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Abstract—the conventional Artificial intelligence (AI) is revolutionizing modern agriculture in terms of 

intelligent soil analysis, crop recommendation and plant disease detection systems. Although each module 

performs well in its prediction task, the current deterministic solutions focus on execution isolation and lack of 

holistic agricultural decision support. In this survey, we provide a systematic and critical review of AI-based 

agricultural systems with focus on multimodal learning and explainable AI. We give a taxonomy of current 

methods, comparisons between the models research, identification of research gaps and architectural information 

for unified decision support systems. The results underscore the need of integrated, scalable and interpretability 

capital sable in multi-modal systems for sustainable smart agriculture. 
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I. INTRODUCTION 

Insatiable demands for sustainable food 

production, climate resilience and precision 

agriculture have pushed for fast uptake of artificial 

intelligence (AI) in the field of agriculture. AI-centric 

systems have shown potentially useful results in soil 

fertility prediction, crop recommendation and 

disease diagnosis. Nevertheless, the current studies 

mainly concentrated on single tasks rather than 

systematic agricultural intelligence. 

Decisions in the agro landscape around the 

world, evolve under a scenario of soil patterns, 

environmental variables and plant health 

relationships. This calls for the development of a 

multimodal decision support system in which 

structured soil data, visual soil classification and plant 

disease detection are integrated into one single 

computational framework. 

            This work provides an in-depth overview of 

the recent developments, as well as architectural and 

deployment limitations in state-of-the-art AI driven 

agricultural systems. 

 

II. SURVEY METHODOLOGY 

To guarantee adequate coverage as well as 

analysis, this review adopts a structured review 

process. The review process consisted of the 

following four stages: Findings Literature search 

Screening Appraisal Eligibility Final included 

studies. 

 

A. Literature Sources and Search Strategy 

We obtained studies from the main academic 

databases such as IEEE Xplore, ScienceDirect, 

SpringerLink, ACM Digital Library, and Google 

Scholar. Search terms were used in a combination of 

the following: 

• “AI in agriculture” 

• “soil classification using machine learning” 

• “crop recommendation system” 

• “plant disease detection deep learning” 

• “multimodal learning in agriculture” 

• “explainable AI for agriculture” 

The review was mainly based on studies 

published from2016 and 2025 focusing on recent 

works from 2022 to present time (2022) in order to 

reflect the current trend of multimodal and 

explainable agricultural intelligence. 

 

B. Inclusion and Exclusion Criteria 

The following inclusion criteria were applied: 

• Peer-reviewed journal articles and high-impact 

conference papers 

• Submissions on machine learning, or deep 

learning mechanism studies 

RESEARCH ARTICLE                    OPEN ACCESS 
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• Analyses of the soil, crop recommendation or 

disease detection. 

Exclusion criteria included: 

• Purely conceptual papers without 

implementation 

• Studies unrelated to agricultural intelligence 

• Duplicate or redundant publications 

 

C. Screening and Selection Process 

(Initial literature searches were derived from 

a pool of more than 80 publications through the use 

of keywords.) Following the abstract-level 

evaluation, 40 studies were selected concerning 

relevance and technical depth. A third sample of 

influential works to characterize was taken for further 

comparative analysis. 

 

D. Evaluation Framework 

Each selected study was evaluated based on the 

following parameters: 

• Type of data utilized (i.e., structured, image-

based, or multimodal) 

• Machine learning or deep learning architecture 

• Level of integration across agricultural tasks 

• Use of explainable AI mechanisms 

• Deployment feasibility and scalability 

This organized assessment made it possible to 

identify common architectural patterns, points of 

integration, and future research directions in the field 

of AI-driven smart agriculture. 

 

III. TAXONOMY OF AI IN AGRICULTURE 

 

AI-based agricultural systems can be categorized into 

four major groups: 

 

1) Soil Analysis Systems 

2) Crop Recommendation Systems 

3) Plant Disease Detection Systems 

4) Multimodal Explainable Systems 

 

IV. AI-BASED SOIL INTELLIGENCE 

SYSTEMS 

Soil health evaluation is an essential part of 

agricultural options, as it impacts crop range for 

production, potential measures of harvest yield and 

farming that are nutrient based. Artificial intelligence 

methods have also been applied extensively to 

increase the accuracy and automation of soil 

analysis. 

 

A. Structured Soil Nutrient-Based Approaches 

Currently, most of the AI-based soil systems in the 

early stage depend on laboratory-based structured 

measurements of nitrogen (N), phosphorous (P), 

potassium (K), pH, organic carbon and percentage 

moisture. Supervised machine learning algorithms 

such as Random Forest, Support Vector Machines 

(SVM), k-Nearest Neighbors (kNN), and Artificial 

Neural Networks (ANN) are commonly employed to 

predict soil fertility or recommend crops. 

Random Forest models are most commonly used 

for their resistance to overfitting and to account for 

nonlinear relationship between soil parameters. 

Nevertheless, such models rely heavily on reliable 

laboratory measurements which may not always be 

available in rural farming areas. 

 

B. Image-Based Soil Classification Using Deep 

Learning 

Recent developments examine soil type 

classification methods using field images, by 

computer vision approaches. Convolutional Neural 

Networks (CNNs), such as ResNet and MobileNet 

structures, have been developed to classify the soil 

texture and category based on images taken in 

measure. 

Soil analysis using image provides an economical 

alternative to the lab test as well as quick in field 

evaluation. Yet, data diversity in terms of datasets, 

light conditions and texture heterogeneity still 

constitute a bottleneck that may partly disrupt the 

generalization performance across geographic 

regions. 

 

C. Feature Engineering and Hybrid Models 

     Some reports incorporate environmental 

factors like rainfall, temperature, and humidity 

together with soil's nutrient attributes to improve the 

reliability of prediction. Hybrid ensemble algorithms 

such as those employing decision trees and neural 

networks (NNs) have achieved higher accuracy for 

modeling soil fertility predictions. 

     Even so, many of the hybrid systems 

continue to work within single-task scenarios without 

interacting with monitoring of plant health and 

detection of crop diseases. 

 

D. Limitations and Research Observations 

Based on the surveyed literature, the following 

limitations are observed: 

• Dependence on laboratory-based soil nutrient 

testing 

• Limited large-scale image-based soil datasets 

• Minimal integration with disease monitoring 

systems 

• Lack of explainability mechanisms in soil 

prediction models 

• Poor generalization across diverse agro-climatic 

zones 
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Figure.1.Taxonomy of AI-Based Agricultural Intelligence Systems 

 

These limitations highlight the necessity of 

transitioning     from isolated soil intelligence modules 

toward integrated multimodal frameworks capable of 

combining structured metrics and visual analysis for 

comprehensive agricultural decision support. 

 

V. CROP RECOMMENDATION SYSTEMS 

Recommendation Systems on Crops are 

designed to help farmers to choose crops according 

soil, climates and surroundings. Such systems are 

based on supervised machine learning algorithms 

and they are developed by training structured 

agricultural datasets. 

 

A. Machine Learning-Based Crop Recommendation 

Traditional crop recommendation models utilize soil 

nutrient parameters (N, P, K), pH values, rainfall, 

temperature, and humidity as input features. 

Commonly employed algorithms include Decision 

Trees, Random Forest, Naive Bayes, Support Vector 

Machines (SVM), and Multi-Layer Perceptrons 

(MLP). 

Among these, Random Forest and Gradient Boosting 

models have demonstrated strong performance due to 

their ability to capture nonlinear relationships and 

handle feature interactions effectively. Ensemble 

methods often outperform  

Single model approaches, particularly in 

heterogeneous agricultural datasets. 

However, these systems typically assume static 

environmental conditions and may not account for 

dynamic crop health variations or disease risks. 

 

B. Deep Learning and Hybrid Approaches 

Recent studies utilize deep neural networks 

to capture intricate interrelationships between soil 

nutrients and environmental variables. Hybrid models 

between neural network and rule based systems have 

been also experimented to make the classifier more 

interpretable. 

Despite better prediction performance, a 

majority of the current deep learning crop 

recommendation systems still count on the huge and 

balanced datasets, which are not always accessible in 

agriculture specific regions. 

C. Explainable AI in Crop Recommendation 

Explainable AI (XAI) techniques such as SHAP 

(SHapley Additive Explanations) and LIME (Local 

Interpretable ModelAgnostic Explanations) have 

recently been integrated into crop recommendation 

systems to enhance transparency. 

Explainability is particularly critical in agriculture, 

where farmers require understandable justifications 

for recommendations. Systems like AgroXAI 

demonstrate that interpretability mechanisms can 

improve user trust and adoption rates. 

However, existing XAI-supported systems are mainly 

restricted to well-structured input features without 

involving multimodal signals like soil image or plant 

disease detection. 

 

D. Limitations and Observations 

The drawbacks of the literature survey are: 

• Reliance on applications of inorganic fertilizer 

as soil nutrient inputs 

• Those real-time plant health cues are not 

filtering into the root-soil interface as much 

needed. 

• No integration with disease surveillance systems 

• Regional dataset bias and its impact on 

generalization 

• Lack of validation of deployment in rural 

settings 

These implications suggest the next generation of 

CMS should not be limited to structured data but 

combined with visual and health signals in a unified 

multimodal framework. 

 

VI. DEEP LEARNING FOR PLANT 

DISEASE DETECTION 

Plant diseases significantly impact 

agricultural productivity and food security Rapid and 

accurate diagnosis is critical to reduce yield losses 

and target control strategies. In recent years, the 

performance of automated plant disease classification 

has been particularly impressive with deep learning 

methods especially Convolutional Neural Networks 

(CNNs). 
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A. CNN-Based Disease Classification 

General CNNs like AlexNet, VGGNet, ResNet, 

DenseNet and Efficient- Net have been extensively 

used in leaf-based disease detec tion works. Of these, 

ResNet architectures in particular are effective 

because of the residual connections that help to 

alleviate vanishing gradient problems and make it 

possible to train a deeper network. 

Transfer learning methods are widely applied in 

practice to utilize pre-trained models on large image 

datasets, which can greatly save the requirement of 

plenty of agricultural images. Application of pre-

trained networks can achieve high classification 

accuracy for several crop types. 

 

B. Public Datasets and Generalization Challenges 

The PlantVillage dataset has been still the most 

popular benchmark in plant disease detection. 

Although it includes a large collection of labeled 

samples, the majority of images are taken in a 

controlled laboratory setup with relatively 

homogeneous backgrounds. 

Therefore, models learned upon those datasets alone 

may not be able to cope with images collected in the 

field from actual environment with varying lighting 

conditions, background noise, occlusions, etc. 

Domain gap between lab and field settings is still a 

strong source of generalization error. 

 

C. Advanced Techniques and Improvements 

New research into attention mechanisms, ensemble 

CNNs and vision transformer-based models have 

been a few primary voices for improving robustness 

classification. Some of the methods involve solving 

data augmentation and synthetic creation in order to 

overcome lower generalization capability of models. 

Nevertheless, most of disease detection systems today 

are implemented as separate diagnostic tools and they 

are not integrated to a bigger context like decision 

support systems in agriculture. 

 

D. Deployment and Practical Limitations 

However, deep learning models have the following 

limitations practice: 

• Low latency and high computational demands 

for edge processing 

• Light and environment sensitivity 

• Integration with soil and crop technology 

recommendations is restricted 

• Lack of interpretability in most CNN based 

models 

• Data imbalance namely between classes of 

diseases 

These challenges suggest that plant disease detection 

cannot be treated as a standalone classification task, 

but instead incorporated into an overall agricultural 

decision support system. 

VII. DATASETS AND BENCHMARKING 

CHALLENGES 

Performance of AI-based agriculture 

systems highly depends on availability, quality and 

diversity of data. While model architectures have 

moved forward leaps and bounds, it still cannot 

overcome the bottleneck of dataset-related 

constraints to a reliable deployment of agricultural 

intelligence systems. 

 

A. Structured Agricultural Datasets 

Most crop recommendation, and soil fertility 

prediction study are based on structured datasets that 

contain values of NPK nutrients, pH, rainfall, 

temperature, humidity and of statistics pertaining to 

the crop yield. Such datasets are more often collected 

through official agricultural surveys or lab analyses 

on soils. 

Structured data sets can provide for effective 

supervised learning, but they tend to be multiple 

home and temporally limited. Models that are trained 

using regional datasets may not be able to generalize 

well when used in different agro-climatic zones. 

 

B. Image-Based Plant and Soil Datasets 

Image datasets play a crucial role in soil classification 

and plant disease detection tasks. Public datasets such 

as PlantVillage have facilitated rapid advancements in 

deep learning based disease recognition. 

However, most available image datasets are captured 

under controlled conditions, lacking the 

environmental variability encountered in real 

agricultural fields. Variations in illumination, 

background clutter, occlusions, and camera quality 

introduce domain shifts that negatively impact model 

performance during real-world deployment. 

 

C. Multimodal Dataset Scarcity 

An important difficulty to overcome in AI research in 

agriculture is the lack of large-scale multimodal 

datasets that integrate soil measurements, climate 

attributes and imagery of plant species in a single 

dataset. The majority of studies independently 

address one modality, thereby restricting the 

comparison against an integrated approach. 

The lack of standardized multimodal datasets also 

discourages the fair comparison between different 

fusion architectures and integration strategies. 
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D. Benchmarking and Evaluation Limitations 

In this context, AI performance evaluation typically 

concentrates on accuracy-based metrics without 

addressing possible deployment constraints peculiar 

to agriculture situations. The traditional metrics, such 

as classification accuracy and F1score, might not 

cover the complete characteristics in robustness, 

interpretability and scalability. 

Also, heterogeneous splits across datasets make it 

difficult to compare results from different studies. 

Open Issues: The absence of benchmarking standard 

that is universally accepted. 

 

E. Dataset Bias and Domain Shift 

Imbalance in image-level classes, seasonal bias and 

crop-specific skewness. Diseases datasets might 

present common pathologies over them and on the 

other hand rare but extremely important diseases. 

The domain shift between training and deployment 

conditions has a crucial effect on model reliability, 

highlighting the relevance of domain adaptation, data 

augmentation and lifelong learning methods in 

agricultural AI systems. 

 

VIII. MULTIMODAL INTEGRATION 

STRATEGIES IN SMART AGRICULTURE 

Agricultural decision-making inherently 

involves heterogeneous data sources, including 

structured soil metrics, climatic variables, and visual 

plant health indicators. Multimodal learning aims to 

integrate these diverse data modalities into a unified 

predictive framework to improve robustness and 

contextual awareness. 

 

A. Motivation for Multimodal Integration 

Systems that use a single modality tend to lack 

context. For instance, if a crop recommendation 

model is formulated based on soil nutrients only, it 

does not take into account disease occurrences at the 

time. Similarly, a disease detection model does not 

take potential soil for re-planting into account. 

Multimodal integration aims to mitigate these issues 

by combining multiple information sources, thereby 

increasing decision certainty and decreasing 

uncertainty. 

 

B. Fusion Strategies 

Multimodal learning strategies can be categorized 

into three major approaches: 

1) Early Fusion (Feature-Level Integration): 

In early fusion, features extracted from different 

modalities are concatenated into a unified feature 

vector before model training. For instance, soil 

nutrient metrics can be combined with image derived 

features from a CNN before being fed into a classifier. 

While early fusion enables joint feature learning, it 

may suffer from dimensional imbalance and modality 

dominance, where one modality overpowers others. 

2) Intermediate Fusion (Representation-Level 

Integration): Intermediate fusion involves learning 

modality-specific representations first and then 

merging them at hidden layers. For example, soil 

features may be processed through a fully connected 

network, while leaf images are processed via CNN 

layers before integration at a shared latent space. 

This approach allows balanced feature abstraction and 

has shown improved performance in heterogeneous 

data environments. 

3) Late Fusion (Decision-Level Integration): In 

late fusion, individual models generate independent 

predictions, which are then aggregated using voting 

mechanisms or weighted averaging. 

For example: 

Yfinal =w1Ysoil +w2Ycrop +w3Ydisease 

where wi represents modality-specific weights. 

Late fusion offers flexibility and modularity, making 

it suitable for real-world deployment where 

independent systems may already exist. 

 

C. Comparative Analysis of Fusion Approaches 

• Joint optimization is possible with early fusion, 

but takes vast aligned databases. 

• Intermediate fusion balance between abstraction 

and interpretability. 

• Late fusion offers modularization of deployment 

as well as scale. 

For agricultural applications where datasets are often 

collected independently, late fusion is frequently 

more practical. 

 

D. Implications for Integrated Agricultural Systems 

The literature indicates that most 

agricultural AI systems lack true multimodal fusion. 

Soil analysis, crop recommendation, and disease 

detection modules are typically developed and 

evaluated independently. 

 

An effective integrated framework should: 

• Keep modality-specific learning pipelines 

• Consider explainability in terms of both local 

and global levels 

• Incremental model updates are supported 

• Developing harmonized ad-vice outputs for 

farmers. 

This kind of integration can be used for the enriched 

contextual intelligence and improved the more robust 

agricultural decision. 
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IX. COMPARATIVE ANALYSIS 

TABLE I 

COMPARISON OF SURVEYED SYSTEMS 

 
Reference Soil Crop Disease Multimodal 

Afzal (2025) Yes Yes No No 

AgroXAI 

(2024) 

Structured Yes No Limited 

Gunasekara
n (2025) 

Yes Yes No No 

Upadhyay 

(2025) 

No No Yes No 

 

The analysis indicates a significant gap in unified 

multimodal integration. 

 
Fig. 2. Conceptual Multimodal Decision Support 

Architecture 

 

X. PERFORMANCE EVALUATION METRICS 

Performance evaluation plays a critical role 

in assessing the reliability and applicability of AI-

driven agricultural systems. Due to the diversity of 

tasks involved—classification, regression, and 

decision support— multiple evaluation metrics are 

required to comprehensively analyze system 

performance. 

 

A. Classification Metrics 

Classification metrics are commonly used in 

soil type prediction and plant disease detection tasks. 

The most frequently adopted metrics include 

accuracy, precision, recall, and F1score. 

Accuracy provides an overall measure of 

correct predictions; however, it may be misleading in 

the presence of class imbalance. Precision and recall 

offer better insights into false-positive and false-

negative trade-offs, particularly in disease detection 

scenarios where misclassification may lead to severe 

crop loss. 

The F1-score balances precision and recall 

and is widely used to evaluate robustness in multi-

class classification problems. 

 

B. Regression Metrics 

Regression metrics are typically applied in 

crop yield prediction and soil fertility estimation 

tasks. Commonly used measures include Mean 

Squared Error (MSE), Root Mean Squared Error 

(RMSE), and Mean Absolute Error (MAE). 

RMSE penalizes larger errors more heavily, 

making it suitable for evaluating yield estimation 

models, whereas MAE provides a more interpretable 

measure of average prediction deviation. 

 

C. Model Robustness and Generalization 

     Because agricultural systems are prone to 

variability in environmental conditions, it is critical 

to evaluate robustness. Crossvalidation and/or hold 

out testing for different regions/seasons are 

commonly used to evaluate generalization 

performance. 

    However, some of the previous works in the 

literature transmit results over only a few data splits 

which may not be specially relevant to real 

application scenarios. 

 

D. Explainability and Trust Metrics 

    More importantly than accuracy, 

interpretability is a key requirement in agricultural 

decision support systems. Explainability metrics 

measure how clear and consistent the model 

explanations are produced by XAI methods (e.g. , 

SHAP or GradCAM). 

     Although explainability is typically 

evaluated qualitatively, recent work has underscored 

the importance of quantitative trust metrics that 

capture user confidence and decision consistency. 

 

E. Deployment-Oriented Metrics 

Deploying practical agriculture systems 

should also consider deployment limitations in terms 

of inference latency, computational cost and memory. 

In the context of edge deployment, lightweight 

models suitable for resource constrained deployments 

will be needed. 

Although such metrics are important, 

deployment-oriented measures often tend to be not 

reported in the agricultural AI literature addressing 

the aspect of future work toward standardization. 

 

XI. RESEARCH GAPS AND OPEN 

CHALLENGES 

However, despite significant success in AI-

based farming systems, there are still a number of 

important research challenges to be solved. This 

section summarizes the main limitations found in a 

 

 

 

 

 



K.S. Vengatesh, et. al. International Journal of Engineering Research and Applications 

www.ijera.com 

ISSN: 2248-9622, Vol. 16, Issue 2, February 2026, pp 51-58 

 

A 
www.ijera.com                                    DOI: 10.9790/9622-16025158                                     57 | Page 

                

 

 

 

review of literature and discusses open challenges 

which inspire further research. 

 

A. Fragmentation of Agricultural Intelligence 

Systems 

The majority of previous works only consider single 

agricultural tasks, such as soil analysis, crop 

recommendation or disease detection. These pieces 

are frequently designed separately from one another, 

leading to disconnected decision-making channels. 

The absence of global frameworks does not allow 

contextual reasoning, as in the output of one block is 

used to influence and localize decision on another. 

 

 B. Limited Multimodal Integration 

While multimodal learning is gaining more attention 

in other application domains, it is not popular yet in 

the field of agriculture. There are few studies that 

combine soil indicators, environmental information 

and visual plant health assessment in an integrated 

framework. 

There is no standard multimodal benchmarking 

dataset or fusion benchmarks, which limit the ability 

to systematically evaluate and compare integrated 

models. 

 

C. Dependence on Laboratory-Based Inputs 

A large segment of AI for agricultural systems is 

based on lab-generated soil nutrient testing. Although 

reliable, such methods are generally expensive, time 

consuming and inaccessible to small farmers. 

It is this reliance that restricts the degree of scalability, 

and demonstrates a requirement for alternative 

methods such as image-based soil classification and 

low-cost sensing. 

 

D. Generalization and Deployment Challenges 

The performance of many published models was 

based on controlled experimental conditions, and the 

efficacy in field settings is not guaranteed. 

Environmental diversity, regional variety and 

seasonal transformation add domain shifts which 

enormously impact the reliability of model. 

In addition, deployment issues such as computation 

overhead, energy consumption and connectivity 

constraints are often neglected. 

 

E. Explainability and Farmer Trust 

While high prediction performances are pursued, 

interpretability and user confidence are frequently 

considered second afterthoughts. Black-box decision 

systems may also be subject to challenge from 

farmers who need interpretable reasons for 

recommendations. 

 

Explainable AI (XAI) mechanisms are required to 

enhance understanding, assist in supporting decision-

making based upon them and promote their adoption. 

 

F. Evaluation and Benchmarking Limitations 

 With varying typical approaches in evaluation 

protocol, dataset split as well as performance measure 

among different studies, the reproducibility and fair 

comparison of experiments are not guaranteed. Lack 

of common standards is stunting development of 

reliable AI in agriculture. 

To address these obstacles there is a need for 

community-driven work on standardizing the dataset 

and making as much of the evaluation process 

transparent to support reproducible research. 

 

XII. RELEVANCE TO INTEGRATED 

MULTIMODAL AGRICULTURAL SYSTEMS 

The review of the literature presents an 

evident gap for integrated decision-support systems 

that can aggregate diversified sources of farm-related 

information. The result of this survey indeed 

motivates the creation of comprehensive multimodal 

systems covering soil analysis, crop recommendation 

and plant disease detection in a unified pipeline. 

 

A. Soil Intelligence as a Foundational Module 

Soil characteristics form the basis of agricultural 

planning and crop selection. While most surveyed 

systems rely on laboratory-based soil nutrient 

analysis, recent advancements in image-based soil 

classification demonstrate the feasibility of low-cost, 

in-field soil assessment. 

Integrating deep learning-based soil image analysis 

with traditional soil metrics enhances robustness, 

particularly in regions where laboratory testing 

infrastructure is limited. 

 

B. Crop Recommendation Driven by Multisource 

Inputs 

Crop recommendation systems benefit significantly 

from enriched contextual information. Instead of 

relying solely on static soil and climate features, 

multimodal systems can incorporate soil 

classification outputs and environmental indicators to 

generate more informed recommendations. 

This integration enables adaptive crop planning that 

responds to both long-term soil conditions and short-

term environmental variations. 
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C. Disease Detection as a Feedback Mechanism 

Plant disease detection blocks deliver real time 

important insights about crop health. Instead of being 

direct diagnosis systems themselves, the prediction 

results can be used as feedback signals in one 

integrated decision system. 

In combination with disease detection responses, crop 

recommendation logic can suggest risk mitigation 

practices, rotation plans and alternative crop options. 

 

D. Unified Decision Fusion and Explainability 

In a multimodal integrated system, a fusion layer that 

integrates information from individual modules into a 

unified advisory response is needed. Late fusion 

approaches are especially appealing since they are 

modular and can be applied in various contexts. 

The inclusion of explainable AI methods at this point 

in the prediction provides interpretability of decisions 

by robustly identifying what soil properties, crop 

attributes, or disease signals drive final predictions. 

 

E. Advantages of Integrated Multimodal Systems 

    The integrated multimodal system is superior to the 

isolated agricultural AI (Internet of things) as follows: 

• Improved robustness of decisions based on 

awareness of context 

• Less dependence on expensive laboratory testing 

• Better adaptation to real-world agriculture 

variabilities 

• Enhanced farmer trust with explainable 

recommendations 

• Adaptable in wide range of agro-climatic zones 

Such benefits make the integrated multimodal 

decision support system a promising way to the 

future smart agriculture. 

 

XIII. FUTURE RESEARCH DIRECTIONS 

 

Future systems should emphasize: 

• Lightweight multimodal architectures 

• Federated learning on mobile devices farms 

• Explainable AI adoption 

• Optimizing edge deployment 

• Standardized multimodal datasets 

 

XIV. CONCLUSION 

Recent progress of artificial intelligence (AI) in smart 

agriculture particularly for soil intelligence, crop 

recommendation, plant disease detection, and multi-

modal integration was surveyed. The analysis shows 

that although each AI module performs well 

individually, they cannot make real agricultural 

decisions in practice when deployed isolated. 

Synthesizing from the literature, challenges of 

datasets and evaluations are presented, gaps in 

integration emphasized and the significance of 

integrated soil data and image base explainable 

multimodal decision support system to be developed 

is highlighted. Future efforts should focus on scalable 

multimodal frameworks, validation of real world 

deployment and transparent decision-making needed 

to promote resilient farmer-centric agriculture. 
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