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ABSTRACT 
A two-dimensional mathematical model of the process of convection drying of anisotropic porous materials has 

been onstructed, taking into account the movement of the boundary of phase transitions. Identified is the 

influence of the main components and the orientation of the main axes of the heat transfer tensor on the non-

stationary temperature fields in the prismatic body. The analytical-numerical method as well as algorithms have 

been developed for implementation of a nonlinear mathematical model under variable temperature conditions of 

the environment. Integrals on the boundary of the phase transition must be calculated numerically. All other 

values included are calculated from the data of physical and thermal characteristics of a particular material. The 

research results can be used to optimize the process of convection drying of moist anisotropic materials, as well 

as to implement similar mathematical models in biology, medicine, geophysics and ecology.  
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I. INTRODUCTION 
Construction of adequate mathematical 

models of heat-and-mass transfer is essential for 

energy-, metallurgical-, chemical-, building-and-

constructing and other industries. In particular, 

effective methods for optimizing the technological 

processes of convection drying should be based on 

reliable and accurate prediction of the kinetics and 

dynamics of the thermal moisture state of capillary-

porous materials, taking into account the anisotropy 

of thermophysical characteristics. Intensification of 

drying technologies for anisotropic capillary-porous 

materials leads to further development of 

mathematical modeling of heat-and-mass transfer 

processes considering the boundary of phase 

transitions resulting from the presence of a moving 

moisture evaporation boundary, which could 

adequately describe the patterns of removing 

moisture in the materials being dried. 

The presence of a moving boundary of 

phase transformations at the interface between 

phases with different thermophysical characteristics 

significantly complicates the mathematical models 

of heat-and-mass transfer processes during the 

drying of anisotropic capillary-porous materials. The 

simulation of heat-and-mass transfer with phase 

transitions in the drying process is reduced to 

solving the Stefan problems which are the most 

complicated even for minor changes in the density of 

the material in the evaporation zone. However, the 

evaporation of water causes a change in its volume 

of nearly a thousand times, and the removal of the 

vapor-gas mixture from the region of the 

evaporation zone requires significant energy 

consumption. With the deepening of the evaporation 

zone within the material being dried, there occurs a 

significant increase in pressure near the front of the 

evaporation. Therefore, the energy consumption of 

the kinetics of vapor transport and the convective 

transfer of heat to the evaporation zone are taken 

into consideration by different approaches to 

represent the model of the evaporation zone. 

Therefore, there is an objective necessity 

for constructing two-dimensional mathematical 

models of heat-and-mass transfer during the drying 

of anisotropic capillary-porous materials, taking into 

account the movement of the evaporation zone for 

non-stationary drying regimes, as well as the 

development of effective analytical-numerical 

methods for their implementation. Such two-

dimensional mathematical models and methods of 

analysis will enable to develop new and improve the 

existing technological processes of hydrothermal 

treatment of organic materials, in particular wood, 

since numerous applications of such materials 

require an understanding of the laws of the 

formation of the final product with given physical-

and-mechanical and structural characteristics. 
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The purpose of this work is to 

mathematically simulate heat transfer in anisotropic 

capillary-porous bodies, taking into account the 

boundary of phase transitions, and to develop 

analytical-numerical methods for the implementation 

of such two-dimensional models for areas with 

moving boundaries of moisture evaporation zone. 

introduction of the paper should explain the nature 

of the problem, previous work, purpose, and the 

contribution of the paper. The contents of each 

section may be provided to understand easily about 

the paper. 

 

II. ANALYSIS OF THE EXISTING 

STUDIES 
The mechanism of the evaporation zone 

deepening in the material being dried was first 

investigated by T. Sherwood. Further theoretical and 

experimental studies confirmed the occurence of 

evaporation surface deepening. There are several 

approaches to simulating heat-and-mass transfer 

processes in materials during drying in view of the 

variable depth of evaporation zone [2-5]. In 

particular, the criterion of the phase transition, which 

varies with the coordinate of the body, is taken into 

account in the boundary conditions. 

With another approach to modeling, the 

process of removing moisture is considered within 

the framework of the Stefan problems which are the 

most complicated even for minor changes in the 

density of the material in the evaporation zone [8]. 

However, the evaporation of water causes a change 

in its volume of almost a thousand times, and the 

removal of the vapor-gas mixture from the region of 

the evaporation zone requires significant energy 

consumption. With the deepening of the evaporation 

zone within the material being dried, a significant 

increase in pressure is observed near the front of the 

evaporation. Therefore, the energy consumption of 

the kinetics of vapor transfer and the convective 

transfer of heat to the evaporation zone is taken into 

account by different approaches to represent the 

model of the evaporation zone. In general, all the 

problems associated with determining moving 

boundaries of phase transitions belong to the class of 

essentially nonlinear problems with the available 

nodal gradient of temperatures at the phase 

boundary. 

In well-known publications on heat-and-mass 

transfer in anisotropic materials [1,2,3], the methods 

of the analytical theory of thermal conductivity are 

mainly used. However, the existence of mixed 

derivatives essentially restricts the use of known 

methods which are well developed and suitable for 

isotropic case. Only a small amount of work is 

devoted to the study of heat-and-mass transfer in 

anisotropic bodies with regard to moving boundaries 

of phase transitions. 

The use of numerical methods for 

multidimensional heat-and-mass transfer problems 

with phase transition is associated with algorithmic 

difficulties and significant computational costs. In 

order to find an approximate solution of wide 

application, methods of "pass-through" calculation 

have gained widespread application  using the 

generalized formation of the classical Stefan 

problem in which the unknown is not the 

temperature, but enthalpy. Difference schemes are 

used for the numerical implementation of some 

mathematical models. 
For numerical realizations of mathematical 

models of heat-and-mass transfer with phase 

transitions, two basic approaches are used. For the 

first approach, the methods of identifying the phase 

separation boundary in each time layer is used 

through the use of dynamic independent variables or 

the use of the dynamic network of constant structure 

with the fixation of nodes at the boundaries of the 

phase separation. For the second approach, methods 

are used without detecting the boundary of the phase 

transition or the methods of pass-through calculation 

[1]. Adaptation to the boundary of the phase 

separation is carried out by using the variable step in 

time (catching the front into the node of the spatial 

grid). In this aspect, the variational formation of 

mathematical models of heat transfer with the use of 

methods of penalty functions is important. 

The most characteristic feature of processes 

for which mathematical models are nonlinear is the 

unknown in advance topology of the boundaries 

between different phases. Typically, the classical 

representations of one-phase and two-phase Stefan’s 

problems are considered. In these mathematical 

models, the energy conservation law is used at the 

interface of the phase separation in addition to the 

isothermal conditions, taking into account the latent 

heat. The main idea of the approach is to introduce 

an effective heat capacity which includes the heat of 

the phase transition. Using the Dirac delta function 

allows you to use a single energy equation for the 

entire region. This enthalpy form of representation 

of the energy equation is used to analyze Stefan's 

multidimensional models. 

The literature presents few alternative 

approaches to modeling heat transfer in media with 

regard to phase transitions [5]. In particular, a cell-

automaton algorithm for solving a one-dimensional 

Stefan’s problem for growing crystals and 

Boltzmann's lattice equations are described [4]. 

From the mathematical point of view, the 

boundary-value problems of the heat-and-mass 

transfer in anisotropic bodies are fundamentally 

different from classical problems. The dependence 

of the characteristic size of the evaporation zone on 

time, the presence of mixed derivatives in 

differential equations significantly complicates the 
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application of classical methods for the separation of 

variables or integral transformations. For this 

purpose, methods of thermal potentials, contour 

integration, power series, "instant" Greenberg’s 

eigenfunctions were used [1]. 

 Obtaining  analytical solutions to a boundary-

value problem of a generalized type in the area with 

a moving boundary of the phase transition, 

according to an arbitrary law, was reduced to 

integro-differential equations, in particular the 

Volterra integral equations of the second kind with 

complex kernels. Therefore, only qualitative results 

of the behavior of such systems were obtained. Quite 

effective method for solving problems of heating 

and kinetics of drying of moist materials is the 

method of differential series. It allows obtaining 

numerical-analytic solutions to the boundary-value 

problem of heat-and-mass transfer for the boundary 

conditions of the third kind. 
 Let us consider the process of convection 

drying of anisotropic prismatic bar of rectangular 

cross-section with geometric dimensions 

 22211121 ,;2,2 LxLLxLLL 
. It is 

assumed that the drying conditions along the length 

of the bar are the same. Therefore, we consider the 

process of heat transfer taking into account the 

boundary of phase transitions for cross-section of the 

bar, the outer contour of which in the variables of 
the Cartesian reference system X1 and X2 is 

described by equations: 

    .02

2

2

2

2

1

2

10  LxLxF  (1) 

 In the process of heat exchange of the 

prismatic bar with a drying agent, a dried zone is 

formed that extends from the outer surface to the 

depth of the body. Let the dried and moist zones of 

the cross-section of the bar be separated by a 

cylindrical surface, the generatrices of which are 

parallel to the axis of the bar. Its contour is described 

by a continuous closed line in the cross-section 

whose equation takes the form: 

  ,0  FFm
 (2) 

where    is unknown time function. 

 During  the process of drying, the surface 

of the material contacts the gas environment which 

is a mixture of air and vapor, and the heat supplied 

by the drying agent is spent on evaporation of the 

moisture, heating the material and overcoming the 

bond of the moisture with the material. Therefore, 

the equation of heat transfer of a porous prismatic 

orthotropic body in a dried zone can be represented 

as: 
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 Here, we denote by means of indices 

v,a,s  the components of vapor, air and skeleton, 

аnd 
sav CCC ,,, , 

sav  ,,  are porosity, heat 

capacity, density of vapor, air, skeleton, 

respectively; ij  are components of the tensor of 

thermal conductivity; T  is  temperature. 

Boundary conditions on the heat transfer surface 

 2,1 iLx ii  take the form: 

   ,ai

i

TTH
n

T





 (4) 

where ni  is external normal to the surfaces 

ii Lx   respectively,  aT  is temperature 

change of the drying agent with time; 

iiiiH  /~ , 
i~  are heat transfer coefficients. 

At the phase boundary mii Lx  , the temperature: 

 .miTT    (5) 

In equation (3), we pass on to variables  21, xx   

that coincide with the main directions of the thermal 

conductivity anisotropy. As a result, we obtain: 
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where 21 ,  are the main coefficients of thermal 

conductivity anisotropy;   

,, 2211222111 xmxmxxlxlx   

where iil cos ,  ,2,1cos  im ii   

122  ii ml ; ii  cos,cos   2,1i  are 

direction cosines of new variables. 

If we go over to the variables 
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2/1
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2/1

11 /,/ xx   ,  0  

the equation (6) will take the form:   
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The main coefficients of thermal 

conductivity are determined through the coefficients 

of thermal conductivity of the orthotropic material, 
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and the mutually unambiguous transformation of 

coordinates is established: 
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 It is important to obtain the boundary conditions (4) 

on the surfaces in the variables 1 , 2 : 

    ,0* 
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
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where  12211

* // lmlmlHH iii   . To 

determine the volume of the dried zone as a function 

of time, it is necessary to determine the coordinates 

of the contour of the cross-section of the bar in the 

coordinate system 1  і 2  (Fig.1). The cross-

sectional equation in variables  1  і 2  takes the 

form 
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where  4,1 ii
  are coordinates of new vertices 

of the cross-section of the bar in the system  

( 1 , 2 ) are determined from the relations (8). 

 From the surface (10), the drying process 

moves inside the body. On the side surfaces of the 

bar, the boundary conditions of heat exchange are 

given. Subsequently, a near-surface dried zone is 

formed. We assume that the surface separating the 

dry and moist zones will have an oval cylindrical 

shape, and when fully dried, it stretches to the line 

that is the axis of the bar. 

Let us present the equation for the boundary of the 

dried and moist areas as: 
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where    is yet unknown function of time  .     

Let us insert the following values: 

     )/(),,( 21 mm TTTT , a * , 

mmmm aaac //   ,  mmmm ac /1/  ,  

mTT ,  are the temperatures on the contour of the 

cross-section of the bar and at the boundary of the 

phase transition.  

Providing the continuity of the heat flow between 

the surfaces 0F  and mF ,  we find the values  : 
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The equation for the contour of the bar (10) and the 

line dividing the dry and moist zones (11) is written 

as: 
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From (13) we define explicitly the equation of the 

phase transition curve in the cross-section of the bar: 
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 where the "+" and "-" signs  in front of the radical 

correspond to random variables 02   і  02  , 

respectively,  and under the radical meet the 

conditions 3

2

2   (> or <) 0, respectively.  

For further research, it is necessary to obtain the 

equation of thermal balance in the region bounded 

by the outer contour of the cross-section of the bar 

F0 and the contour of the boundary of the phase 

transition Fm. Using (2), defined is 
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 In order to calculate the integrals contained 

in formula (15), an explicit form is obtained for the 

equation of the contour line of phase transition, as 

well as the limits of the corresponding integrals are 

identified. 

 The double integrals in (15) on the surface 

between the closed contour and the outer contour 

will be found as the difference between the integral 
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over the surface of the entire cross-section and the 

integral over the surface ФS , limited by the contour 

mF . 

 The volume of dried zone per unit length of the bar 

which is located between the planes 

0,00  mFF  is determined by the formulas: 
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Determine the derivative of the volume in time, 

taking into account the dependence on the time value 

 *  and dependence on the time of the upper 

limit of the integral. After the cumbersome 

transformations we get: 
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Here, the limit of integration is a function of time 
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2

1

2

2

2

1     (19) 

The derivative of  *  in time is equal to  
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In explicit form, defined are the integrals in the 

region SФ which is limited by the phase transition 

line and on the outer surface  Sп. In particular 
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where  3,2,1iJ i  are integrals with variable 

limits. For their definition, analytical expressions are 

obtained. 
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where   2

2

2

1

2

1

2

1

*    

 Since, at the boundary of the phase 

transition   1*  , the function    at the initial 

moment of time is equal to zero (   00  , but in 

practice  0,0 21    we have   1 ), then 

  ТТТ   ,, 21  is reached on the 

intermediate surface Fm according to formula (11), 

and the difference T0-Tm corresponds to the outer 

surface  
2

1

2

1  ; 
2

2

2

2  ; 
2

3

2

2  ; 
2

4

2

2  . 

 Taking into account the above considerations, from 

the heat balance relation (15), we obtain an equation 

for determining     
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  



 BDBBs JcJcJJI 21 1*






 (23) 

 
 .2 AJI V  

  

 The values vs JJJ ,, 
 are calculated 

according to the known physical and thermal 

characteristics of a particular medium [6,7]. The 

integrals at the boundary of the phase transition are 

determined by numerical methods depending on the 

values  . 

The results of mathematical modeling are used to 

study the motion of the boundary of the phase 

transition in the process of wood drying. 

 The following parameters are taken as input 

data: wood species - pine; length of the plate L = 1 

(m); initial moisture content U0 = 0,4 (kg / kg); the 

initial temperature t0 = 20 (
0
C) = 293 (

0
K); 

environment temperature tc = 40 (
0
C) = 313 (

0
K); 

drying agent speed v = 2 (m / s) = 7,200 (m / h); 

relative humidity  = 50%; density  = 581 (kg / 

m3). 

Fig. 1 shows the dependence of the phase transition 

coordinate in time for different temperature regimes 

of the drying process. 

 

 
Fig. 1. Dependence of the coordinate of the phase 

transition in time for different temperature regimes 

of the drying process. 

 

Fig. 2 shows the graphical dependences of moving 

boundaries of phase transitions depending on the 

change of the Fourier criterion for different species 

of wood (pine, beech, oak). 

 

 
Fig. 2. Dependence of the function of the vaporation 

surface coordinate for different species of wood. 

III.  CONCLUSION 
 Synthesized is a nonlinear mathematical 

model of heat-and-mass transfer in capillary-porous 

anisotropic materials with regard to the boundary of 

the phase transition. 

 The random orientation of the main axes of 

the thermal conductivity tensor is taken into account 

and the influence of the main components and the 

orientation of the main axes of the thermal 

conductivity tensor and the non-stationary 

temperature fields in the anisotropic plate are 

determined. 

 The analytical-numerical method has been 

developed for establishing a moving boundary of 

phase transition in a rectangular anisotropic region 

with allowance for arbitrary axes of anisotropy. 

A numerical modeling of the heat transfer dynamics 

in an orthotropic plate with a moving boundary of 

phase transitions was carried out and the 

dependences of motion of the front of evaporation in 

the middle of the plate for different species of wood 

were determined. 
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