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ABSTRACT 
In this paper basis of direct force method is developed and presented in a concise and step by step way. Though 

direct force method has no edge over direct stiffness method, yet it is of a great academic interest for the 

scholars working on matrix methods of analysis. There can be three ways of selection of redundants to analyze 

the indeterminate structures by force method. A structure may have all the external redundants or it may have all 

the internal redundants. Still there is third probability that it may have mixed redundants i.e., external as well as 

internal redundants. These three cases require separate formulations. This paper presents all the three 

formulations. 
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I. INTRODUCTION 
 W. K. Nukulchai [1] has given the two 

governing equations which are used to determine 

redundants and associated displacements in a joint 

loaded indeterminate structure. 

*.  .  t t t t

X X X X X RB f B X x D q B V B f B R     1.1 

* = . . . . . . . .t t t t

R R R R R Xr B V D q B f B R B f B X    1.2 

 The indeterminate structure is rendered to a 

basic stable and determinate structure in which X

denotes the unknown redundants, f is structure 

flexibility matrix composed of member flexibilities; 

and ,   and x q r  are kinematics respectively 

corresponding to the statics X  the redundants, Q  the 

reactions and R the other nodal loads. The member 

deformations due to temperature changes and misfits 

are denoted by 
*V . The determinate structure is 

analyzed for each redundant applied as a unit load 

and each nodal load applied again as a unit load. The 

four equilibrium matrices , ,  and  X R X RB B D D  in 

above equations are thus obtained from this analysis 

which have been defined by the following 

relationships. 

.X XS B X     1.3 

.R RS B R     1.4 

.X XQ D X     1.5 

.R RQ D R     1.6 

 In (1.3) to (1.6) XS  denotes member forces 

due to redundants X  in the basic determinate 

structure and RS  is vector of forces due to applied 

joint loads R , whereas 
XQ  and 

RQ  respectively 

denote reactions in basic determinate structure due  

 

to X  and R . It may be noted that the four matrices 

RB , 
XB , 

RD  and 
XD  are determined by analyzing 

the basic determinate structure subjected to unit 

nodal loads and unit redundants. The details of the 

method can be found elsewhere [2]. Three types of 

strategies are available in analysis of indeterminate 

framed structures, depending upon the prevailing 

combinations of nodes, elements and support 

restraints; first being a solution where all the 

redundants are external loads that is reactions, 

second where all the redundants are internal member 

forces and third where a mixture of external 

reactions and internal forces is taken as redundants 

In the forthcoming sections the three approaches of 

solution by direct force method are described. 

 

II. ANALYSIS OF INDETERMINATE 

STRUCTURES 

 Let eS  denote the vector of Element 

Actions or element forces in its local coordinates. It 

may be noted that axial force in a truss element is 

element action/force for this type of element and it is 

considered positive if it is tensile force. Similarly for 

a beam element by neglecting axial deformation the 

two end moments may be taken as element actions. 

These moments are considered positive if according 

to the right hand rule the double headed arrow 

follows the positive direction of the axis the moment 

is acting about. The element actions/ forces rise to 

three in case of general flexure element in a plane 

and the set of forces is combination of the element 

forces of truss and beam elements. The element 

actions for a grid element may consist of 3 actions 

namely one axial torsion, and two end moments. 

Similarly for a flexure element in space, it may be a 
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set of 6 actions consisting of axial force, axial 

torsion, and four end moments. 

 Let ep  and 
ed  respectively denote the 

nodal forces and displacements of an element in its 

local coordinate system, and eP , 
eD  respectively 

denote the nodal forces and displacement of the 

element in structure or global coordinate system. If 

the two displacements are related by the following 

relationship where a  is a transformation matrix. 

 . e ed a D     2.1 

Then the element forces in the two coordinates are 

can be related using contra-gradient law. 

.e t eP a p     2.2 

Let eh  be an equilibrium matrix which associates 

the element forces 
eS  with nodal forces

ep . 

. e e ep h S     2.3 

Similarly the relationship between eP and eS can be 

setup using another equilibrium matrix eH  of the 

same element in global coordinate system. 

. e e eP H S     2.4 

It can be shown that the two element equilibrium 

matrices eH and eh are associated to each other 

through the transformation matrix a . 

 e t eH a h     2.5 

The nodal load-element force relationship for a 

structure shall be essentially extension of (2.4) and 

can be written as: 

.P H S     (2.6) 

 The symbol P  in (2.6) is vector of nodal 

loads including all loads corresponding to free nodal 

coordinates and reactions corresponding to 

restrained nodal coordinates of a structure; H  is 

structure equilibrium matrix and S  is vector of 

element forces. The equilibrium matrix H  can be 

set up by assembling element equilibrium matrices 
eH  

 Three types of structures may be 

encountered during analysis of indeterminate 

structures depending upon the prevailing 

combinations of nodes, elements and support 

restraints; first being a solution where all the 

redundants are external in nature or reactions, 

second where all the redundants are internal element 

forces and third type where a mixture of external 

reactions and internal element forces have to be 

taken as redundants In the forthcoming sections the 

formulation of three types of solutions by direct 

force method is described. 

 

III. ALL EXTERNAL REDUNDANTS 
 The nodal forces in this case consist of 

three independent sources; the loads at free nodal 

directions R , the reactions selected as redundants X

at the chosen external restraints which are released 

to make the structure determinate, and the reactions 

Q corresponding to the remaining external restraints 

which are just necessary and sufficient to suppress 

the rigid body motion of the released structure. The 

nodal force vector P is partitioned properly so that 

the three type of nodal loads are separated and 

ordered as given by (3.1): 

R

P X

Q

 
 

  
 
 

     3.1 

 It may be noted from statics that number of 

the combined components in the first two vectors, R  

and X  is just equal to the element forces S . Let the 

two vectors R  and X be combined into a single one 

denoted by 
RXP  and the basic relationship given by 

(2.6) be written as follows 

.
RX RX

Q

P H
S

Q H

   
   
  

   3.2 

 RXH in (3.2) is square matrix of the order 

equal to the number of components in S and it 

relates combined vector
RXP (combination of R  and 

X ) to member forces S . The first part of the 

partitioned equation (3.2) may further be expanded 

to (3.3) where 
RH  is equilibrium matrix that relates 

R  and S  whereas 
XH  is equilibrium matrix that 

relates X and S . 

.
R

X

HR
S

HX

  
   

   
    3.3 

 Before proceeding further, let us refresh the 

method of analysis of indeterminate structures where 

all the redundants in this particular formulation are 

external reactions at the released restraints. In the 

method a basic determinate structure is selected after 

removing the restrains which render a stable and 

determinate structure. This structure will be termed 

as base structure in this paper. Then unit loads are 

applied one at a time in turn at all the free nodal 

coordinates and element forces are obtained, the 

forces in elements of base structure due to unit 

forces applied at free nodes in the basic structure are 

termed as 
RB  and the forces produced by unit 

redundants are denoted by 
XB . Similarly the 

reactions at supports of base structure are denoted by 

RD  and XD  respectively due to two sets of unit 

forces applied at originally free nodal coordinates 

and at released nodal directions. 
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Let us now write the two subsets of partitioned (3.2) 

independently as follows: 

.RX RXP H S     3.4 

.QQ H S     3.5 

 The matrix 
RXH  which relates nodal forces 

combined at originally free nodes and released nodal 

restraints in basic structure is a non-singular matrix 

if a proper stable and determinate base structure is 

selected. Hence inverse of 
RXH exists and (3.4) may 

be rewritten as (3.6) 
1 .RX RXS H P     3.6 

 It is essential to note that 
RXP  is consisting 

of forces duly applied at the free nodal coordinates 

of the base structure and is composed of two parts; 

R  which is a vector of nodal forces corresponding 

to originally free nodal coordinates all applied in a 

proper order and X  which is consisting of nodal 

reactions corresponding to the released restraints of 

the structure. Thus another form of (3.6) may be 

written after partitioning as follows: 

1 1

* * .R X

R
S H H

X

   
    

 
   3.7 

1 1

* * .
R

R X

X

H
H H I

H

   
    

 
   3.8 

It may be noted from (3.7) that 

R XS S S      3.9 

 It may be depicted from (3.7) and (3.8) 1

*RH   

and 1

*XH   are not direct inverses of the two matrices 

RH  and 
XH , rather they are sub matrices obtained 

after proper partitioning of 1

RXH   that is  

1 1 1

* *RX R XH H H         3.10 

Now rewriting the first of the two parts of (3.7): 
1

* .R RS H R     3.11 

It may be noted from (3.4) that .R RS B R  therefore, 

RB can be obtained from (3.11). 
1

*R RB H      3.12 

And working on the same lines, the second part of 

(3.6) is rewritten in order to obtain 
XB . 

1

* .X XS H X     3.13 

Again it is noted from (1.3) that .X XS B X , 

therefore, 
XB  can be obtained from (3.13) 

1

*X XB H      3.14 

The remaining two equilibrium matrices 
RD  and 

XD  can be obtained by writing the second part of 

(3.2) 

.QQ H S     3.15 

By substitute the value of element forces from (3.6) 

into (3.15), (3.16) is obtained. 

1 1

* *. .Q R X

R
Q H H H

X

   
    

 
  3.16 

1 1

* *. .Q R Q XQ H H R H H X     3.17 

The two matrices
XD  and 

RD can be obtained from 

(3.17) in view of (1.5) and (1.6) respectively. 
1

*X Q XD H H      3.18 

1

*R Q RD H H      3.19 

 The force method for all external 

redundants can now be programmed using any 

computer language as the four equilibrium matrices 

have been obtained as given by (3.12), (3.14), 3.18) 

and (3.19). 

 

IV. ALL INTERNAL REDUNDANTS 
 This approach is adoptable only in the cases 

where external restrains are just necessary and 

sufficient to have a stable and externally determinate 

structure, and the redundancy is only due to internal 

forces of the structure. 

Let us rewrite the basic relationship between nodal 

forces and element forces of a structure 

. P H S     4.1 

The nodal force vector P  in this case is partitioned 

into two groups, R  the loads belonging to free nodal 

coordinates and Q  the reactions at the restrained 

nodal coordinates. 

R
P

Q

 
  
 

    4.2 

 The base structure, in this case is obtained 

by releasing the internal restraints as required but in 

a way to get a stable and determinate base structure. 

The element forces are subdivided into two classes, 

one being essential forces ES  the forces present in 

the released structure, and the other class is termed 

as redundant forces XS . The term essential is coined 

due to the reason that these element forces are 

essentially required to give an internally stable base 

structure. The element forces shall be ordered 

according to node numbers and coordinate directions 

but essential forces ES shall precede the redundant 

forces XS  as shown by (4.3). 

E

X

S
S

S

 
  
 

    4.3 

The relationship described by (4.1) can now be 

rewritten in view of (4.2) and (4.3) 

.
E

RE RX

X
QE QX

R H H S

Q H H S

     
     

   
  4.4 

 The convention adopted in notation of 

equilibrium matrices 
JKH is so that it relates loads 

J  with forces KS . There will be two sources 
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contributing to each essential force in base structure; 

one due to applied loads R  denoted as E

RS and the 

other due to internal redundant forces XX S  

which are denoted by E

XS . The relationship (4.3) 

takes the following form in view of the two sources 

inducing the element forces. 
E E E

R XS S S      4.5 

 The two forces on the right hand side of 

(4.5) are E

RS  essential forces due to applied loads R

and E

XS  essential forces due to redundant forces XS . 

The first of the two equations in (4.4) is re-written as 

(4.6). 

. ,E X

RE RXR H S H S     4.6 

Substituting (4.5) into (4.6),  

. . ,E E X

RE R RE X RXR H S H S H S     4.7 

 It is pertinent to note that there will be no 

contribution by acting loads to redundant forces 

when the internal restraints have been released to 

obtain a base structure. Therefore, the contribution 

of the last two terms in (4.7) is zero. 

. , 0E X

RE X RXH S H S     4.8 

Hence (4.7) is simplified in view of (4.8) 

. E

RE RR H S     4.9a 

E

RS  can be obtained from (4.9a). 
1 .E

R RES H R     4.9b 

The internal forces in all members due to nodal 

loads R  in view of (4.3) can be written as: 

E

R

R X

R

S
S

S

 
  
 

    4.10 

 The first vector on right hand side of (4.10) 

consists of essential forces and second consists of 

redundant forces both due to applied loading R  in 

the base structure. It is a fact that there can be no 

force in the released restraints X

RS  due to nodal 

loads R  in base structure; hence 

0X

RS       4.11 

The relationships given by (4.10) in view of (4.9b) 

and (4.11) can be written as given by (4.12). 
1

.
0

E

R RE

R X

R

S H
S R

S

   
    

  
   4.12 

Comparison of (4.12) with (2.4) provides the 

equilibrium matrix 
RB . 

1

0

RE

R

H
B

 
  
 

    4.13 

The total force due to redundants XS can be divided 

into two categories on the basis already used in (4.3) 

and (4.10). 

E

X

X X

X

S
S

S

 
  
 

    4.14 

 The first category E

XS on right hand side of 

(4.14) represents the essential forces and the second 

one X

XS represents the redundant forces due to 

redundants XS . The force vector E

XS  can be 

obtained from (4.8) 

. . 0E X

RE X RXH S H S     4.8 

1 . .E X

X RE RXS H H S     4.15 

It can be written using the basic definition (2.3) that 

.E E X

X XS B S     4.16 

Therefore comparing (4.15) and (4.16), E

XB can be 

obtained. 
1 .E

X RE RXB H H      4.17 

 When a redundant force is applied to base 

structure it induces the force equal to itself in that 

redundant, however, it does not induce any force in 

any one of the other redundants which have been 

released to make the structure determinate. 

Therefore, the force in redundant due to redundant 

itself can be written by following relationship 

.X X

XS I S     4.18 

I  in (4.18) is a square unit matrix of the order of 

number of redundants. Using the basic definition 

(2.3), X

XS  can be written as given by (4.19a). 

.X X X

X XS B S     4.19a 

Therefore 
X

XB can be obtained from comparison of 

(4.18) and (4.19a). 
X

XB I      4.19b 

It is known from (2.3) that .X XS B X  and for the 

solution scheme consisting of all internal redundants 
XS X . Using this definition in view of (4.15), 

(4.17), (4.18), (4.19) along with (4.14), 
XB  can be 

obtained. 
1 .

E

X RE RX

X X

X

B H H
B

B I

   
    

  
  4.20 

The focus is next turned towards the second set of 

equations given by (4.4) so that 
XD  and 

RD  can be 

obtained. 

.
E

RE RX

X
QE QX

R H H S

Q H H S

     
     

   
  4.2 

. .E X

QE QXQ H S H S     4.21 

The relationship (4.21) in view of (4.5), i.e.,
E E E

R XS S S   can be written as (4.22). 

. . .E E X

QE R QE X QXQ H S H S H S     4.22 
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Substituting (4.9) and (4.15) into (4.22) and 

regrouping separately for the terms containing R  

and XS , (4.22) takes the following shape. 

1 1. . ( . . ). X

QE RE QX QE RE RXQ H H R H H H H S    4.23 

However, the total reaction Q  is sum of two 

reaction vectors 
RQ  and 

XQ , therefore: 

R XQ Q Q      4.24 

Moreover, 
XQ  and 

RQ  have already been defined 

by (1.5) and (1.6) which are reproduced for ready 

reference. 

.X XQ D X     1.5 

.R RQ D R     1.6 

It may be noted that while all the redundants have 

been taken from internal member forces, the two 

vector XS  and X  are identical. 

XS X      4.25 

Comparison of (4.23) and (4.24) in view of (1.5), 

(1.6) and (4.25) reveals that 
1.R QE RED H H      4.26 

1. .X QX QE RE RXD H H H H    4.27 

The four equilibrium matrices ,RB  ,XB  RD and 
XD

have been obtained for the formulation with all 

internal redundants. 

 

V. GENERAL FORMULATION 
 This approach is termed as General 

Formulation and here redundants are a combination 

of external reactions 
eX  and internal forces XS . Let 

us rewrite the basic relationship between nodal 

forces P  and element forces S : 

.P H S     5.1 

 The nodal loads shall be consisting of three 

categories; loads R  corresponding to free nodal 

coordinates, the external redundants 
eX  acting at 

released external restraints and reactions Q  at the 

remaining necessary and sufficient restraints to stop 

the rigid body movement of the structure. 

 The load vector P  will be arranged in a 

proper order so that loads R  corresponding to free 

nodal coordinates are grouped at top, the external 

redundants 
eX  are placed next and the reactions in 

base structure Q  are placed last as given by (5.2). 

e

R

P X

Q

 
 

  
 
 

    5.2 

 The element force vector S  shall be having 

two categories same as in the case of all internal 

redundant formulation; the essential element forces 
ES  and redundant element forces. XS . 

E

X

S
S

S

 
  
 

    5.3 

The relationship (5.1) in view of (5.2) and (5.3) can 

be expanded into (5.4). 

.

RE RX E

e XeE XeX X

QE QX

R H H
S

X H H
S

Q H H

   
    

     
    

  

  5.4 

Let the two vectors R  and 
eX be combined 

temporarily into a single vector denoted by 
xR  as 

shown by (5.5). 

x

e

R
R

X

 
  
 

    5.5 

Rewrite (5.4) in view of (5.5). 

.
E

x RxE RxX

X
QE QX

R H H S

Q H H S

     
     

   
  5.6 

A comparison of (5.4) with (5.6) in view of (5.5) 

reveals that 

RE

RxE

Xe

H
H

H

 
  
 

    5.7a 

RX

RxX

XeX

H
H

H

 
  
 

    5.7b 

 The two equilibrium matrices on right side 

of 5.7a relate essential element forces ES  to the 

loads R  and external redundants 
eX  respectively 

and those two on right side of 5.7b relate redundant 

element forces XS  to the loads R  and external 

redundants 
eX  respectively. When all types of loads 

are acting at nodes, the following equation holds for 

essential element forces. 
E E E E

R Xe XS S S S      5.8 

 The three components on right side of the 

(5.8) are all essential forces; E

RS due to free nodal 

loads R , E

XeS  due to external redundants 
eX and E

XS  

due to internal redundant XS respectively. The first 

set of equations given by (5.6) relates nodal loads 

other than reactions in base structure to all the 

element forces: 

. .E X

x RxE RxXR H S H S     5.9 

Substitution of (5.8) into (5.9) yields 

.( ) .E E E X

x RxE R Xe X RxXR H S S S H S      

The terms on right hand side of above relationship 

are grouped on the basis of forces due to external 

and internal sources. 

.( ) ( . . )E E E X

x RxE R Xe RxE X RxXR H S S H S H S    5.10 

After application of release to internal restraints 

corresponding to the internal redundants XS , we get 
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. . 0E X

RxE X RxXH S H S     5.11 

Solving (5.11) for E

XS  

1 . .E X

X RxE RxXS H H S     5.12 

Next (5.10) is re-written in view of (5.11). 

.( )E E

x RxE R XeR H S S     5.13a 

(5.13a) can be solved for essential element forces 

due to loads from external sources. 
1( ) .E E

R Xe RxE xS S H R     5.13b 

The above relationship in view of (5.5) takes the 

following form. 

1* 1* .E E

R Xe RE Xe

e

R
S S H H

X

   
     

 
  5.13c 

The two categories of essential element forces E

RS  

and E

XeS  can be written separately from (5.13c). 

1*.E

R RES H R     5.14a 

1*.E

Xe Xe eS H X     5.14b 

The two starred matrices 1*

REH  and 1*

XeH  in (5.14a) 

and (5.14b) are not direct inverses of REH  and XeH  

referred by (5.7a), rather they are properly 

partitioned sub-matrices of 1

RxEH   given by (5.13b) in 

view of (5.14a), (5.14b). It may be noted that after 

releasing internal redundants, there will no forces in 

the redundant elements XS due to nodal loads R . 

0.X

RS R     5.15 

The forces 
RS in all elements whether essential or 

redundant due to external loads R  can be written. 

1*

.
0

E

R RE

R X

R

S H
S R

S

   
    

  
   5.16 

It may be noted from (1.4) that .R RS B R  therefore 

the equilibrium matrix 
RB  can be obtained from 

(5.16). 
1*

0

RE

R

H
B

 
  
 

    5.17 

 It may further be noted from (1.3) that 

.X XS B X , so in order to establish 
XB one have to 

combine all the redundants whether external 
eX  or 

internal XS  into a single redundant vector X  as 

follows: 
X

e

S
X

X

 
  
 

    5.18 

Let 
XS  be element forces due to all types of 

redundants whether internal or external, i.e. 
EE

X XeX

X Xe XX

XeX

SS
S S S

SS

  
      

   
  5.19 

 While internal redundants have been 

released, and unit redundants are applied in turn we 

have the following relationship between redundant 

element forces due to internal redundants. 

. X X

XS I S     5.20 

It may be noted that there will be zero force X

XeS  in 

all internal redundants due to applied external 

redundants
eX , or 

0.X

Xe eS X     5.21 

Rewriting (5.19) 
EE

XeX

X XX

XeX

SS
S

SS

  
    
   

   5.19 

Substituting E

XS  from (5.12), E

XeS  from (5.14b), X

XS  

from 5.20 and X

XeS  from (5.21) into (5.19), the 

following is obtained. 
1*1 .

. .
0

X XeRxE RxX

X e

HH H
S S X

I

   
    
   

  

The above relationship can be written in the 

following matrix format as well. 
1*1 .

.
0

X

XeRxE RxX

X

e

SHH H
S

XI

   
   
   

  5.22 

The relationship (5.22) in view of (1.3) i.e., 

.X XS B X  and X as defined by (5.18) provides 

.XB  

1*1 .

0

XeRxE RxX

X

HH H
B

I

 
  
 

  5.23 

After obtaining 
RB  and 

XB the focus now should be 

concentrated on the 2nd set of equations given by 

(5.6) so that 
RD  and 

XD  can be obtained. 

.
E

x RxE RxX

X
QE QX

R H H S

Q H H S

     
     

   
  5.6 

. .E X

QE QXQ H S H S      

Substituting ES  from (5.8) into above relationship, 

reactions Q  are determined. 

.( ) .E E E X

QE R Xe X QXQ H S S S H S     5.24 

In the second round substitutions are made into 

(5.24) for E

XS ,  E

RS and  E

XeS  from (5.12), (5.14a) and 

(5.14b) respectively. 
1* 1*

1

.( . .

     . . ) .

QE RE Xe e

X X

RxE RxX QX

Q H H R H X

H H S H S

 



 

 
   

Which, after rearrangement of the terms can be 

written as  
1*

1* 1

{ . . }

     { . . ( . . .) }

QE RE

X

QE Xe e QX QE RxE RxX

Q H H R

H H X H H H H S



 



  
5.25 

The two parts of (5.25) grouped by {} are obvious 

and can be written as  

. .R X R XQ Q Q D R D X      5.26 

Therefore from comparison of 5.25 and 5.26 
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1*. . .R R QE REQ D R H H R     5.27 

1

1*

( . . .)

       . .

X

X QX QE RxE RxX

QE Xe e

Q H H H H S

H H X





 


  5.28 

The relationship given by (5.28) can be written in 

the following format as well. 

1 1*. . . .

X

X QX QE RxE RxX QE Xe

e

S
Q H H H H H H

X

 
 

     
 

5.29 

RD  and 
XD  be obtained from (5.27) and (5.29) 

respectively in view of (1.6) and (1.5). 
1*.R QE RED H H      5.30 

1 1*. . .X QX QE RxE RxX QE XeD H H H H H H      5.31 

The formulation for three approaches has been 

completed. A computer program in any high level 

language may be developed to implement the 

formulation. However it would be much easy to 

implement this formulation if a symbolic language 

like AIT [3] or MAIL [4] is used that have been 

developed for matrix operations especially. 

 

VI. CONCLUSION 

 The basic objective of this piece of research 

was to determine the four equilibrium matrices 
RB , 

XB , 
RD  and 

XD  automatically from the geometric 

data of a structure after selection of the redundants 

which have been achieved successfully for three 

approaches namely 'All External Redundants', 'All 

Internal Redundants' and 'Mixed Redundants' or 

'General Formulation'. The formulations have been 

tested using MAIL [4]. This paper has already been 

extended to 9 pages hence the implementation of 

these formulations will be presented in a separate 

paper planned for publication in some next issue of 

the same journal. 
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