATION 
While data representation and feature 

selection are signifi- cant issues for traditional 

machine learning algorithms, data representation 

for linked data is even  more  complex.  Con- 
sider a simple example from Singh et al. [101] of 

a social network describing actors and their 

participation  in  events. Such social networks 

are commonly called a ffili ation net- works 

[112] , and are easily represented by three tables 

rep- resenting the actors, the events, and the 

participation re- lationships.   Even  this  simple  

structure  can   be  represented as  several  

distinct  graphs.  The  most   natural   representa- 

tion is a bipartite graph, with a set of actor  

nodes,  a set  of event nodes, and edges  that  
represent  an  actor’s  participa- tion in an event. 

Other representations may enable different 

insights and analysis. For example, we may 

construct a net- work in which the actors are 

nodes and edges correspond to actors who have 

participaterl in an event together. This rep- 

resentation allows us to perform a  more  actor-

centric  anal- ysis. Alternatively, we may 

represent  these  relations  as  a graph in which  

the  events  are  nodes,  and  events  are  linked if 

they have an actor in common. This  

representation  may allow us to more easily see 

connections betweenevents. 

This  flexibility  in  the  representation  

of  a  graph  arises  from a basic graph 
representation duality.  This  duality  is  illus- 

trated  by  the  following  simple  example:   

Consider   a  data set  represented  as  a  simple  

C  =  (0, L),  where  0  is  the  set of objects (i.e., 

the nodes  or  vertices)  and  L  is  the  set  of 

links (i.e.,  the  edges or  hyperedges) .  The  

graph G(0, L)  can be transformed into  a  new  

graph  C'(0’, L'),  in  which  the links 1; , I j in G 

are objects in G' and there exists an  link 

between  o;, oj  C  0'  if  and  only  if  I;  and  /j  

share  an  ob- ject in G. This basic graph duality 
illustrates  one  kind  of simple data 

representation transformation. For graphs with 

multiple node and edge types, the number of 

possible trans- formations becomes immense.  

Typically,  these  reformula- tions are not 

considered as part of the link mining process. 

However, the representation chosen can have a 

significant impact  on  the  quality  of  the  

statistical  inferences  that  can be made. 

Therefore, the choice of an appropriate  

represen- tation is actually an important issue in 

effective  link  mining, and is often more 
complex than in  the  case  where  we  have IID 

data instances. In the following sections, we 

willassume 

thatadatarepresentationhasbeenselected,thatthe

desig- nation of the objects or nodes in the 

graph has been made, and that the links or 

edges in the graph have been definerl. 

However, when applying link mining to real 

world domains, one should not underestimate 

the effort required in choosing an 

appropriaterepresentation. 
 

III. LINK-BASED OBJECTRANKING 
Perhaps the most well known link 

mining task is that of link-based object ranking  

(LBR) ,  which  is  a  primary  focus of the link 

analysis community. The objective of LBR is to 

exploit the link  structure  of  a  graph  to  order  

or  prioritize  the set of objects within the graph. 

Much of this research focuses on graphs with a 
single object type and a single link type. 

In the context of  web  information  

retrieval,  the  PageR ank [ 91a] and HITS [64] 

algorithms are the  most  notable  ap- proaches to 

LBR. PageRank models web  surfing  as  a  ran- 
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dom walk where the surfer ranrlomly selects anrl 

follows links and occasionally jumps to a new 

web page to start another traversal of  the  link 

structure.  The rank of a  given  web page in this 

context is the fraction of time that the  random  

web surfer would spend at the page if the 

random process were iterated ad infinitum.  This 

can be determined  by  computing  the steady-

state distribution of the randomprocess. 

HITS assumes a  slightly  more  complex  
process,  modeling the web as being composed 

of two types of web pages: Notts  and 

authorities. Hubs are web pages that link to 

many au- thoritative pages.  Authorities  are  web  

pages  that  are linked to by  many  hubs.  Each  

page  in  the  web  is  assigned  hub and authority 

scores. These scores are computed by an  it- 

erative  algorithm  that  updates  the  scores  of  a  

page  based on the scores of pages in its 

immediate neighborhood. This approach bears a 

relation to PageRank with two  separate rantlom 
walks—one with hub transitions and one with 

au- thority transitions—on a  corresponding  

bipartite  graph  of hubs and authorities [73, 95, 

84a] .  The  hub  and  authority scores are the 

steady-state distributions of the  respective 

randomprocesses. 

Since the introduction of PageRank 

and HITS, a number of algorithms have been 

proposed that are variations on these basic 

themes. Bharat and Henzinger  /8] and  

Chakrabarti ct al. [17 propose modifications to 

HITS that exploit web page content to weight 
pages and links based on relevance. Ng et al. 

[83,84] analyze the stability of PageRank and 

HITS to small perturbations in the link 

structure and present mod- ifications to HITS 

that yield more stable rankings. Haveli- wala 

PSI] and Jeh and Widom [56] propose topic-

sensitive PageRank algorithms that identify  

topically  authoritative web pages efhciently at 

query time. Ding et a1. [29] pro-  

posesaunifierlframeworkencompassingbothPa

geRank anr1 HITS and presents several new 
ranking algorithms  within this algorithm class 

with closed-form solutions. Cohn and Chang 

[20 introduce a probabilistic analogue to HITS 

based on probabilistic latent semantic 

indexing, where the model attempts to explain 

the link structure  in  terms  of  a  small set of 

latent factors. Cohn and Hofmann [21]  and  

Richard- son and Domingos [98] present 

probabilistic models inspired by HITS and 

PageRank, respectively, that incorporate both 

content and linkstructure. 

In the domain of social network analysis 
(SNA) ,  LBR  is  a core analysis task. The 

objective is to rank orderindividu-als in a given 

social network in terms of a measure of their 

importance, referred to as centrnfitp. Measures of 

centrality have been the subject of research in the 

SNA community for decades [112] . These 

measures characterize  some  aspect  of the local or 

global network structure as seen from a given in- 

dividual’s position in the network. They range in 

complexity from local measures such as degree 

centrality [43] , which is simply the vertex degree, 

to global measures such as eigen- vector/power 
centrality [12], which use spectral methods to 

characterize the importance of individuals based on 

their connectedness to other importantindividuals. 

In  the  above  work,  the  common  goal   

is  a   global   ranking of objects in a static graph 

produced using a specified mea- sure. Notable 

variations from this theme inclucte approaches that  

rank  objects  relative  to  one  or  more  relevant   

objects in the graph [55,114,105] and methods  that  

rank  objects over time in dynamic graphs [89,S8] . 

Jeh and Widom [55] propose a metric for assessing 
the similarity of two objects basect on the degree to 

which they  link  to  similar  objects.  The similarity 

between two objects in a directed or bipartite graph  

is  computed  using  a  random  walk  formulation.   

Sun et al. [105] in this issue propose a related 

object ranking approach for relevance search and 

anomaly detection that combines random walks 

and graph partitioning to improve scalability. 

White and  Smyth  [114a]  define  and  evaluate  a 

host of metrics to compute the similarity between a  

given object and one or more reference objects in 

agraph. 
Ranking objects in dynamic graphs that capture 

event  data such as  email,  telephone  calls,  or  

publications  introduces new challenges. In contrast 

to ranking methods for static settings that produce a 

single rank, the goal is to track the changes in 

object rank over time as new events unfold. Static 

ranking methods can be  applied  to  aggregated  

event  data over  various  time  intervals,  but  this  

aggregation  removes the time ordering of events,  

and  the  sparse  link  structure over a given time 

interval limits the utility of the resulting ranks.  
O’Madadhain  and   Smyth   [89]   and   

O’Madadhain   et al. [88] in this issue propose a 

series of desired algorithmic properties for dynamic 

object ranking,  discuss  the  limita- tions of notable 

static ranking algorithms, and introduce a ranking 

algorithm based on potential flow that satisfies the 

specifiedrequirements. 

 

IV. LINK-BASED 

OBJECTCLASSIFICATION 
Traditional machine learning has 

focused on the classifica- tion of data 

consisting of identically structured objects that 

are typically assumed to be IID. Many real-
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world datasets, however, lack this 

homogeneity of structure. In the link- based 

object  classification  (LBC)  problem,  a  data  

graph  G = (0, L) is composed of a set objects 

0 connected to each other via a set of links L. 

The task is to  label the  members  of 0 from a 

finite set of categorical values. The discerning 

feature of LBC that makes it different from 

traditional clas- sification is that in many 

cases, the labels of related objects tend to be 
correlated. The challenge is to design 

algorithms for collective classification that 

exploit such correlations and jointly infer the 

categorical values associated with the ob- jects 

in thegraph. 

LBC has received considerable 

attention recently. Chakra- barti et a1. [18] 

consider the problem of classifying related 

news items in the Reuters dataset. They were 

among  the  

firsttonoticethatexploitingclasslabelsofrelatedo
bjects aids classification, whereas exploiting 

features of related ob- jects can actually form 

classification accuracy. Oh et a1. [87] report 

similar results on  a  collection  of  encyclopedia  

arti- cles: simply incorporating words from  

neighboring  docu- ments was not helpful, while 

making  use  of  the  predicted class  of  

neighboring  documents   was  helpful.   Lafferty   

ct al. [71] introduce conditional random fields 

(CRF), which extend traditional maximum 

entropy models for LBC in the restricted case 

where  the  data  graphs  are  chains.  Taskar  et 
al. [107] extend Lafferty et a1.’s approach [71a] 

to  the  case where the data graphs  are  arbitrary  

graphs.  Neville  and Jensen 80] propose simple 

LBC algorithms to classify cor- porate datasets 

with rich schemas that produce graphs with 

heterogeneous objects, each with its own distinct 

set of fea- tures.  Lu  and  Getoor   [76   extend  

simple   machine  learn- ing classifiers to 

perform LBC by  introducing  new  features that 

measure the rlistribution of class labels in the 

Markov blanket of the object to be classified. In 
addition  to  the  machine learning community, 

the computer  vision  and  nat- ural language 

communities have also studied the LBC prob- 

lem. Rosenfeld et al. [99] proposed relaxation 

labeling, an inference algorithm later used by 

Chakrabarti et al. [18] to perform link-based 

classification. Hummel and Zucker [53a] present 

one of many approaches for exploring relaxation 

la- beling theoretically. Lafferty ct  a1.  [71]  

proposed  CRFs  for use in part-of-speech 

tagging, a task in natural language processing. 

 

V. GROUPDETECTION 
A third object-centric task is group 

detection. The goal of group detection is to 

cluster the nodes in the graph into groups that 

share common characteristics. A range of tech- 

niques have been presented in various 

communities to ad- dress this general problem. 

In recent years, a central chal- lenge has been to 

rlevelop scalable methods that can exploit 

increasingly complex graphs to aid the 

knowledge discovery process. 

Consider first the case where the graph 
contains objects and links of a single type, without 

attributes. Many of the tech- niques for identifying 

groups in this scenario can be classified as either 

agglomerative or divisive clustering methods.  The 

task of blockmodeling of social network analysis 

(SNA) in- volves partitioning social networks into 

sets of individuals, called positions, that exhibit 

similar sets of links  to others  in the network 

[112a] . A similarity measure is defined  between 

link sets and agglomerative clustering is used to 

identify the positions. Spectral graph partitioning 
methods address the group detection problem by 

identifying an approximately minimal  set   of  

links  to  remove  from   the  graph  to  achieve a 

given number of groups  /82;  30].  In  a  related  

vein,  Gib- son  ct  al.  [50]  have  shown  that  the  

rlominant  eigenvectors of the HITS authority 

matrix provide  a  natural  decomposi- tion of web 

community  structure.  Other  recent  approaches 

for group detection use a measure of edge 

betweenness, de- rived from Freeman’s notion of 

betweenness centrality  [43] ,  to identify links 

connecting groups  [109] .  Links  with  high edge 
betweenness are incrementally removed to partition 

the graph. 

In contrast to the above methods, where 

group assignments are deterministic, a number of 

approaches for group detec- tion have been 

introduced that are based on the concept of 

stochastic blockmodeling from SNA. In 

stochastic blockmod- eling, the observed social 

network is assumed to be a realiza- tion from a 

pair-dependent stochastic blockmodel [112, 86] . 

Positions for the individuals  in  the  network  are  
treaterl  as IID random variables, and relational 

links of a given type be- tween two individuals are 

random variables dependent solely on the positions 

of the individuals they link. Nowicki and Snijders 

[86] propose a general stochastic blockmodelling 

ap- proach admitting directed, valued relations and 

an arbitrary number of positions. Gibbs sampling is 

used to infer the pos- terior distribution for 

positions. Kemp et a1. fi1 remove the need to 

specify the number of positions a priori; instead, 

the number of positions is inferred directly from 

the data. Wolfe and Sensen [115] extend the 
general  stochastic  blockmod- elling approach by 

allowing an individual to have multiple position 
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types; this provides the flexibility to model 

multiple roles that an individual may have in 

differentcontexts. 

To address  group  detection  challenges  

in  the  intelligence and law enforcement domains, 

methods are needed that can exploit  volumes  of  

multi-relational  data  to  detect  indica- tors of 

collaboration. Several recent efforts have proposed 

methods to address such  challenges.  Adibi  et  al.  

[2]  pro-  pose a hybrid approach that initially 
posits potential groups using knowledge-based 

reasoning techniques and then aug- ments these 

hypotheses with additional candidates based on 

observed interactions  that  indicate  likely  

association.  Ku- bica et al. [69a] presents a  

generative  model  for  multi-type link generation 

given group membership and individual at- tribute 

information. Maximum  likelihood  estimation  is  

used to identify the most likely chart mapping 

individuals to their respective  group   

memberships.   In   later   work   Kubica   ct a1. 
[68] introduce a scalable version  of  this  approach  

that uses a method similar to k-means clustering to 

significantly accelerate group discovery, while 

retaining the unrlerlying generative  model.  Most  

recently,  Wang  et  a1.  [110 ] propose a 

generalization of the general stochastic 

blockmodelling ap- proach that allows joint 

inference of groups  and topics based on observed 

relationships  and  their  text ua1 attributes.  Such a 

model provides a mechanism to connect an 

observed rela- tionship with its underlyingcontext. 

 

VI. ENTITYRESOLUTION 
The final object-centric task is entity 

resolution, which in- volves identi fyinp the set of 

objects in a domain. The goal of entity resolution is 

to determine which references in the data refer to 

the same real-world entity. Examples of this 

problem arise in databases (deduplication, data 

integration), natural language processing (co-

reference resolution, object consoli- dation) , 
personal information management, and other fields. 

The problem has been defined with many 

variations; in the most general form, neither the 

domain entities nor  the num- ber of such entities is 

assumed to be known. Traditionally, entity 

resolution has been viewed as a pair-wise 

resolution problem, where each pair of references is 

independently re- solvent as being co-referent or 

otherwise, depending on the similarity of their 

attributes. Recently, there has been sig- nificant 

interest in the use of links for improved entity res- 
olution. The central idea is to consider, in addition 

to the attributes of the references to be resolved, the 

other refer- ences to which these are linked. These 

links may be, for example, co-author links between 

author references in bibli- ographic data,  

hierarchical  links  between  spatial  references in 

geo-spatial data, or co-occurrence links between 

name ref- erences in natural languagedocuments. 

Theuseoflinksforresolutionwasfirstexplo

redindatabases. Ananthakrishna ct a1. [6] 

introduce a method for deduplica- tion using 

links in rlata warehouse applications where there 

is a dimensional hierarchy over the link relations. 

More re- cently, Kalashnikov et a1. [59] enhance 

feature-based sim- ilarity between an ambiguous 
reference and the many en- tity choices for it 

with linkage analysis between the entities, such 

as afhliation and co-authorship. However, while 

these approaches consider links for entity 

resolution, only the at- 

tributesoflinkedreferencesareconsideredanddiffer

entres- olution decisions are still 

takenindependently. 

In contrast, collective entity resolution 

approaches have also been proposed in databases 

[9,34] , where one resolution decision  affects  
another  if  they  are   linked.   Bhattacharya and 

Getoor [9, 10a] propose different measures for 

linkage similarity in graphs and show how these  

can  be  combined with attribute similarity for 

collective entity resolution in collaboration graphs. 

Dong et a1. [34] collectively resolve entities of 

multiple types by propagating  evidence  over  links 

in a dependencygraph. 

In machine learning, probabilistic models 

that take into ac- count interaction between 

different entity resolution  deci- sions have been 

proposed for named entity recognition in natural  
language  processing  and  for   citation   matching.   

Li et al. [74] address the problem of 

disambiguating “entity mentions,” potentially of 

multiple types, in the context of unstructured 

textual documents. Parag ct a1. [102a] use  the idea 

of merging evidence to allow the flow of reasoning 

be- tween linked pair-wise decisions  over  multiple  

entity  types. In addition, models have been 

proposed that explicitly con- sider links among 

references for collective resolution [92, 11, 25] . 

Pasula ct al. [92] propose a generic  probabilistic  
rela- tional model framework for the citation 

matching problem. Culotta and McCallum [25] 

construct  a  conditional  random field model of 

deduplication that captures linked dependen- cies  

between  references  of  multiple  types.  

Bhattacharya  ct al. all] adapt the Latent Dirichlet 

model for documents and topics and extend  it  to  

propose  a  generative  group  model  for 

unsupervised collective entityresolution. 

 

VII. LINKPREDICTION 
We next turn to edge-related tasks. Link 

prediction is the 

problemofpredictingtheexistenceofalinkbetweent
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woen- tities, based on attributes of the objects 

and other observed links. Examples include 

predicting links among actors in social networks, 

such as predicting friendships; predicting the 

participation of actors in events [88a] , such as 

email, tele- phone calls and co-authorship; and 

predicting semantic rela- tionships such as 

“advisor-of” based on web page links and 

content [24, 108a] . Most often, some links are 

observed, and one is attempting to predict 
unobserverl links, or there is a temporal aspect: a 

snapshot of the set of links at time t is given and 

the goal is to predict the links at time t +1. 

This problem is often viewed as  a  simple  

binary  classifica- tion  problem:  for  any  two  

potentially  linked  objects  o;  and o j , predict 

whether I ; jis l  or  0.  One  approach  is  to  make 

this prediction entirely based on structural 

properties of the network. Liben-Nowell and 

Kleinberg  [75a]  present  a  survey of predictors 

based on different graph proximity measures. Other 
approaches make use of attribute information for 

link prediction. Popescul ct al.  [93]  introduce  a  

structured  logis- tic regression model that can 

make use of relationalfeaturesto predict the 

existence of links. The relational features are 

definedviadatabasequeries;theauthorsshowhowto

search 

overthespaceofrelationalfeatures.O’Madarlhainct

a1.[88,90] construct local conditional probability 

models, based on attribute and structuralfeatures. 

Link prediction is hard because most 

interesting linked data sets  are  sparse.  As  pointed  
out  by  many  researchers  [46, 88,97] , one of the 

difficulties  in  building  statistical  models for edge 

prediction is that the prior probability of a link is 

typically quite small. This causes difficulty both in 

model evaluation  and,  more  importantly,  in  

quantifying   the  level of  confidence  in  the  

predictions.  Rattigan  and  Jensen   [97] in this 

issue discuss some of thesechallenges. 

One way to improve the quality of the 

predictions is to make the predictions 

collectively. A number of approaches  define a 
single probabilistic model over the entire link 

graph, la- bels, and edges. These joint models  of  

network  structure are often based on models 

such as Markov random  fields [19]. In the 

simplest  case,  where  there  is  a  set  of  objects 

O, with attributes A, and edges E among  the 

objects,  the MRF models a joint distribution 

over the set of edges  E, P(A), or a distribution 

conditioned on the attributes of the nodes,  P  E

 Richer models, based on relational rep- 

resentations, are possible, such as Relational 

Markov Net- 
works[108]and,morerecently,MarkovLogicNetw

orks [33]. Models based on directed graphical 

models are also possible. Getoor et al. [47] 

describe several approaches for handling link 

uncertainty in probabilistic relationalmodels. 

A discerning feature of these latter 

approaches is that they perform probabilistic 

inference to make inferences about the links. 

This allows them to capture the correlations 

among the links. They can also be used for other 

tasks, such as link- based classification. Ideally 

this makes for more accurate predictions. 
However, model-based probabilistic approaches 

have a computational price: exact inference is 

generally in- 

tractable,soapproximateinferencetechniquesarene

cessary. 

 

VIII. SUBGRAPHDISCOVERY 
An area of data  mining  that  is  related  

to  link  mining  is the work on subgraph 
discovery. This  work  attempts  to find 

interesting or commonly occurring subgraphs in 

a set of graphs. Discovery of these patterns may 

be the sole purpose of the systems, or the 

discovered patterns may be used for graph 

classification (Section9). 

One line of work  attempts  to  find  

frequent  subgraphs  [54, 70,116a] . Many of these 

approaches exploit the Apriori prop- erty  [4]  from  

frequent  item  set  mining.   Typically,  there  is  a 

candidate generation phase followed by a matching 
phase. Naive matching requires a subgraph 

isomorphism test, so efhcient  algorithms   are  

needed  here  as  well.   Inokuchi   ct al. [54] 

describe AGM,  an  Apriori-based  algorithm  that  

finds all induced subgraphs in a graph database 

satisfying a min- imum support. Kuromachi ct al.  

[70]  improve  on  AGM  by using an adjacency 

representation of the graph data and de- scribing 

new optimizations to candidate substructure gener- 

ation. Yan et  al.  [116 ] describe  gspan,  which  

avoids  the cost of candidate generation by first 

mapping each graph to a depth-first search code 
and lexicographically ordering these codes, then 

performing DFS  on  the  search  tree  defined  by 

this lexicographicordering. 

Other approaches come from the inductive 

logic  program- ming (ILP) community [79,72a] . 

One early success wasthe work of Dehaspe et al. 

[27] , who applied techniques from inductive logic  

programming  to  finding  frequent  patterns  in a 

toxicologyrlomain. 

Another line of work focuses on efficient  

subgraph  genera- tion and compression-based 
heuristic search [22,  70 ] .  Sub- due [22] , the 

earliest work in this area, uses an MDL-based 

heuristic to  guide  the  search  for  subgraphs.  

Subdue  has been used for both subgraph discovery 

and graph classifi- cation  [23].  As  another  
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example,  Graph-Based   Induction (GBI) 

compresses the input graph by  chunking  the  

vertex pairs that appear frequently [117] . Both of 

these approaches use a greedy local approach in 

their search for frequent sub- structures. Ketkar  et  

al.  [62]  compare  these  approaches  to 

ILPapproaches. 

 

IX. GRAPHCLASSIFICATION 
Unlike link-based object classification, 

which attempts to label nodes in a graph, graph 

classification is a supervised learning problem in 

which the goal is to categorize an entire graph as 

a positive or negative instance  of  a concept.  

This  is one of the earliest tasks addressed within 

the context of applying machine learning and 

data mining techniques to graph data. Graph 

classification does not typically require 

collective inference, as is needed for classifying 
objects and edges, because the graphe are 

generally assumed to be incte- 

pendentlygenerated. 

Three main approaches to graph 

classification have been ex- plored. Thèse are based 

on feature mining  on  graphs,  induc- tive logic 

programming (ILP), anrl defining graph kernels. 

Feature mining on graphs uses methods related to 

those de- scribed in the previous  section  on  

subgraph  discovery,  Sec- tion 8. Feature mining 

on graphs is  usually  performed  by finding all 
frequent or informative substructures in the graph 

instances. Thèse substructures are used for 

transforming the graph data into data represented as 

a single table, and then traditional  classifiers  are  

used  for  classifying   the  instances. As an 

example of an ILP  approach,  King et  al.  [63s  

first  map the graph data describing mutagenesis 

into a relational rep- resentation.  Their  logical  

representation  uses  relations  such as 

rerte+(9raphId, Verteæld, Verte+Label, 

Verte:sAttri #utes) and edge ( grapliId,verte:sId1, 

rerte+Id2, BondLabel), and  then  uses an ILP 
system to find a hypothesis in thisspace. 

Finding all frequent  substructures  is  

usually  computation- ally prohibitive. An 

alternative approach  makes  use  of  ker- nel 

methods. Both Gärtner and Kashima  describe  

graph kernels based on a measure of the walks  on  

the graphs  [44,60] . Gärtner [44] countfi walkfi 

with equal initial and  termi- nal labels, whereas 

Kashima [60] looks at the probability of random 

walks with equal label sequences. A Gärtner [45]s 

surveys kernel methods for structureddata. 
 

X. GENERATIVE MODELS 

FORGRAPHS 
Generative morlels for a range of graph 

and dependency types have been studied 

extensively in the social network analysis 

community. For directed graphe with a single 

ob- ject and link type, there are several major 

classes of random graph distributions discussed 

in the literature: Bernoulli graph distributions, 

conditional uniform graph distributions, dyadic 

dependence distributions, and p+ models. 

Bernoulli graphs [41] (also known as Erdös-

Rényi models or random graphs) are by far the 

simplest generative models. They assume that 
the random variables (/, ) that indicate the 

existence of directed edges among the objects o;  

and  oj  are IID. When the probability of link 

existence equals 0.5, the distribution is often 

referred to as the uniform random graph 

distribution. Conditional uniform graph 

distributions [112] define uniform distributions 

over sets of graphs with  spec-  ified structural 

characteristics, such as  a  fixed  number  of links, 

out-degrees, or in-degrees. Dyadic dependence 

distri- butions [111a assume that only the dyads (l i 
j , 1 ji ) are de- pendent and define multinomial 

distributions over the dyad states. P+ models 

assume that  links  sharing  at  least  one object in 

common are dependent. Generative models ad- 

mitting dependency structures that are more general 

than Markov graphs have been introduced as well, 

along  with models for multiple object and link 

types and dynamic net- works with a varying link  

structure  and  number  of  objects [14,52]. 

In recent years, significant attention has 

focused on studying the structural properties of 

networks such as the World Wide Web, online 
social networks, communication networks, cita- 

tion networks, and biological networks. Across 

these various networks, general patterns such as 

power law degree distri- butions,  small  graph  

diameters,  and  community  structure are observed. 

These observations have motivated  the search for 

general principles  governing  such  networks  US.  

Airoldi et al. [5] in this issue review sampling 

algorithms for  a num- ber of the common network  

types such as scale free networks  7 , small-world 

networks [113] , core-periphery [13] , and cel- lular 
networks  [42]  that  exhibit  such  attributes.  In  

contrast to the random process models from the 

social network anal- ysis literature, many of these 

generative  models  are specified in procedural 

form, which is viewed as beneficial  when  the goal 

is to understand how power law degree 

distributions, for example, can naturally emerge in 

dynamic graphs over time. Chakrabarti [15] 

presents a taxonomy of recently proposed 

graphgenerators. 

Finally, we note several generative models 

of link structure presented  in  the  machine  
learning  community  that  address a variety of 

application contexts. Kubica  et  a1.    introduces a 
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generative model for observed links among 

individ- uals  given  their  underlying  group  

memberships.  Kubica  et al. [67] present a link 

generation model for link analysis and 

collaboration queries that admits different link 

types and temporal information. Getoor et a1. [47] 

introduce proba- bilistic relational models, which 

that provide a unified gen- erative model for 

objects and link structure.  Neville  and  Jensen 

[81] define a probabilistic relational model that rep- 
resents a joint distribution over objects, links and  

latent groups. 

 

XI. OPEN ISSUES AND PROMISING 

AREAS FOR FUTURERESEARCH 
In this survey, we have often described 

each link mining task in isolation. More 
generally, component link mining algo- rithms 

may be part of a larger knowledge discovery 

process. As we move from one domain to 

another, the processing reQuirements will 

change, but the need to compose the algo- rithms 

in a unified process will remain. Ideally, as we 

move from data conditioning to more complex 

inference tasks, we would like to propagate 

uncertainty throughout the process. One 

approach that solves this problem, in theory, is to 

de- fine a full probabilistic model; this the 
approach taken by Getoor et a1. [47] and Taskar 

et a1. [108]. However, this approach is not always 

desirable or feasible. As argued by Senator [100] in 

this issue,  in  addition  to  addressing  spe- cific 

link mining tasks,  it  is  equally  important  to  

consider how to effectively compose link mining  

algorithms  to  ad- dress a spectrum of knowledge 

discovery tasks. Ultimately, system performance is 

determined  by  the  interplay  among the 

components; therefore, it is critical to  investigate  

how these component dependencies will shape the 
overall perfor- mance. 

When considering the overall 

knowledge discovery process, it is important to 

keep in mind that many aspects of the pro- cess 

are dynamic. The dynamism, which can  extend  

from the data to the user’s needs, interests, and 

beliefs, implies that a number of link mining 

algorithms will be applied re- peatedly and 

incrementally. We often envision applying link 

mining algorithms to the entire graph. While this 

is desir- able in some applications, it does not 

make sense when a user is interested  in  only  a  
small  subgraph.  Therefore,  it is important to 

develop methods supporting focused, incre- 

mental application of linkmining. 

One 

interestingresearchdirectioninthisareaisquery-

based classification using links. Most collective 

classification ap- proaches consider the dataset in 

its entirety as one linked instance of objects, 

performing prediction/classification for all of 

these objects jointly. When a user is interested in 

classifying only a small subset of these objects, it 

is worth- while to classify other objects only if 

they are helpful in correctly classifying the 

objects of interest via the link struc- ture. Given 

this goal, a query-based collective inference 

technique needs to first extract the links and  

objects  that 
aremostrelevantforansweringthequeryapproximat

elyand then perform collective classification 

only on the extracted subgraph. Identification of 

relevant subgraphs can also be helpful for 

incremental classification when new objects and 

links are added to an existing graph with 

classified objects. Link mining often needs to be 

performed on data from mul- tiple sources; 

therefore, information integration and recon- 

ciliation are important components of the link 

mining pro- cess. Furthermore, it is important to 
integrate the data (re)formulation more directly 

into the link process process. While there has 

been some work that integrates the statisti- cal 

approaches to link mining with the meta-data 

discovery and mapping [31] , there is much more 

to bedone. 

Another promising arena in which to 

apply link mining is the Semantic Web. In this 

issue, Ramakrishnan ct al.  /96]  de- scribe methods 

for discovering  interesting  subgraphs  based on 

semantic information  associated  with  the  edges.  

There has been some other  work  in  this  area,  for  
example  Mad- che and Staab  [77] and Doan et al. 

[32a] , but  there  is  much more to be done. As 

information extraction techniques con- tinue to 

improve, one area for future research is combining 

information extraction with techniques from link 

mining  to help to construct the Semantic Web, and 

another area  for future research is how semantic 

and ontological information can help in link 

miningendeavors. As the amount of data grows and 

the number of sources expands, techniques from 

link mining can help us discover patterns and build 
useful prediction systems. Link mining research 

holds promise for many different areas, including 

commercial and business enterprises, personal 

information management, web search and retrieval, 

medicine and bio- informatics,  and   law  and  

security   enforcement.   However, as cautioned by 

Sweeney 106 , as we develop thistechnol- ogy, 

privacy and information-access control issues 

and policy must be considered, not just as an 

afterthought, but as an integral part of the 

solution. 

 

XII. CONCLUSION 
More and more domains of interest 
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today are best described as a linked collection 

or network of interrelated heteroge- neous 

objects. Data mining algorithms have typically 

ad- dressed the discovery of patterns in 

collections of IID in- stances. Link mining is 

an emerging area within  data min- ing that is 

focused on finding patterns in data by 

exploiting and r+pliritly madeling the links 

among the tlata instances. We have surveyed 

several of the more well studied link min- ing 
tasks: link-based object ranking, link-based 

object clas- sification, group detection, entity 

resolution, link  predic- tion, subgraph 

discovery, graph classification, andgenera- 

 

REFERENCES 
[1]. J. Adibi, H. Chalupsky, M. Grobelnik, N. 

Milic-Frayling, and D. Mladenic. KDD 

Workshop on LinkAnalysis and Group 
Detection. 2004. 

[2]. J. Adibi, H. Chalupsky, E. Melz, and A. 

Valente. The KOJAK group _nder: 

Connecting the dots via 

integratedknowledge-based and statistical 

reasoning. In Innovative Applications of 

Arti_cial Intelligence Con-ference, 2004. 

[3]. J. Adibi, M. Grobelnik, D. Mladenic, and P. 

Pantel.KDD Workshop on Link Discovery: 

Issues, Ap-proaches and Applications. 2005. 

[4]. R. Agrawal and R. Srikant. Fast algorithms 
for mining association rules. In International 

Conference on VeryLarge Data Bases, pages 

487|499, Sept. 1994. 

[5]. E. M. Airoldi and K. M. Carley. Sampling 

algorithms for pure network topologies. 

SIGKDD Explorations,7(2), 2005. 

[6]. R. Ananthakrishna, S. Chaudhuri, and V. 

Ganti.Eliminating fuzzy duplicates in data 

warehouses. InInternational Conference on 

Very Large Databases (VLDB), Hong Kong, 

China, 2002. 

[7]. A. L. Barab_asi and R. Albert. Emergence 
of scaling in random networks. Science, 

286:509{512, 1999. 

[8]. K. Bharat and M. R. Henzinger. Improved 

algorithms for topic distillation in a 

hyperlinked environment.In ACM SIGIR 

International Conference on Research and 

Development in Information Retrieval, 

pages 104{111, 1998. 

[9]. I. Bhattacharya and L. Getoor. Iterative 

record linkage for cleaning and integration. 

In SIGMOD 2004 Work-shop on Research 
Issues on Data Mining and Knowledge 

Discovery, June 2004. 

[10]. I. Bhattacharya and L. Getoor. Entity 

resolution in graphs. Technical Report 4758, 

Computer Science Department,University of 

Maryland, 2005. 

[11]. I. Bhattacharya and L. Getoor. A Latent 

dirichlet model for unsupervised entity 

resolution. In SIAM In-ternational 

Conference on Data Mining, 2006. To 

Appear. 

[12]. P. Bonacich. Power and centrality: A family 

of measures.American Journal of Sociology, 

92(5):1170{1182, 1987. 
[13]. S. P. Borgatti and M. G. Everett. Models of 

core / periphery structures. Social Networks, 

21:375{395, 1999. 

[14]. P. J. Carrington, J. Scott, and S. Wasserman. 

Models and Methods in Social Network 

Analysis. CambridgeUniversity Press, 

Cambridge, 2005. 

[15]. D. Chakrabarti. Tools for Large Graph 

Mining. PhD thesis, School of Computer 

Science, Carnegie MellonUniversity, 2005. 

[16].  S. Chakrabarti. Mining the Web. Morgan 
Kaufman,2002. 

[17]. S. Chakrabarti, B. Dom, D. Gibson, J. 

Kleinberg,P. Raghavan, and S. Rajagopalan. 

Automatic resourcelist compilation by 

analyzing hyperlink structure and associated 

text. In International World Wide Web 

Conference (WWW), 1998. 

[18]. S. Chakrabarti, B. Dom, and P. Indyk. 

Enhanced hypertext categorization using 

hyperlinks. In SIGMODInternational 

Conference on Management of Data,pages 

307{318, 1998. 
[19]. R. Chellappa and A. Jain. Markov random 

_elds: the-ory and applications. Academic 

Press, Boston, 1993. 

[20]. D. Cohn and H. Chang. Learning to 

probabilistically identify authoritative 

documents. In InternationalConference on 

Machine Learning (ICML), pages 167{ 174. 

Morgan Kaufmann, San Francisco, CA, 

2000. 

[21]. D. Cohn and T. Hofmann. The missing link - 

a probabilistic model of document content 
and hypertext connectivity.In Neural 

Information Processing Systems 13, 2001. 

[22]. D. J. Cook and L. B. Holder. Substructure 

discovery using minimum description length 

and backgroundknowledge. Journal of 

Arti_cial Intelligence Research,1:231|255, 

1994. 

[23]. D. J. Cook and L. B. Holder. Graph-based 

data mining. IEEE Intelligent Systems, 

15(2):32{41, 2000. 

[24]. M. Craven, D. DiPasquo, D. Freitag, A. 

McCallum,T. Mitchell, K. Nigam, and S. 
Slattery. Learning toconstruct knowledge 

bases from the world wide web. 



International Journal of Engineering Research and Application    www.ijera.com ISSN : 2248-9622 Vol. 

8, Issue 9 (Part -V) Sep 2018, pp 111-123 

 www.ijera.com                                                                                                                    120 | P a g e  

 

 
 

 

[25]. A. Culotta and A. McCallum. Joint 

deduplication of multiple record types in 

relational data. In FourteenthConference on 

Information and Knowledge Manage-ment 

(CIKM), 2005. 

[26]. G. V. Cybenko and J. Srivastava. SIAM 

Workshop on Link Analysis, 

Counterterrorism and Privacy. 2004. 

[27]. L. Dehaspe, H. Toivonen, and R. King. 

Finding frequent substructures in chemical 
compounds. In In-ternational Conference on 

Knowledge Discovery and Data Mining, 

pages 30|36, 1998. 

[28]. T. Dietterich, L. Getoor, and K. Murphy. 

ICML Work-shop on Statistical Relational 

Learning and its Con-nections to Other 

Fields. 2004. 

[29]. C. Ding, X. He, P. Husbands, H. Zha, and H. 

D. Simon.PageRank, HITS and a uni_ed 

framework forlink analysis. In ACM SIGIR 

Conference on Research and Development 
in Information Retrieval, pages 353{354, 

2002. 

[30]. C. H. Q. Ding. Spectral clustering, 

2004.http://crd.lbl.gov/ cding/Spectral/. 

[31]. A. Doan, P. Domingos, and A. Y. Halevy. 

Learning to match the schemas of data 

sources: A multistrategyapproach. Machine 

Learning, 50(3), 2003. 

[32]. A. Doan, J. Madhavan, P. Domingos, and A. 

Halevy.Learning to map between ontologies 

on the semanticweb. In International World 

Wide Web Conference,2002. 
[33]. P. Domingos and M. Richardson. Markov 

logic: A unifying framework for statistical 

relational learning. InICML-2004 Workshop 

on Statistical Relational Learn-ing and its 

Connections to Other Fields, pages 

49|54,2004. 

[34]. X. Dong, A. Halevy, and J. Madhavan. 

Reference reconciliation in complex 

information spaces. In ACMSIGMOD 

International Conference on Management of 

Data, pages 85{96, 2005. 
[35]. S. Donoho, T. Dybala, M. Grobelnik, N. 

Milic-Frayling, and D. Mladenic. KDD 

Workshop on LinkAnalysis for Detecting 

Complex Behavior. 2003. 

[36]. S. Dzeroski and H. Blockeel. KDD 

Workshop on Multi-Relational Data Mining. 

2004. 

[37]. S. Dzeroski and H. Blockeel. KDD 

Workshop on Multi-Relational Data Mining. 

2005. 

[38]. S. Dzeroski and N. Lavrac, editors. 

Relational Data Mining. Kluwer, Berlin, 
2001. 

[39]. S. Dzeroski, L. D. Raedt, and S. Wrobel. 

KDD Work-shop on Multi-Relational Data 

Mining. 2003. 

[40]. R. Feldman. Link analysis: Current state of 

the art,2002. 

[41]. O. Frank and K. Nowicki. Exploratory 

statistical analysis of networks. Annals of 

Discrete Mathematics,55:349{366, 1993. 

[42]. T. Frantz and K. M. Carley. A formal 

characterization of cellular networks. 
Technical Report CMU-ISRI-05-109, 

Carnegie Mellon University, 2005. 

[43]. L. Freeman. Centrality in social networks: 

Conceptual clari_cations. Social Networks, 

1:215{239, 1979. 

[44]. T. G•artner. Exponential and geometric 

kernels for graphs. In NIPS Workshop on 

Unreal Data: Princi-ples of Modeling 

Nonvectorial Data, 2002. 

[45]. T. G•artner. A survey of kernels for 

structured data. SIGKDD Explorations, 
5(1):49{58, 2003. 

[46]. L. Getoor. Link mining: a new data mining 

challenge.SIGKDD Explorations, 

5(1):84{89, 2003. 

[47]. L. Getoor, N. Friedman, D. Koller, and B. 

Taskar.Learning probabilistic models of link 

structure. Jour-nal of Machine Learning 

Research, 3:679{707, 2003. 

[48]. L. Getoor and D. Jensen. AAAI Workshop 

on Learn-ing Statistical Models from 

Relational Data. AAAIPress, 2000. 

[49]. L. Getoor and D. Jensen. IJCAI Workshop 
on Learn-ing Statistical Models from 

Relational Data. 2003. 

[50]. D. Gibson, J. Kleinberg, and P. Raghavan. 

Inferring web communities from link 

topology. In ACM Con-ference on 

Hypertext and Hypermedia, pages 

225{234,1998. 

[51]. T. H. Haveliwala. Topic-sensitive 

PageRank. In In-ternational Conference on 

the World Wide Web(WWW), pages 

517{526, 2002. 
[52]. M. Huisman and T. A. B. Snijders. 

Statistical analysis of longitudinal network 

data with changing composition.Sociological 

Methods and Research, 32:253{287,2003. 

[53]. R. Hummel and S. Zucker. On the 

foundations of relaxation labeling processes. 

IEEE Transactions onPattern Analysis and 

Machine Intelligence, pages 267{287, 1983. 

[54]. A. Inokuchi, T. Washio, and H. Motoda. An 

Aprioribased algorithm for mining frequent 

substructuresfrom graph data. In European 

Conference on Prin-ciples and Practice of 
Knowledge Discovery and DataMining, 

pages 13|23, 2000. 



International Journal of Engineering Research and Application    www.ijera.com ISSN : 2248-9622 Vol. 

8, Issue 9 (Part -V) Sep 2018, pp 111-123 

 www.ijera.com                                                                                                                    121 | P a g e  

 

 
 

 

[55]. G. Jeh and J. Widom. SimRank: A measure 

of structural-context similarity. In ACM 

SIGKDD In-ternational Conference on 

Knowledge Discovery and Data Mining, 

pages 538{543, 2002. 

[56]. G. Jeh and J. Widom. Scaling personalized 

web search. In International Conference on 

the World Wide Web (WWW), pages 

271{279, 2003. 

[57]. D. Jensen. Statistical challenges to inductive 
inference in linked data. In Seventh 

International Workshop on Arti_cial 

Intelligence and Statistics, 1999. 

[58]. D. Jensen and H. Goldberg. AAAI Fall 

Symposium on 

[59]. D. V. Kalashnikov, S. Mehrotra, and Z. 

Chen. Exploiting relationships for domain-

independent data cleaning. In SIAM 

International Conference on Data Min-ing, 

April 21{23 2005. 

[60]. H. Kashima and A. Inokuchi. Kernels for 
graph classi-_cation. In ICDM Workshop on 

Active Mining, 2002. 

[61]. C. Kemp, T. L. Gri_ths, and J. B. 

Tenenbaum. Discovering latent classes in 

relational data. Technical ReportAI Memo 

2004-019, Massachusetts Institute of 

Technology, September 2004. 

[62]. N. Ketkar, L. Holder, and D. Cook. 

Comparison of graph-based and logic-based 

multi-relational data mining. SIGKDD 

Explorations, 7(2), December 2005. 

[63]. R. D. King, S. H. Muggleton, A. Srinivasan, 
and M. J. E. Sternberg. Structure-activity 

relationships derived by machine learning: 

The use of atoms and their bond 

connectivities to predict mutagenicity by 

inductive logic programming. National 

Academy of Sciences, 93(1):438{442, 

January 1996. 

[64]. J. Kleinberg. Authoritative sources in a 

hyperlinked environment. Journal of the 

ACM, 46(5):604{632,1999. 

[65]. A. Knobbe and D. van der Wallen. 
ECML/PKDD Workshop on Multi-

Relational Data Mining. 2001. 

[66].  J. N. Kok and T. Washio. ECML/PKDD 

Workshop on Mining Graphs, Trees and 

Sequences. 2004. 

[67]. J. Kubica, A. Moore, D. Cohn, and J. 

Schneider. cGraph: A fast graph-based 

method for link analysis and queries. In 

IJCAI 2003 Text-Mining and Link- Analysis 

Workshop, August 2003. 

[68]. J. Kubica, A. Moore, and J. Schneider. 

Tractable group detection on large link data 
sets. In The Third IEEE International 

Conference on Data Mining, pages 573{576, 

2003. 

[69]. J. Kubica, A. Moore, J. Schneider, and Y. 

Yang.Stochastic link and group detection. In 

Eighteenth Na-tional Conference on 

Arti_cial Intelligence, pages 798{804. 

American Association for Arti_cial 

Intelligence, 2002. 

[70]. M. Kuramochi and G. Karypis. Frequent 

subgraph discovery. In IEEE International 
Conference on DataMining, pages 313{320, 

2001. 

[71].  J. La_erty, A. McCallum, and F. Pereira. 

Conditional random _elds: Probabilistic 

models for segmentingand labeling sequence 

data. In Proc. of ICML-01, 2001. 

[72]. N. Lavra_c and S. D_zeroski. Inductive 

Logic Program- ming: Techniques and 

Applications. Ellis Horwood, 1994. 

[73]. R. Lempel and S. Moran. The stochastic 

approach for link-structure analysis 
(SALSA) and the TKC e_ect.Computer 

Networks, 33(1{6):387{401, 2000. 

[74]. X. Li, P. Morie, and D. Roth. Semantic 

integration in text: From ambiguous names 

to identi_able entities.AI Magazine. Special 

Issue on Semantic Integration, 2005. 

[75]. D. Liben-Nowell and J. Kleinberg. The link 

prediction problem for social networks. In 

International Con-ference on Information 

and Knowledge Management (CIKM), 

pages 556{559, 2003. 

[76]. Q. Lu and L. Getoor. Link-based 
classi_cation. In In-ternational Conference 

on Machine Learning, 2003. 

[77].  A. Madche and S. Staab. Ontology learning 

for the semantic web. IEEE Intelligent 

Systems, 16(2):72|79, March/April 2001. 

[78]. T. Matsuda, T. Horiuchi, H. Motoda, and T. 

Washio.Extension of graph-based induction 

for general graph structured data. In 

PAKDD, pages 420|431, 2000. 

[79]. S. Muggleton, editor. Inductive Logic 

Programming.Academic Press, 1992. 
[80]. . Neville and D. Jensen. Iterative 

classi_cation in relational data. In Proc. 

AAAI-2000 Workshop on Learn- ing 

Statistical Models from Relational Data. 

AAAI Press, 2000. 

[81]. J. Neville and D. Jensen. Leveraging 

relational autocorrelation with latent group 

models. In IEEE Inter-national Conference 

on Data Mining (ICDM), 2005. 

[82]. M. E. J. Newman. Detecting community 

structure in networks. European Physical 

Journal B, 38:321{330,2004. 
[83]. A. Y. Ng, A. X. Zheng, and M. I. Jordan. 

Link analysis,eigenvectors and stability. In 



International Journal of Engineering Research and Application    www.ijera.com ISSN : 2248-9622 Vol. 

8, Issue 9 (Part -V) Sep 2018, pp 111-123 

 www.ijera.com                                                                                                                    122 | P a g e  

 

 
 

 

International JointConference on Arti_cial 

Intelligence (IJCAI), pages 903{910, 2001. 

[84]. A. Y. Ng, A. X. Zheng, and M. I. Jordan. 

Stable algorithms for link analysis. In ACM 

SIGIR Conferenceon Research and 

Development in Information Retrieval, 

2001. 

[85].  S. Nijssen, T. Meinl, and G. Karypis. 

ECML/PKDD Workshop on Mining Graphs, 

Trees and Sequences.2005. 
[86]. K. Nowicki and T. A. B. Snijders. 

Estimation and prediction for stochastic 

blockstructures. Journal of theAmerican 

Statistical Association, 96(455):1077{1087, 

2001. 

[87]. H.-J. Oh, S. H. Myaeng, and M.-H. Lee. A 

practical hypertext catergorization method 

using links andincrementally available class 

information. In Interna-tional ACM SIGIR 

Conference on Research and De-velopment 

in Information Retrieval, pages 
264{271,2000. 

[88]. J. O'Madadhain, J. Hutchins, and P. Smyth. 

Prediction and ranking algorithms for even-

based network 

[89]. J. O'Madadhain and P. Smyth. EventRank: 

A framework for ranking time-varying 

networks. In KDDWorkshop on Link 

Discovery (LinkKDD): Issues, Ap-proaches 

and Applications, 2005. 

[90]. J. O'Madadhain, P. Smyth, and L. Adamic. 

Learning predictive models for link 

formation. Presented atthe International 
Sunbelt Social Network 

Conference,February, 2005. 

[91]. L. Page, S. Brin, R. Motwani, and T. 

Winograd. The PageRank citation ranking: 

Bringing order to the web.Technical report, 

Stanford University, 1998. 

[92]. H. Pasula, B. Marthi, B. Milch, S. Russell, 

and I. Shpitser.Identity uncertainty and 

citation matching. InAdvances in Neural 

Information Processing Systems 15. MIT 

Press, 2003. 
[93]. A. Popescul and L. H. Ungar. Statistical 

relational learning for link prediction. In 

IJCAI Workshop onLearning Statistical 

Models from Relational Data,2003. 

[94]. L. D. Raedt and T. Washio. ECML/PKDD 

Workshop on Mining Graphs, Trees and 

Sequences. 2003. 

[95]. D. Ra_ei and A. O. Mendelzon. What is this 

page known for? Computing web page 

reputations. In In-ternational World Wide 

Web Conference (WWW), pages 823{835. 

North-Holland Publishing Co., 2000. 
[96]. C. Ramakrishnan, W. Milnor, M. Perry, and 

A. Sheth. Discovering informative 

connection subgraphs inmulti-relational 

graphs. SIGKDD Explorations, 

7(2),December 2005. 

[97]. M. Rattigan and D. Jensen. The case for 

anomalous link discovery. SIGKDD 

Explorations, 7(2), December2005. 

[98]. M. Richardson and P. Domingos. The 

Intelligent Surfer: Probabilistic Combination 

of Link and ContentInformation in 

PageRank. In Advances in Neural 
Information Processing Systems 14. MIT 

Press, 2002. 

[99]. A. Rosenfeld, R. Hummel, and S. Zucker. 

Scene labelling by relaxation operations. 

IEEE Transactions onSystems, Man and 

Cybernetics, 6(6), 1976. 

[100]. T. Senator. Link mining applications: 

Progress and challenges. SIGKDD 

Explorations, 7(2), 2005. 

[101]. L. Singh, L. Getoor, and L. Licamele. 

Pruning social networks using structural 
properties and descriptiveattributes. In 

International Conference on Data Min-ing, 

2005. 

[102]. P. Singla and P. Domingos. Multi-relational 

record linkage. In KDD Workshop on Multi-

Relational DataMining, Seattle, WA, August 

2004. 

[103]. D. Skillicorn and K. Carley. SIAM 

Workshop on Link Analysis, 

Counterterrorism and Security. 2005. 

[104]. A. Srivastava, D. Barbara, H. Kargupta, and 

V. Kumar.SIAM Workshop on Data Mining 
for Countert-errorism and Security. 2003. 

[105]. J. Sun, H. Qu, D. Chakrabarti, and C. 

Faloutsos.Relevance search and anomaly 

detection in bipartitegraphs. SIGKDD 

Explorations, 7(2), December 2005. 

[106]. L. Sweeney. Privacy-enhanced linking. 

SIGKDD Ex-plorations, 7(2), 2005. 

[107]. B. Taskar, P. Abbeel, and D. Koller. 

Discriminative probabilistic models for 

relational data. In Proc. of UAI, pages 

485{492, Edmonton, Canada, 2002. 
[108]. B. Taskar, M.-F.Wong, P. Abbeel, and D. 

Koller. Link prediction in relational data. In 

Neural Information Processing Systems 

Conference, Vancouver, Canada,December 

2003. 

[109]. J. R. Tyler, D. M. Wilkinson, and B. A. 

Huberman. Email as Spectroscopy: 

Automated Discovery of Com-munity 

Structure within Organizations. Kluwer, 

B.V.,Deventer, The Netherlands, The 

Netherlands, 2003. 

[110]. X. Wang, N. Mohanty, and A. McCallum. 
Group and topic discovery from relations 



International Journal of Engineering Research and Application    www.ijera.com ISSN : 2248-9622 Vol. 

8, Issue 9 (Part -V) Sep 2018, pp 111-123 

 www.ijera.com                                                                                                                    123 | P a g e  

 

 
 

 

and text. In KDD Work- shop on Link 

Discovery, August 2005. 

[111]. S. Wasserman. Conformity of two 

sociometric relations. Psychometrika, 

52:3{18, 1987. 

[112]. S. Wasserman and K. Faust. Social Network 

Analy-sis: Methods and Applications. 

Cambridge UniversityPress, Cambridge, 

1994. 

[113]. D. J. Watts and S. H. Strogatz. Collective 
dynamics of "small-world" networks. 

Nature, 393:440{442, 1998. 

[114]. S. White and P. Smyth. Algorithms for 

estimating relative importance in networks. 

In ACM SIGKDD In-ternational Conference 

on Knowledge Discovery and Data Mining, 

pages 266{275, 2003. 

[115]. A. P. Wolfe and D. Jensen. Playing multiple 

roles:Discovering overlapping roles in social 

networks. InICML-04 Workshop on 

Statistical Relational Learning and its 
Connections to Other Fields, 2004. 

[116]. X. Yan and J. Han. gSpan: Graph-based 

substructure pattern mining. In International 

Conference on DataMining, 2002. 

[117]. K. Yoshida, H. Motoda, and N. Indurkhya. 

Graphbased induction as a uni_ed learning 

framework. Jour-nal of Applied Intelligence, 

4(3):297{316, July 1994. 


	ABSTRACT
	I. INTRODUCTION
	II. DATAREPRESENTATION
	III. LINK-BASED OBJECTRANKING
	IV. LINK-BASED OBJECTCLASSIFICATION
	V. GROUPDETECTION
	VI. ENTITYRESOLUTION
	VII. LINKPREDICTION
	VIII. SUBGRAPHDISCOVERY
	IX. GRAPHCLASSIFICATION
	X. GENERATIVE MODELS FORGRAPHS
	XI. OPEN ISSUES AND PROMISING AREAS FOR FUTURERESEARCH

