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I. INTRODUCTION: 
 The theory of integral equations has close 

contact with many different areas of different 

sciences. These different problems have led 

researches to establish different methods for 

solving integral equations of different kinds with 

continuous kernel. There are many well–written 

texts on the theory and applications of integral 

equation in different sciences. Among such, we 

noteGreen,1969);(Hochstadt,1971); 

(Golberg.ed,1979), (Tricomi, 1985); (Burten1983); 

(Kanwal, 1996); ( Schiavone at.al.,2002) and 

(Muskhelishvili, 1953). The reader must know that 

the importance of the singular integral equations 

came from the work of(Muskhelishvili1953); , who 

has established the theory of singular integral 

equation ( Cauchy method ), that gives the solution 

of the singular integral equation, analytically. 

 At the same time, approximately from 

1960, many new numerical methods have been 

developed for the solution of many types of integral 

equation. We note especially (Linz, 1985); ( 

Atkinson, 1976. 1997);(Baker , 1082), (Delves and 

Mohamed, 1985) and  (Golberg ,ed. 1990). 

Consider the linear Volterra integral equation of the 

second kind, 

       
0

      ,    

t

t f t k t s s ds     (1) 

Here, k(t, s) and f(t) are known continuous functions 

called the kernel and free term, respectively, while 

φ(s) is the unknown function. 

 

Theorem 1.(without proof):If  k(t, s)  and  f(t)  are  

continuous in    0≤t ≤ T, then the integral equation 

(1) possesses a unique continuous solution  in  0 ≤ t 

≤ T< 1. 

Here, in this paper the existence and uniqueness 

solution of Volterra integral equation of the second 

kind is considered. In addition, the solution of the 

linear Volterra equation with continuous kernel is 

obtained using a new technique for studying the 

resolvent kernel. Some examples are considered 

and the estimate error, with respect to the kernel,is 

computed. 

 

II. THE RESOLVENT KERNEL 

METHOD 
We pick up continuous function φ0 (x) = f(t)  then, 

from (1) we define the sequences 

       1

0

 ,   ,   1 ,  2 ,... (2)

t

n nt f t k t s s ds n       

and 

       1 2

0

  ,      (3)

t

n nt f t k t s s ds       

By subtracting, we have 

         1 1 2

0

  ,  [ ] 

t

n n n nt t k t s s s ds                                                   

(4) 

For easy of manipulation it is convenient to 

introduce 

         1 0 ; ,   1 ,  2 ,... (5)n

n n nt t t t f t n         

 

By using equation (5), the formula (4) becomes 

     1

0

,   ,    1 ,  2 ,... (6).

t

n nt k t s s ds n     

In addition, from equation (5), we get 

   
0

  (7)
n

i

n i

i

t t  


   

Using the recurrence relations and mathematical 

and the factthat: If the kernel  ,k t s  and the 
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function  f t are continuous, then the order of 

integration can be interchanged, we get 

 

           1

0

, ; , , , (8).

t t

n n n n

s

t k t s f s ds k t s k t k s d       

with    1 , ,k t s k t s .  

The kernels  , , 1,2,...nk t s n  are called the iterated 

kernels. 

From equation (7), we follow 

       1

0 1

     
n n

i i

n i i

i i

t t f t t     

 

     

 

Therefore, we get 

       
0

+  , ;  , (9).

t

n nt f t t s f s ds                                                              

( 

Where: 

   1

1

, ;  , (10)
n

i

n i

i

t s k t s  



 

 

If the kernel  ,k t s  is continuous and 

 ,  k t s M  , 0 ≤s≤ t ≤ T, then we can prove   

by induction that 

 
 
 

1
 

,   ,    max  , (11)
1 !

nn

n

M T s
k t s T t

n




 


 

Hence, the sequence in equation (10) converges 

and we can write 

   1

1

, ;    ,i

i

i

t s k t s 






   (12) 

The function  , ;t s    is the resolving kernel for 

k(t, s). 

Theorem(2) (without proof):If k(t,s) and f(t) are 

continuous then the unique continuous solution of 

equation (1) is given by 

       
0

  , ;  (13)

t

t f t t s f s ds      

Theorem  (3) Under the assumptions of 

theorem (2), the resolving kernel  , ;t s   satisfies 

the equation 

       , ; ,  ,  , ;  ,

                                                 0 . (14)

t

s

t s k t s k t t d

s t T

        

  

  

proof :Using equation (12), we see that  

       

   

1

1

1

1

,  , ; ,   ,

 ,  ,  .

t t

i

i

is s

t

i

i

i s

k t t d k t k s d

k t k s d

         

    











 



 

 

(15) 

In addition, from equation (10), we have 

     

       

1

1

1

2

1 2 3

 ,  , ;     ,

,  ,  ,  ... ,

t

i

i

is

k t t d k t s

k t s k t s k t s k t s

      

 








 

    

  

 Since    1 , ,k t s k t s  then 

       1

1

 ,  , ;     ,   ,

t

i

i

is

k t t d k t s k t s     






                                             

(16) 

Using equation (12)in (16), we obtain 

        ,  , ;    , ;   ,   

t

s

k t t d t s k t s        

 

Therefore, the following formula is satisfied 

       , ;    ,   ,  , ;  

t

s

t s k t s k t s d          

III. APPLICATIONS: 
Example (1):Find the resolving kernel of Volterra 

equation for k(t, s)=1
 

Solution: Assume 

1( , ) ( , ) 1     k x y k x y 
 

Hence, we have 

2 1

x 2 2

3 2

y

( )
( , ) ( , ) ( , ) ,

1!

( )
( , ) ( , ) ( , ) 1  . (z-y)dz                            

2 2!

x

y

xx
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z x y
k x y k x z k z y dz yz


 


    



 
 

For n times, we get 
1

n

( )
k ( , )

( 1)!

nx y
x y

n





 

Hence, the resolving takes the form 

( )
1

0 0

( )
( , ; ) ( , )

!

n n
n x y

n

n n

x y
R x y k x y e

n


 

 




 


   

 
Example 3.2:  Solve the integral equation 

     
0

1
   ( )     , (0 )

2

t
t s

t g t e s ds s t T 


      

Hence, find the solution when g(t)=1 and 

sinh(3 / 2)t  

Solution: Here,      stestk     ,  

Let,         1 , , t sk t s k t s e    

In addition, we have 

       
t

2 1

s

, ,  ,      

t

t s t s

s

k t s k t k s d e d t s e          

         
2

3 2

1
, ,  ,       

2

t t

t s t s

s s

k t s k t k s d e s d t s e          
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So, in general, we obtain 
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1  !

n t s

nk t s t s e
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Using equation (12), we have  
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Finally, we can obtain 

 3 3
2 2

  

0

1 1
( )  ( )    ( ) (1 )

2 3

t
t s t

t g t e ds g t e


      

At 

3
2

3 -3
2 2

 

  

1
) ( ) 1 ( )  ( 2 )

3

1
) ( ) sinh(3 / 2) ( )  (5 3 2).

6

t

t t

i At g t t e

ii At g t t t e e





   

    

 

 Now, we calculate some difference values of 

 stkn ,  and the corresponding error. 

t {s=0.1} {s=0.2} {s=0.7} {s=0.9} 

0 0.818731 0.67032 0.246597 0.165299 

0.1 1 0.818731 0.301194 0.201897 

0.2 1.221403 1 0.367879 0.246597 

0.3 1.491825 1.221403 0.449329 0.301194 

0.4 1.822119 1.491825 0.548812 0.367879 

0.5 2.225541 1.822119 0.67032 0.449329 

0.6 2.718282 2.225541 0.818731 0.548812 

0.7 3.320117 2.718282 1 0.67032 

0.8 4.0552 3.320117 1.221403 0.818731 

0.9 4.953032 4.0552 1.491825 1 

Table (1) contain the value of the kernel Kn t, s = e2∗ t−s  

For the values s = 0.1,     s = 0.2,    s = 0.7,    s = 0.9 

and the corresponding  values t s.t   0≤ t ≤ 9. 
 

 

Figure (1) 

The relation between t and kernelKn t, s = e2∗ t−s  for some values of s 

 

 

 

 

 

 

t {s=0.1} {s=0.2} {s=0.7} {s=0.9} 

0 0.860708 0.740818 0.349938 0.25924 

0.1 1 0.860708 0.40657 0.301194 

0.2 1.161834 1 0.472367 0.349938 

0.3 1.349859 1.161834 0.548812 0.40657 

0.4 1.568312 1.349859 0.637628 0.472367 
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0.5 1.822119 1.568312 0.740818 0.548812 

0.6 2.117 1.822119 0.860708 0.637628 

0.7 2.459603 2.117 1 0.740818 

0.8 2.857651 2.459603 1.161834 0.860708 

0.9 3.320117 2.857651 1.349859 1 

Table (2) contain the value of the resolvingΓn  t, s;
1

2
 = e

3

2
 t−s 

 

For the values  s = 0.1,     s = 0.2,    s = 0.7,    s = 0.9 

 

 

Figure (1) 

The relation between t and resolvingΓn  t, s;
1

2
 = e

3

2
 t−s 

 for some values of s 

or the convolution kernel  
 
 

1

,
1  !

n
t s

n

t s
k t s e

n







 

 

(1)  If n=1 then kn (t, s) > 0 and the value increased 

for all points of interval t such that t>s andkn (t, s) 

=1 when t = s 

(2)  If n>1, n= 3, 5, 7… the value of kn(t, s) > 0 

decreased for t<s, 

and increased when  t>s. 

(3)  If n > 1, n = 2, 4, 6… the value of kn (t, s) < 0 

increased when t>s, 

    Some difference Figures for the relation between 

the exact resolvent kernel Г(t, s; λ) and the 

numerical resolventГn(t, s; λ) at 
2

1
 , 2.0  s  

or the resolvent kernel  
 st

est


 2

3

;,   we get

 , ; 0t s   for all values of t, and for 

   
2

1
,,;, 1

1

 



  stkst i

i
n

i
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and 
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st
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we get 

    0;,;,   ststn whent < s, 

    1;,;,   ststn whent = s, 

and 

    ;,;,0 ststn  whent>s. 
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