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Abstract—the conventional Artificial intelligence (AI) is revolutionizing modern agriculture in terms of
intelligent soil analysis, crop recommendation and plant disease detection systems. Although each module
performs well in its prediction task, the current deterministic solutions focus on execution isolation and lack of
holistic agricultural decision support. In this survey, we provide a systematic and critical review of Al-based
agricultural systems with focus on multimodal learning and explainable AI. We give a taxonomy of current
methods, comparisons between the models research, identification of research gaps and architectural information
for unified decision support systems. The results underscore the need of integrated, scalable and interpretability
capital sable in multi-modal systems for sustainable smart agriculture.
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L. INTRODUCTION

Insatiable demands for sustainable food
production, climate resilience and precision
agriculture have pushed for fast uptake of artificial
intelligence (Al) in the field of agriculture. Al-centric
systems have shown potentially useful results in soil
fertility prediction, crop recommendation and
disease diagnosis. Nevertheless, the current studies
mainly concentrated on single tasks rather than
systematic agricultural intelligence.

Decisions in the agro landscape around the
world, evolve under a scenario of soil patterns,
environmental variables and plant health
relationships. This calls for the development of a
multimodal decision support system in which
structured soil data, visual soil classification and plant
disease detection are integrated into one single
computational framework.

This work provides an in-depth overview of
the recent developments, as well as architectural and
deployment limitations in state-of-the-art Al driven
agricultural systems.

II. SURVEY METHODOLOGY

To guarantee adequate coverage as well as
analysis, this review adopts a structured review
process. The review process consisted of the
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following four stages: Findings Literature search
Screening Appraisal Eligibility Final included
studies.

A. Literature Sources and Search Strategy

We obtained studies from the main academic
databases such as IEEE Xplore, ScienceDirect,
SpringerLink, ACM Digital Library, and Google
Scholar. Search terms were used in a combination of
the following:

- “Al in agriculture”

. “soil classification using machine learning”
. “crop recommendation system”

. “plant disease detection deep learning”

« “multimodal learning in agriculture”

. “explainable Al for agriculture”

The review was mainly based on studies
published from2016 and 2025 focusing on recent
works from 2022 to present time (2022) in order to
reflect the current trend of multimodal and
explainable agricultural intelligence.

B. Inclusion and Exclusion Criteria
The following inclusion criteria were applied:
. Peer-reviewed journal articles and high-impact
conference papers
« Submissions on machine learning, or deep
learning mechanism studies
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. Analyses of the soil, crop recommendation or
disease detection.

Exclusion criteria included:

. Purely conceptual
implementation

- Studies unrelated to agricultural intelligence

- Duplicate or redundant publications

papers without

C. Screening and Selection Process

(Initial literature searches were derived from
a pool of more than 80 publications through the use
of  keywords.) Following the  abstract-level
evaluation, 40 studies were selected concerning
relevance and technical depth. A third sample of
influential works to characterize was taken for further
comparative analysis.

D. Evaluation Framework
Each selected study was evaluated based on the
following parameters:
. Type of data utilized (i.e., structured, image-
based, or multimodal)
- Machine learning or deep learning architecture
. Level of integration across agricultural tasks
. Use of explainable Al mechanisms
« Deployment feasibility and scalability
Thls organized assessment made it possible to
identify common architectural patterns, points of
integration, and future research directions in the field
of Al-driven smart agriculture.

III. TAXONOMY OF AI IN AGRICULTURE

Al-based agricultural systems can be categorized into
four major groups:

Soil Analysis Systems
Crop Recommendation Systems
Plant Disease Detection Systems

)
)
)
) Multimodal Explainable Systems

1
2
3
4

IV. AI-BASED SOIL INTELLIGENCE
SYSTEMS

Soil health evaluation is an essential part of
agricultural options, as it impacts crop range for
production, potential measures of harvest yield and
farming that are nutrient based. Artificial intelligence
methods have also been applied extensively to
increase the accuracy and automation of soil
analysis.

A. Structured Soil Nutrient-Based Approaches

Currently, most of the Al-based soil systems in the
early stage depend on laboratory-based structured
measurements of nitrogen (N), phosphorous (P),
potassium (K), pH, organic carbon and percentage
moisture. Supervised machine learning algorithms
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such as Random Forest, Support Vector Machines
(SVM), k-Nearest Neighbors (kNN), and Artificial
Neural Networks (ANN) are commonly employed to
predict soil fertility or recommend crops.

Random Forest models are most commonly used
for their resistance to overfitting and to account for
nonlinear relationship between soil parameters.
Nevertheless, such models rely heavily on reliable
laboratory measurements which may not always be
available in rural farming areas.

B. Image-Based Soil Classification Using Deep
Learning

Recent developments examine soil type
classification methods using field images, by
computer vision approaches. Convolutional Neural
Networks (CNNs), such as ResNet and MobileNet
structures, have been developed to classify the soil
texture and category based on images taken in
measure.

Soil analysis using image provides an economical
alternative to the lab test as well as quick in field
evaluation. Yet, data diversity in terms of datasets,
light conditions and texture heterogeneity still
constitute a bottleneck that may partly disrupt the
generalization performance across geographic
regions.

C. Feature Engineering and Hybrid Models

Some reports incorporate environmental
factors like rainfall, temperature, and humidity
together with soil's nutrient attributes to improve the
reliability of prediction. Hybrid ensemble algorithms
such as those employing decision trees and neural
networks (NNs) have achieved higher accuracy for
modeling soil fertility predictions.

Even so, many of the hybrid systems
continue to work within single-task scenarios without
interacting with monitoring of plant health and
detection of crop diseases.

D. Limitations and Research Observations
Based on the surveyed literature, the following
limitations are observed:
. Dependence on laboratory-based soil nutrient
testing
- Limited large-scale image-based soil datasets
. Minimal integration with disease monitoring
systems
. Lack of explainability mechanisms in soil
prediction models
« Poor generalization across diverse agro-climatic
zones
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Figure.1.Taxonomy of AI-Based Agricultural Intelligence Systems

These limitations highlight the necessity of
transitioning from isolated soil intelligence modules
toward integrated multimodal frameworks capable of
combining structured metrics and visual analysis for
comprehensive agricultural decision support.

V. CROP RECOMMENDATION SYSTEMS
Recommendation Systems on Crops are
designed to help farmers to choose crops according
soil, climates and surroundings. Such systems are
based on supervised machine learning algorithms
and they are developed by training structured
agricultural datasets.

A. Machine Learning-Based Crop Recommendation
Traditional crop recommendation models utilize soil
nutrient parameters (N, P, K), pH values, rainfall,
temperature, and humidity as input features.
Commonly employed algorithms include Decision
Trees, Random Forest, Naive Bayes, Support Vector
Machines (SVM), and Multi-Layer Perceptrons
(MLP).

Among these, Random Forest and Gradient Boosting
models have demonstrated strong performance due to
their ability to capture nonlinear relationships and
handle feature interactions effectively. Ensemble
methods often outperform

Single model approaches,
heterogeneous agricultural datasets.
However, these systems typically assume static
environmental conditions and may not account for
dynamic crop health variations or disease risks.

particularly  in

B. Deep Learning and Hybrid Approaches

Recent studies utilize deep neural networks
to capture intricate interrelationships between soil
nutrients and environmental variables. Hybrid models
between neural network and rule based systems have
been also experimented to make the classifier more
interpretable.

Despite better prediction performance, a
majority of the current deep learning crop
recommendation systems still count on the huge and
balanced datasets, which are not always accessible in
agriculture specific regions.
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C. Explainable Al in Crop Recommendation
Explainable Al (XAI) techniques such as SHAP
(SHapley Additive Explanations) and LIME (Local
Interpretable ModelAgnostic Explanations) have
recently been integrated into crop recommendation
systems to enhance transparency.

Explainability is particularly critical in agriculture,
where farmers require understandable justifications
for recommendations. Systems like AgroXAl
demonstrate that interpretability mechanisms can
improve user trust and adoption rates.

However, existing XAl-supported systems are mainly
restricted to well-structured input features without
involving multimodal signals like soil image or plant
disease detection.

D. Limitations and Observations
The drawbacks of the literature survey are:
. Reliance on applications of inorganic fertilizer
as soil nutrient inputs
. Those real-time plant health cues are not
filtering into the root-soil interface as much
needed.
. No integration with disease surveillance systems
. Regional dataset bias and its impact on
generalization
. Lack of validation of deployment in rural
settings
These implications suggest the next generation of
CMS should not be limited to structured data but
combined with visual and health signals in a unified
multimodal framework.

VI. DEEP LEARNING FOR PLANT
DISEASE DETECTION

Plant  diseases  significantly = impact
agricultural productivity and food security Rapid and
accurate diagnosis is critical to reduce yield losses
and target control strategies. In recent years, the
performance of automated plant disease classification
has been particularly impressive with deep learning
methods especially Convolutional Neural Networks
(CNN ).
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A. CNN-Based Disease Classification

General CNNs like AlexNet, VGGNet, ResNet,
DenseNet and Efficient- Net have been extensively
used in leaf-based disease detec tion works. Of these,
ResNet architectures in particular are effective
because of the residual connections that help to
alleviate vanishing gradient problems and make it
possible to train a deeper network.

Transfer learning methods are widely applied in
practice to utilize pre-trained models on large image
datasets, which can greatly save the requirement of
plenty of agricultural images. Application of pre-
trained networks can achieve high -classification
accuracy for several crop types.

B. Public Datasets and Generalization Challenges
The PlantVillage dataset has been still the most
popular benchmark in plant disease detection.
Although it includes a large collection of labeled
samples, the majority of images are taken in a
controlled laboratory setup with relatively
homogeneous backgrounds.

Therefore, models learned upon those datasets alone
may not be able to cope with images collected in the
field from actual environment with varying lighting
conditions, background noise, occlusions, etc.
Domain gap between lab and field settings is still a
strong source of generalization error.

C. Advanced Techniques and Improvements

New research into attention mechanisms, ensemble
CNNs and vision transformer-based models have
been a few primary voices for improving robustness
classification. Some of the methods involve solving
data augmentation and synthetic creation in order to
overcome lower generalization capability of models.
Nevertheless, most of disease detection systems today
are implemented as separate diagnostic tools and they
are not integrated to a bigger context like decision
support systems in agriculture.

D. Deployment and Practical Limitations
However, deep learning models have the following
limitations practice:
. Low latency and high computational demands
for edge processing
. Light and environment sensitivity
. Integration with soil and crop technology
recommendations is restricted
. Lack of interpretability in most CNN based
models
. Data imbalance namely between classes of
diseases
These challenges suggest that plant disease detection
cannot be treated as a standalone classification task,
but instead incorporated into an overall agricultural
decision support system.
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VII. DATASETS AND BENCHMARKING
CHALLENGES

Performance  of  Al-based agriculture
systems highly depends on availability, quality and
diversity of data. While model architectures have
moved forward leaps and bounds, it still cannot
overcome the  bottleneck of  dataset-related
constraints to a reliable deployment of agricultural
intelligence systems.

A. Structured Agricultural Datasets

Most crop recommendation, and soil fertility
prediction study are based on structured datasets that
contain values of NPK nutrients, pH, rainfall,
temperature, humidity and of statistics pertaining to
the crop yield. Such datasets are more often collected
through official agricultural surveys or lab analyses
on soils.

Structured data sets can provide for effective
supervised learning, but they tend to be multiple
home and temporally limited. Models that are trained
using regional datasets may not be able to generalize
well when used in different agro-climatic zones.

B. Image-Based Plant and Soil Datasets

Image datasets play a crucial role in soil classification
and plant disease detection tasks. Public datasets such
as PlantVillage have facilitated rapid advancements in
deep learning based disease recognition.

However, most available image datasets are captured
under  controlled conditions, lacking  the
environmental variability encountered in real
agricultural fields. Variations in illumination,
background clutter, occlusions, and camera quality
introduce domain shifts that negatively impact model
performance during real-world deployment.

C. Multimodal Dataset Scarcity

An important difficulty to overcome in Al research in
agriculture is the lack of large-scale multimodal
datasets that integrate soil measurements, climate
attributes and imagery of plant species in a single
dataset. The majority of studies independently
address one modality, thereby restricting the
comparison against an integrated approach.

The lack of standardized multimodal datasets also
discourages the fair comparison between different
fusion architectures and integration strategies.
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D. Benchmarking and Evaluation Limitations

In this context, Al performance evaluation typically
concentrates on accuracy-based metrics without
addressing possible deployment constraints peculiar
to agriculture situations. The traditional metrics, such
as classification accuracy and Flscore, might not
cover the complete characteristics in robustness,
interpretability and scalability.

Also, heterogeneous splits across datasets make it
difficult to compare results from different studies.
Open Issues: The absence of benchmarking standard
that is universally accepted.

E. Dataset Bias and Domain Shift

Imbalance in image-level classes, seasonal bias and
crop-specific skewness. Diseases datasets might
present common pathologies over them and on the
other hand rare but extremely important diseases.
The domain shift between training and deployment
conditions has a crucial effect on model reliability,
highlighting the relevance of domain adaptation, data
augmentation and lifelong learning methods in
agricultural Al systems.

VIII. MULTIMODAL INTEGRATION
STRATEGIES IN SMART AGRICULTURE

Agricultural decision-making inherently
involves heterogeneous data sources, including
structured soil metrics, climatic variables, and visual
plant health indicators. Multimodal learning aims to
integrate these diverse data modalities into a unified
predictive framework to improve robustness and
contextual awareness.

A. Motivation for Multimodal Integration

Systems that use a single modality tend to lack
context. For instance, if a crop recommendation
model is formulated based on soil nutrients only, it
does not take into account disease occurrences at the
time. Similarly, a disease detection model does not
take potential soil for re-planting into account.
Multimodal integration aims to mitigate these issues
by combining multiple information sources, thereby
increasing decision certainty and decreasing
uncertainty.

B. Fusion Strategies

Multimodal learning strategies can be categorized
into three major approaches:

1) Early Fusion (Feature-Level Integration):
In early fusion, features extracted from different
modalities are concatenated into a unified feature
vector before model training. For instance, soil
nutrient metrics can be combined with image derived
features from a CNN before being fed into a classifier.
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While early fusion enables joint feature learning, it
may suffer from dimensional imbalance and modality
dominance, where one modality overpowers others.
2) Intermediate Fusion (Representation-Level
Integration): Intermediate fusion involves learning
modality-specific representations first and then
merging them at hidden layers. For example, soil
features may be processed through a fully connected
network, while leaf images are processed via CNN
layers before integration at a shared latent space.
This approach allows balanced feature abstraction and
has shown improved performance in heterogeneous
data environments.
3) Late Fusion (Decision-Level Integration): In
late fusion, individual models generate independent
predictions, which are then aggregated using voting
mechanisms or weighted averaging.
For example:

Yfinal =w1Ysoil +w2Ycrop +w3Ydisease
where w; represents modality-specific weights.
Late fusion offers flexibility and modularity, making
it suitable for real-world deployment where
independent systems may already exist.

C. Comparative Analysis of Fusion Approaches
. Joint optimization is possible with early fusion,
but takes vast aligned databases.
. Intermediate fusion balance between abstraction
and interpretability.
. Late fusion offers modularization of deployment
as well as scale.
For agricultural applications where datasets are often
collected independently, late fusion is frequently
more practical.

D. Implications for Integrated Agricultural Systems

The literature indicates that most
agricultural Al systems lack true multimodal fusion.
Soil analysis, crop recommendation, and disease
detection modules are typically developed and
evaluated independently.

An effective integrated framework should:
. Keep modality-specific learning pipelines
. Consider explainability in terms of both local
and global levels
. Incremental model updates are supported
. Developing harmonized ad-vice outputs for
farmers.
This kind of integration can be used for the enriched
contextual intelligence and improved the more robust
agricultural decision.
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IX. COMPARATIVE ANALYSIS

TABLE I
COMPARISON OF SURVEYED SYSTEMS
Reference Soil Crop | Disease | Multimodal
Afzal (2025) Yes Yes No No
AgroXAl Structured | Yes No Limited
(2024)
Gunasekara Yes Yes No No
n (2025)
Upadhyay No No Yes No
(2025)

The analysis indicates a significant gap in unified
multimodal integration.

Soil Image Module

Crop Recommendation

Disease Detection

Fusion & XAl Layer

Final Farmer Advisory

Fig. 2. Conceptual Multimodal Decision Support
Architecture

X. PERFORMANCE EVALUATION METRICS

Performance evaluation plays a critical role
in assessing the reliability and applicability of Al-
driven agricultural systems. Due to the diversity of
tasks involved—classification, regression, and
decision support— multiple evaluation metrics are
required to comprehensively analyze system
performance.

A. Classification Metrics

Classification metrics are commonly used in
soil type prediction and plant disease detection tasks.
The most frequently adopted metrics include
accuracy, precision, recall, and Flscore.

Accuracy provides an overall measure of
correct predictions; however, it may be misleading in
the presence of class imbalance. Precision and recall
offer better insights into false-positive and false-
negative trade-offs, particularly in disease detection
scenarios where misclassification may lead to severe
crop loss.
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The Fl1-score balances precision and recall
and is widely used to evaluate robustness in multi-
class classification problems.

B. Regression Metrics

Regression metrics are typically applied in
crop yield prediction and soil fertility estimation
tasks. Commonly used measures include Mean
Squared Error (MSE), Root Mean Squared Error
(RMSE), and Mean Absolute Error (MAE).

RMSE penalizes larger errors more heavily,
making it suitable for evaluating yield estimation
models, whereas MAE provides a more interpretable
measure of average prediction deviation.

C. Model Robustness and Generalization

Because agricultural systems are prone to
variability in environmental conditions, it is critical
to evaluate robustness. Crossvalidation and/or hold

out testing for different regions/seasons are
commonly used to evaluate  generalization
performance.

However, some of the previous works in the
literature transmit results over only a few data splits
which may not be specially relevant to real
application scenarios.

D. Explainability and Trust Metrics

More  importantly  than  accuracy,
interpretability is a key requirement in agricultural
decision support systems. Explainability metrics
measure how clear and consistent the model
explanations are produced by XAI methods (e.g. ,
SHAP or GradCAM).

Although  explainability  is typically
evaluated qualitatively, recent work has underscored
the importance of quantitative trust metrics that
capture user confidence and decision consistency.

E. Deployment-Oriented Metrics

Deploying practical agriculture systems
should also consider deployment limitations in terms
of inference latency, computational cost and memory.
In the context of edge deployment, lightweight
models suitable for resource constrained deployments
will be needed.

Although such metrics are important,
deployment-oriented measures often tend to be not
reported in the agricultural Al literature addressing
the aspect of future work toward standardization.

XI. RESEARCH GAPS AND OPEN
CHALLENGES
However, despite significant success in Al-
based farming systems, there are still a number of
important research challenges to be solved. This
section summarizes the main limitations found in a
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review of literature and discusses open challenges
which inspire further research.

A. Fragmentation of Agricultural Intelligence
Systems

The majority of previous works only consider single
agricultural tasks, such as soil analysis, crop
recommendation or disease detection. These pieces
are frequently designed separately from one another,
leading to disconnected decision-making channels.
The absence of global frameworks does not allow
contextual reasoning, as in the output of one block is
used to influence and localize decision on another.

B. Limited Multimodal Integration

While multimodal learning is gaining more attention
in other application domains, it is not popular yet in
the field of agriculture. There are few studies that
combine soil indicators, environmental information
and visual plant health assessment in an integrated
framework.

There is no standard multimodal benchmarking
dataset or fusion benchmarks, which limit the ability
to systematically evaluate and compare integrated
models.

C. Dependence on Laboratory-Based Inputs

A large segment of Al for agricultural systems is
based on lab-generated soil nutrient testing. Although
reliable, such methods are generally expensive, time
consuming and inaccessible to small farmers.

It is this reliance that restricts the degree of scalability,
and demonstrates a requirement for alternative
methods such as image-based soil classification and
low-cost sensing.

D. Generalization and Deployment Challenges

The performance of many published models was
based on controlled experimental conditions, and the
efficacy in field settings is not guaranteed.
Environmental diversity, regional variety and
seasonal transformation add domain shifts which
enormously impact the reliability of model.

In addition, deployment issues such as computation
overhead, energy consumption and connectivity
constraints are often neglected.

E. Explainability and Farmer Trust

While high prediction performances are pursued,
interpretability and user confidence are frequently
considered second afterthoughts. Black-box decision
systems may also be subject to challenge from
farmers who need interpretable reasons for
recommendations.
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Explainable Al (XAI) mechanisms are required to
enhance understanding, assist in supporting decision-
making based upon them and promote their adoption.

F. Evaluation and Benchmarking Limitations

With varying typical approaches in evaluation
protocol, dataset split as well as performance measure
among different studies, the reproducibility and fair
comparison of experiments are not guaranteed. Lack
of common standards is stunting development of
reliable Al in agriculture.

To address these obstacles there is a need for
community-driven work on standardizing the dataset
and making as much of the evaluation process
transparent to support reproducible research.

XII. RELEVANCE TO INTEGRATED
MULTIMODAL AGRICULTURAL SYSTEMS

The review of the literature presents an
evident gap for integrated decision-support systems
that can aggregate diversified sources of farm-related
information. The result of this survey indeed
motivates the creation of comprehensive multimodal
systems covering soil analysis, crop recommendation

and plant disease detection in a unified pipeline.

A. Soil Intelligence as a Foundational Module

Soil characteristics form the basis of agricultural
planning and crop selection. While most surveyed
systems rely on laboratory-based soil nutrient
analysis, recent advancements in image-based soil
classification demonstrate the feasibility of low-cost,
in-field soil assessment.

Integrating deep learning-based soil image analysis
with traditional soil metrics enhances robustness,
particularly in regions where laboratory testing
infrastructure is limited.

B. Crop Recommendation Driven by Multisource
Inputs

Crop recommendation systems benefit significantly
from enriched contextual information. Instead of
relying solely on static soil and climate features,
multimodal ~ systems can incorporate  soil
classification outputs and environmental indicators to
generate more informed recommendations.

This integration enables adaptive crop planning that
responds to both long-term soil conditions and short-
term environmental variations.
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C. Disease Detection as a Feedback Mechanism
Plant disease detection blocks deliver real time
important insights about crop health. Instead of being
direct diagnosis systems themselves, the prediction
results can be used as feedback signals in one
integrated decision system.

In combination with disease detection responses, crop
recommendation logic can suggest risk mitigation
practices, rotation plans and alternative crop options.

D. Unified Decision Fusion and Explainability

In a multimodal integrated system, a fusion layer that
integrates information from individual modules into a
unified advisory response is needed. Late fusion
approaches are especially appealing since they are
modular and can be applied in various contexts.

The inclusion of explainable Al methods at this point
in the prediction provides interpretability of decisions
by robustly identifying what soil properties, crop
attributes, or disease signals drive final predictions.

E. Advantages of Integrated Multimodal Systems
The integrated multimodal system is superior to the
isolated agricultural Al (Internet of things) as follows:
« Improved robustness of decisions based on
awareness of context
. Less dependence on expensive laboratory testing
. Better adaptation to real-world agriculture
variabilities
. Enhanced farmer trust with explainable
recommendations
. Adaptable in wide range of agro-climatic zones
Such benefits make the integrated multimodal
decision support system a promising way to the
future smart agriculture.

XIII. FUTURE RESEARCH DIRECTIONS

Future systems should emphasize:

. Lightweight multimodal architectures

. Federated learning on mobile devices farms
. Explainable Al adoption

- Optimizing edge deployment

. Standardized multimodal datasets

XIV. CONCLUSION
Recent progress of artificial intelligence (AI) in smart
agriculture particularly for soil intelligence, crop
recommendation, plant disease detection, and multi-
modal integration was surveyed. The analysis shows
that although each Al module performs well
individually, they cannot make real agricultural
decisions in practice when deployed isolated.
Synthesizing from the literature, challenges of
datasets and evaluations are presented, gaps in
integration emphasized and the significance of
integrated soil data and image base explainable
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multimodal decision support system to be developed
is highlighted. Future efforts should focus on scalable
multimodal frameworks, validation of real world
deployment and transparent decision-making needed
to promote resilient farmer-centric agriculture.
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