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Abstract 

The quantitative study of biological systems relies on three fundamental pillars—modeling, analysis, and 

control—to transform complex dynamics into actionable insights. While S-system models offer a powerful 

framework for representing biochemical interactions, two critical challenges hinder their practical application: 

pervasive parameter sloppiness (where vastly different kinetic parameters yield similar behaviors) and the lack 

of systematic methods to derive operating principles (rules governing biological controllability). Traditional 

analytical approaches struggle to address these issues due to the high-dimensional, nonlinear nature of S-

systems.In this work, we present an integrated visualization-driven approach to decode sloppiness and extract 

operating principles from S-system models. Leveraging computational tools in the Simulink environment, we 

construct Hessian matrices to quantify hierarchical parameter sensitivity and reveal sloppiness spectra in S-

system dynamics, develop control-theoretic methods to identify biologically interpretable design rules, and 

implement interactive visual analytics to bridge theoretical models with experimental feasibility.Our results 

demonstrate how visualization not only clarifies the geometric structure of sloppy parameter manifolds but also 

facilitates the discovery of robust control strategies. By combining these advances with our recently developed 

intelligent technologies for cancer classification and genetic network identification, we provide a practical 

framework for applying S-system theory to real-world biological challenges. This work establishes visualization 

as a discovery tool—transforming S-system complexities into interpretable design principles for synthetic 

biology and precision medicine. 
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I. INTRODUCTION 
The inherent complexity of biological 

systems has long driven the development of 

mathematical frameworks to capture their nonlinear 

dynamics. From a quantitative perspective, 

addressing these challenges requires three 

fundamental pillars: modeling, analysis, and control. 

This framework involves selecting appropriate 

system representations to identify structural 

topologies and kinetic parameters, performing 

rigorous analyses to characterize system properties, 

and developing control strategies to steer systems 

toward desired targets.While Bartocci and Lió [1] 

argue that ODE-based models sufficiently capture 

biological behavior, and Voit [2] provides 

comprehensive reviews of biochemical systems 

theory applications, practical challenges persist. 

Sriyudthsak et al. [3] note that among various 

approaches, S-systems and Michaelis-Menten 

systems remain most promising for reconstructing 

gene networks in diseases and cancer. 

S-system formalism—with its power-law 

representation of biochemical interactions—has 

proven uniquely capable of balancing mechanistic 

fidelity with analytical tractability [4, 5]. These 

systems, described by the differential equation: 

𝑥̇𝑖 = 𝑓𝑖 = 𝑣𝑖
+ − 𝑣𝑖

− = 𝛼𝑖 ∏ 𝑥
𝑗

𝑔𝑖𝑗

𝑛+𝑚

𝑗=1

− 𝛽𝑖 ∏ 𝑥
𝑗

ℎ𝑖𝑗

𝑛+𝑚

𝑗=1

, 𝑖 = 1, … 𝑛 (1) 

where𝛼𝑖 and 𝛽𝑖  are the rate constants. The 

𝑔𝑖𝑗 and ℎ𝑖𝑗  denote net interactive strengths from 𝑥𝑗 

on 𝑥𝑖 , offer remarkable versatility in representing 

biochemical interactions. The 𝑥𝑖 , 𝑖 = 1, … 𝑛 are 

dependent variables and 𝑥𝑛+1, … 𝑥𝑛+𝑚  are 

independent variables, the values of which remains 
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constant during a period of an experiment.The 

modeling of S-systems constitutes a multi-objective, 

constrained optimization problem.Unlike Michaelis-

Menten systems that follow bottom-up modeling 

through iterative experimentation, S-systems 

employ a top-down approach with parameters 

estimated through computational methods, making 

them particularly suitable for large-scale systems [6-

9].These challenges of S-system modelling are 

particularly pronounced because in medium-to-large 

systems, kinetic constants represent relative strength 

rather than absolute interaction values. Traditional 

approaches often restrict parameter ranges 

unnecessarily (e.g., ( α, β) ∈ [0,20], (𝑔𝑖𝑗 , ℎ𝑖𝑗) =

[−3,3]) [10]) and struggle with high-dimensional 

systems [11-13]. Our previous work has developed 

various computational intelligence techniques—

including fuzzy inference-based optimization [14], 

enhanced evolutionary algorithms [14-17], and 

novel cockroach swarm evolution [18]—to expand 

parameter ranges to( α, β) ∈ [0,100], (𝑔𝑖𝑗 , ℎ𝑖𝑗) =

[−100,100])  and successfully achieve 30-gene S-

system identification.Such models should suffice to 

predict the dynamic behavior of large biological 

systems, such as cancer molecular mechanisms.  

Consequently, our work shifted focus to 

relative stability and dynamic sensitivity 

analysis.The power-law structure of S-systems 

simplifies the calculation of steady-state values and 

sensitivity (solved via algebraic equations [19, 20]. 

Voit and colleagues further explored operational 

criteria for transitioning from an original steady 

state to a new target state using linear algebra and 

linear programming [21]. We introduced root locus 

concepts to analyze the impact of system parameters 

on stability [22], directly conducting sensitivity 

analysis on dynamic behavior[23, 24]. We then 

establish stability criteria for S-systems to determine 

the environmental conditions under which these 

systems remain stable [25].Yet two fundamental 

challenges hinder S-system application: the 

pervasive sloppiness of kinetic parameters [26], and 

the lack of systematic methods to derive operating 

principles for biological control [27]. Parameter 

sloppiness manifests when vastly different kinetic 

constants yield nearly identical system behaviors—a 

property potentially advantageous for evolutionary 

robustness [28] but complicating parameter 

estimation and experimental design. Recent studies 

reveal that biological system models (e.g., mass 

action kinetics and Michaelis-Menten systems) are 

generally sloppy [26, 29] with parameter variations 

of several orders magnitude often having minimal 

impact on output. While some scholars argue 

against precise parameter estimation [30-32], others 

demonstrate that sloppiness doesn't preclude 

identifiability [33], and geometric analyses show 

sloppy models remain bounded even at parameter 

extremes [34].Concurrently, deriving operating 

principles governing biological state transitions 

remain largely ad hoc despite importance for 

synthetic biology and therapeutic interventions [10]. 

Visualization offers a powerful pathway to 

address these dual challenges. By transforming 

high-dimensional parameter spaces into intuitive 

representations, we can identify geometrically 

degenerate dimensions, isolate control-relevant 

parameters, and bridge abstract modeling with 

experimental implementation. Recent advances in 

topological data analysis [35] and interactive visual 

analytics [36] provide crucial tools for decoding 

these complex relationships when adapted to S-

systems.This paper introduces a unified framework 

that combines computational approaches with 

visualization techniques to tackle S-system 

challenges. We demonstrate how (a)Hessian matrix 

construction in Simulink reveals hierarchical 

parameter sloppiness spectra, (b)control-theoretic 

methods extract biologically interpretable operating 

principles, (c)interactive visualization tools create 

biologist-friendly computational environments, and 

(d) graphical modularization facilitates cross-

disciplinary collaboration.Our work establishes 

visualization not merely as an explanatory aid, but 

as a discovery engine that transforms S-system 

complexities into actionable design insights for 

synthetic biology and precision medicine 

applications. By breaking through current analytical 

bottlenecks, we enable researchers to navigate the 

intricate landscape of biological system sloppiness 

while deriving practical control strategies for 

therapeutic interventions. 

 

II. METHODS 
We now concentrate on three pivotal 

challenges in S-system biology. (Quantifying 

sloppiness) Through Hessian matrix construction in 

Simulink, we compute parameter sensitivity spectra 

to reveal hierarchical sloppiness in S-system 

dynamics (Fig. 8). (Deriving operating principles) 

We establish control-theoretic methods to extract 

biologically interpretable design rules from these 

nonlinear systems (Section III-2). (Visualization) 

Breaking through current bottlenecks in systems 

analysis by developing graphical modularization 

techniques to create user-friendly interfaces which 

facilitate cross-disciplinary collaboration for 

biologist-oriented computational environments. This 

integrated approach bridges theoretical systems 

biology with actionable insights for synthetic 

biology applications. 
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II-1 Sloppiness Analysis of S-Systems 

Recent studies have revealed that dynamic 

biological system models (e.g., mass action kinetics 

and Michaelis-Menten kinetics systems) are 

generally sloppy [26, 29]. This means that even 

variations in certain parameters by several orders of 

magnitude (decades) do not significantly affect 

system output. Chis and colleagues examined the 

relationship between sloppiness and 

structural/practical identifiability through case 

studies, concluding that sloppiness does not imply a 

lack of identifiability and that sloppy models are 

indeed identifiable [37]. Transtrum and colleagues 

interpreted sloppy models from a geometric 

perspective, noting their bounded nature— even 

when parameters or parameter combinations 

approach extremes (0 or ∞ ), the results do not 

diverge to infinity [38]. Clearly, model sloppiness 

influences how systems should be handled and 

whether further model simplification via principal 

component analysis is necessary, underscoring its 

importance. Therefore, building on the sensitivity 

analysis from our previous paper [24], this study 

will investigate the sloppiness of S-systems to 

determine whether the kinetic parameters 

representing the net strength of component 

interactions are stiff. 

Metrics for Measuring Model 

Sloppiness  (𝑯ℵ) :Brown introduced the Hessian 

matrix to explore the impact of parameter variations 

on the behavior of biological models with multiple 

parameters, defining sloppy and stiff parameters [29, 

39] (sloppy parameters have minimal impact on 

system behavior even with large variations, while 

stiff parameters tightly constrain dynamic behavior). 

Gutenkunst and colleagues proposed the sloppy 

spectrum of parameter sensitivity to distinguish 

between sloppy and stiff models [26].Here, we use 

the function ℵ(θ) to quantify changes in model 

behavior due to parameter perturbations [26] (for n 

components and K experiments): 

ℵ(𝜃) =
1

2nK
∑ ∑

1

𝑇𝑘

𝑖=𝑛
𝑖=1

𝑘=𝐾
𝑘=1 ∫ [

𝑥𝑖
𝑘(𝜃,𝑡)−𝑥𝑖

𝑘(𝜃∗,𝑡)

𝑥𝑖,𝑚𝑎𝑥
]

2

𝑑𝑡
𝑇𝑘

 0
.     (2) 

 

Although 𝑯ℵ (Equation 3) is a local quadratic approximation of ℵ(θ), Brown’s extensive Monte Carlo-based 

principal component analysis of various models revealed that the sloppiness predicted by 𝑯ℵ  sufficiently 

represents the behavior of ℵ(θ). By substituting the S-system (Eq. 1),the elements of the corresponding Hessian 

matrix 𝐻𝑙,𝑚
ℵ  can be derived as(where 𝜎𝑖 = 𝑥𝑖,𝑚𝑎𝑥): 

𝐻𝑙,𝑚
ℵ =

𝜕2ℵ(𝜃)

𝜕𝑙𝑜𝑔𝜃𝑙 ⋅ 𝜕 𝑙𝑜𝑔 𝜃𝑚

|𝜃∗ 

= 
1

nK
∑

1

𝑇𝑘
∑

1

𝜎𝑖
2

𝑖=𝑛
𝑖=1

𝑘=𝐾
𝑘=1 ∫ (∫

𝜕𝑓𝑖
𝑘(𝜃∗,𝜏)

𝜕𝑙𝑜𝑔𝜃𝑙

𝑡

0
𝑑𝜏)(∫

𝜕𝑓𝑖
𝑘(𝜃∗,𝜏)

𝜕𝑙𝑜𝑔𝜃𝑚

𝑡

0
𝑑𝜏)𝑑𝑡

𝑇𝑘

 0
, (3) 

The power-law structure of S-systems further simplifies the differential terms: 

𝜕𝑓𝑖
𝑘(𝜃∗, 𝜏)

𝜕𝑙𝑜𝑔𝛼𝑖

= 𝑣𝑖
+, 

𝜕𝑓𝑖
𝑘(𝜃∗, 𝜏)

𝜕𝑙𝑜𝑔𝛽𝑖

= −𝑣𝑖
−, 

𝜕𝑓𝑖
𝑘(𝜃∗,𝜏)

𝜕𝑙𝑜𝑔𝑔𝑖𝑗
= 𝑔𝑖𝑗 ∙ 𝑙𝑛𝑥𝑗 ∙ 𝑣𝑖

+, 

𝜕𝑓𝑖
𝑘(𝜃∗,𝜏)

𝜕𝑙𝑜𝑔ℎ𝑖𝑗
= −ℎ𝑖𝑗 ∙ 𝑙𝑛𝑥𝑗 ∙ 𝑣𝑖

+。(4) 

 

Deriving Parameter Sloppiness Spectra via 

Hessian Matrix in Simulink: Using Equations (3) 

and (4), the 𝑯ℵ for S-systems can be computed, and 

the parameter sloppiness spectrumcan be 

constructed from its eigenvalues. A model is 

considered sloppy if its eigenvalue distribution 

spans more than three orders of magnitude. To make 

this accessible to biologists, we will use block 

diagrams to compute the Hessian matrix and 

generate the sloppiness spectrum, with simulations 

conducted in the Simulink environment. FigureS1 of 

Supplementshows the sloppiness spectrum we 

previously established for dynamic behavior near 

steady states [15]. FigureS2 of Supplementdisplays 

the modular block diagram for dynamic sensitivity 

of S-systems developed in our previous paper [24], 

which will serve as the foundation for constructing 

the Hessian matrix and parameter sloppiness 

spectrum for S-system dynamic behavior.Tests will 

be conducted using small to medium-sized 

biological systems (𝑛 =3, 4, 5, 20, and 30 genes) to 

examine whether the dynamic behavior of S-

systems at arbitrary points remains stiff, as observed 

near steady states.  
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II-2 Operating Principles for S-Systems Based on 

Control Theory 

In recent years, design principles have become a 

popular research topic, yet their dynamical 

counterpart—operating principles—has received 

only modest attention [40]. Here, we employ 

control-theoretic techniques to address a critical 

scenario: when a biological system is subjected to 

external stress, necessitating a shift in its steady 

state from nominal conditions to target states, how 

should the independent variables be configured to 

achieve this requirement? 

By defining augmented variables(𝑦𝑗 = ln 𝑥𝑗 ,  𝑎𝑖𝑗 =

𝑔𝑖𝑗 − ℎ𝑖𝑗 ,  𝑏𝑖 = ln ( 𝛽𝑖 − 𝛼𝑖)) for the S-system in Eq. 

(1), its steady state can be expressed as 𝐴𝐷𝑌𝐷 +
𝐴𝐼𝑌𝐼 = 𝑏, where the system matrix for dependent 

variables𝐴𝐷 = [

𝑎11 … 𝑎1𝑛

⋮
𝑎𝑛1 … 𝑎𝑛𝑛

] , the system matrix 

for independent variables 𝐴𝐼 =

[

𝑎1,𝑛+1 … 𝑎1,𝑛+𝑚

⋮
𝑎𝑛,𝑛+1 … 𝑎𝑛,𝑛+𝑚

] , the dependent variable 𝑌𝐷 =

[

𝑦1

⋮
𝑦𝑛

]  , the independent variable 𝑌𝐼 = [

𝑦𝑛+1

⋮
𝑦𝑛+𝑚

]  , and  

the constant vector 𝑏 = [
𝑏1

⋮
𝑏𝑛

] . The steady-state 

relationship becomes 𝐴𝐼𝑌𝐼 = 𝑏 − 𝐴𝐷𝑌𝐷 , where 𝑌𝐷 is 

the target state and the parametric matrix 𝐴𝐼 , 𝐴𝐷, 𝑏  
are known. Three solution scenarios[40]—unique 

( 𝑛 = 𝑚 ), non-existent (𝑛 > 𝑚 ), or infinite ( 𝑛 <
𝑚 )—are defined by the steady-state algebraic 

relation between dependent and independent 

variables. For the no-solution case (𝑛 > 𝑚), Voit 

and colleagues partitioned dependent variables into 

primary and secondary categories, correspondingly 

split the matrix 𝐿  for 𝐿 ∙ 𝑌𝐼 = 𝑌𝐷
′ (where 𝑌𝐷

′ = 𝑌𝐷 −

𝐴𝐷
−1𝑏 and 𝐿 = −𝐴𝐷

−1 ∙ 𝐴𝐼),and prioritized driving 

the primary variables toward targets while 

sacrificing secondary variables. For the infinitely-

many-solutions case (𝑛 < 𝑚), they employed matrix 

inversion or mixed-integer linear programming to 

identify admissible solutions [40]. Voit and 

colleagues addressed the non- and infinite-solution 

cases statically (𝑛 > 𝑚 and 𝑛 < 𝑚): approximating 

solutions for unsolvable systems by prioritizing key 

variables and optimizing for underdetermined 

systems[40]. In contrast, we shift the focus from 

static analysis to the underlying dynamic behavior. 

We investigate what forms of independent variables 

are dynamically feasible and naturally preferred by 

biological systems. 

Control Framework: System control 

fundamentally involves designing controllers to 

ensure system outputs align with desired values. The 

operating principle, in this context, is to identify the 

independent variables(𝑥𝑗(𝑡), 𝑗 = 𝑛 + 1, ⋯ 𝑛 + 𝑚 )of 

the S-system such that the steady state of the 

dependent variables( 𝑥𝑗(𝑡), 𝑗 = 1, ⋯ 𝑛 )ransitions 

from nominal values to specified target values. Thus, 

independent variables are treated as system inputs 

(𝑢(𝑡)), while dependent variables are regarded as 

system state variables. A controller is designed to 

drive the state variables from their initial (nominal) 

values to the desired steady state (target values). The 

controller output (system input) that sustains this 

new steady state corresponds to the independent 

variable values required for the new state.If the 

system is fully controllable, there always exists an 

input variable (𝑢(𝑡)) capable of steering the system 

from its initial state to the specified target. If the 

system is not fully controllable, we seek the best 

approximate solution.Grounded in this control 

framework, this study aims to develop an operator to 

establish operating principles for S-systems. 

Linear Quadratic Regulator (LQR):We shall 

design a traditional linear quadratic regulator to 

provide a operating principle under linearized S-

systems. The S-system model was linearized around 

nominal operating points using Jacobian 

linearization techniques to obtain state-space 

representations (𝑋(𝑡) = 𝐴𝑋(𝑡) + 𝐵𝑢(𝑡)̇ ). The cost 

function 𝐽 = ∫(𝑋𝑇(𝑡)𝑄𝑋(𝑡) + 𝑢𝑇(𝑡)𝑅𝑢(𝑡))𝑑𝑡  was 

minimized, where 𝑄  and 𝑅  represented state and 

control weighting matrices, respectively. The 

Riccati equation was solved to obtain the optimal 

feedback gain matrix 𝐾 , yielding the control law 

𝑢(𝑡) = −𝐾𝑋(𝑡) . The lqrfunction of the Matlabis 

used to get the feedback gain: 𝐾 = 𝒍𝒒𝒓(𝐴, 𝐵, 𝑄, 𝑅). 
Optimal Fuzzy Control for Nonlinear Systems: 

Linear quadratic regulator control provides 

theoretically optimal performance for linear systems, 

while fuzzy control offers superior robustness and 

nonlinear approximation capabilities. By integrating 

these approaches, the previously proposed optimal 

fuzzy controller—built upon Takagi-Sugeno(T-S) 

fuzzy systems—combines their respective strengths 

[41, 42]. This method is particularly advantageous 

for nonlinear physical and biological systems 

represented by T-S fuzzy models.The T-S fuzzy 

model is formulated as follows (where𝑅𝑖denotes the 

𝑖th rule of the fuzzy model,𝑖 = 1, … 𝑟.): 

𝑅𝑖: If𝑥1is𝑇1𝑖 , … , 𝑥𝑛is𝑇𝑛𝑖 ,   then𝑋̇(𝑡) = 𝐴𝑖(𝑡)𝑋(𝑡) +
𝐵𝑖(𝑡)𝑢(𝑡),   𝑌(𝑡) = 𝐶(𝑡)𝑋(𝑡),   (5) 

where 𝑥1 … , 𝑥𝑛are system states, 𝑇1𝑖 , … 𝑇𝑛𝑖are fuzzy 

terms,  and 𝑢(𝑡) and 𝑌(𝑡) = [𝑦1, … 𝑦𝑛′]𝑇 denote 

system input vectors and output vectors, 

respectively.The corresponding fuzzy controller is 

designed in the form: 
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𝑅𝑖: If𝑦1is𝑆1𝑖 , … , 𝑦𝑛′is𝑆𝑛′𝑖 ,  then 𝑢(𝑡) = 𝑟𝑖(𝑡),   𝑖 =
1, … 𝛿, (6) 

where 𝑆1𝑖 , … 𝑆𝑛𝑖 are fuzzy sets for the controller 

inputs. The locally asymptotically optimal control 

law is given by [41, 42]: 

 𝑟𝑖
∗(𝑡) = −𝐵𝑖

𝑇𝜋̅𝑖𝑋
∗(𝑡),(7) 

and the globally optimized control signal 𝑢∗(𝑡) =
∑ ℎ𝑖

𝑟
𝑖=1 (𝑋∗(𝑡))𝑟𝑖

∗(𝑡) is obtained through fuzzy 

blending, which minimizes the quadratic cost 

function   𝐽(𝑢(∙)) = ∫ (𝑋𝑇∞

0
(𝑡)𝑄𝑋(𝑡) +

𝑢𝑇(𝑡)𝑅𝑢(𝑡))𝑑𝑡. 
Here, 𝑋𝑇(𝑡)𝑄𝑋(𝑡)  penalizes state 

deviations, 𝑢𝑇(𝑡)𝑅𝑢(𝑡)  regulates control 

effort,and𝑄, 𝑅  are symmetric positive semidefinite 

weighting matrices. This formulation transforms the 

optimization problem into a recursive dynamic 

programming structure [42].The fuzzy subsystems 

(5) and control rules (6) exhibit a one-to-one 

correspondence (i.e., the i-th rule pair), and the 

overall system behavior emerges from the fuzzy 

blending of all subsystems. This optimal fuzzy 

control framework has been successfully applied to 

diverse systems, including magnetic suspension 

systems, 4-pole and 8-pole active magnetic bearings, 

inverted pendulums, half-car active suspensions, and 

the Taiwan iTS-1 experimental vehicle. 

 

II-2 Simulink-Based Visualization for Biological 

Systems Analysis 

Simulink (MathWorks®) is a computational 

modeling environment within the MATLAB 

(MATrixLABoratory) framework that implements a 

block diagram paradigm for dynamic system 

analysis and design [23-25]. This toolbox provides 

an interactive platform to construct block diagrams 

representing multi-domain dynamic systems, where 

biological components are abstracted as functional 

blocks and dynamic interactions (e.g., metabolic 

fluxes, regulatory signals) are encoded via directed 

signal lines. The graphical interface eliminates low-

level programming requirements while maintaining 

mathematical rigor through automated backend 

computations, enabling researchers to achieve 

modeling, simulation, and analysis of complex 

biological networks.Key features of Simulink for 

biological applications include  dynamic sensitivity 

analysis (native tools for parametric sensitivity 

computation, including automated Jacobian 

calculation for sensitivity matrices, enabling 

quantification of parameter influence on system 

behavior), multi-domain simulation (unified 

modeling of heterogeneous processes, including 

biochemical reaction networks, control-theoretic 

constructs, and stochastic processes, through 

modular block libraries), visual analytics (real-time 

visualization of state variable trajectories, parameter 

perturbation effects, and sensitivity metrics, 

facilitating intuitive exploration of system 

dynamics), and adaptive numerical solvers (robust 

solvers tailored for stiff biological systems such as 

ODEs with widely varying time scales, ensuring 

numerical stability and accuracy).The environment 

supports exportable block libraries for modular 

network design, allowing researchers to build 

reusable, scalable models while maintaining direct 

access to underlying mathematical operations (e.g., 

Hessian matrix computation for sloppiness analysis). 

This combination of visual accessibility and 

computational power makes Simulink particularly 

suited for interdisciplinary teams seeking to bridge 

theoretical models with experimental validation in 

systems biology. 

 

III. RESULTS AND DISCUSSION 
This section presents a comprehensive 

evaluation of the proposed computational 

framework for analyzing sloppiness and deriving 

operating principles in S-system models of 

biological networks. The results are structured into 

three main parts: First, we quantify the inherent 

parameter sloppiness across S-systems of varying 

complexity (3 to 30 genes) using Hessian-based 

sensitivity spectra simulated in Simulink. Second, 

we demonstrate the efficacy of LQR-based control 

strategy in steering system dynamics from nominal 

to target steady states, effectively establishing 

practical operating principles for biological 

intervention. The performance of the proposed 

operating principles will be validated using the 

three-tier cascade pathwaysystem (𝑛 = 3 > 𝑚 = 1, 

no-solution case) and a branched pathway with a 

substrate cycle system ( 𝑛 = 4 < 𝑚 = 7 , infinite-

solution).Finally, we showcase our optimal fuzzy 

control approach, which integrates the robustness of 

fuzzy logic with the precision of optimal control 

theory for operating principle.  

 

III-1 Sloppiness Analysis of S-Systems 

We investigated the sloppiness of S-systems using 

five biological genetic networks of varying size of 

dependent variable (𝑛 = 3, 4, 5, 20, 30  in Fig. 1). 

The related S-system representation is shown in the 

right column of Figure S3 in Supplement. To 

address the computational challenges associated 

with solving the highly complex integrals required 

for Hessian matrix calculations in these highly 

nonlinear systems, we implemented a control-

theoretic block diagram approach in Simulink.We 

first demonstrate this visualization-driven sloppiness 

analysis using a three-tier cascade pathway (upper-

left panel in Fig. 1 [43-47]). Building on our prior 
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work in dynamic sensitivity analysis (Figure S2 in 

Supplement [24]), we integrated Equations (1), (3) 

and (4) to compute the Hessian matrix 𝑯ℵ  for the S-

system. To enhance accessibility for biologists, we 

designed a user-friendly block diagram in Simulink 

(lower panel of Figure 3) to numerically construct 

the Hessian matrix. Figure 2 shows the generated 

parameter sloppiness spectra. Figure 3 is the 

workflow efficiently derives the corresponding 

eigenvalues, enabling the generation of parameter 

sloppiness spectra. 

  
 

 
Figure 1: Biological systems for validating S-system sloppiness [43-47] 

 

 
Figure 2: Parameter sloppiness spectrum of thethree-tier cascade pathway. 
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Figure 3: Block diagram for sloppiness analysis of the three-tier cascade pathway. 
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Furthermore, the proposed visualization technique was extended to large-scale systems. Figure 4 illustrates the 

dynamic behavior of the 30-gene network, based on which the corresponding sloppiness (Equations (3) and (4)) 

were derived. Figure 5 displays the simulated parameter sloppiness spectrum for the 30-gene system: 76 out of 

128 curves fall within [10⁰, 10⁻³], while 127 out of 128 curves lie within [10⁰, 10⁻⁶]. Figure 6 shows the block 

diagram for sloppiness analysis of the 30-gene network system.For this large-scale system, subsystems were 

employed to simplify the block diagram. Figure 7 is the workflow for the corresponding eigenvalues enabling 

the generation of parameter sloppiness spectra, where the blocks HeXi (i = 1, ..., 30) correspond to the output 

results shown in Figure 6. Figure 8 shows the parameter sloppiness spectra for the five S-system biological 

systems depicted in Figure 1. The results indicate that while dynamic behavior at arbitrary points exhibits a less 

concentrated sloppiness spectrum compared to that near steady states, stiffness is still present. This implies that 

perturbation in each kinetic parameter will influence the system's dynamic behavior. 

 

 
Figure 4: Dynamic behavior of the 30-gene network system. 

 

 
Figure 5: Parameter sloppiness spectrum of the 30-gene network system. 
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Figure 6: Block diagram for sloppiness analysis of the 30-gene network system. 
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Figure 7: Block diagram to estimate eigenvalues of Hessian matrixfrom Fig. 6,denoting sloppiness analysis of 

the 30-gene network system. 
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Figure 8: Parameter sloppiness spectra of small to medium-sized S-system biological systems in Fig. 1. 

 

III-2 Operational principle of S-Systems 

Here, we employ two control techniques—

linear quadratic regulator (LQR) and optimal fuzzy 

control—to establish operating principles for S-

system biological models. System control involves 

designing controllers to ensure system outputs 

match desired values, while operating principles 

focus on identifying independent variables that shift 

the steady state of dependent variables from nominal 

values to specified targets. Thus, independent 

variables are treated as system inputs, and 

dependent variables as system states. The controller 

is designed to drive state variables from their initial 

(nominal) values to the target steady state. The 

controller output (system input) that maintains this 

new steady state corresponds to the independent 

variable values required for the new state.If the 

system is fully controllable, there always exists an 

input that drives the system from its initial state to 

the specified target. If the system is not fully 

controllable, we seek the best approximate solution. 

To validate the performance of the proposed 

control-based operating principles, we consider two 

systems: athree-tier cascade pathway in the upper-

left panel of Fig.1(𝑛 = 3  and  𝑚 = 1 , no solution 

exists) and a branched pathway system with a 

substrate cyclein Fig. 9( 𝑛 = 4  and  𝑚 = 7 , 

infinitelymany solutions exist).The case 𝑛 = 𝑚 

(unique solution) is omitted here as it is 

straightforward. 

 

𝑥̇1 = 𝛼1𝑥3
𝑔13𝑥5

𝑔15𝑥11

𝑔1,11 − 𝛽1𝑥1
ℎ11𝑥6

ℎ16 ,    

𝑥̇2 = 𝛼2𝑥1
𝑔21𝑥6

𝑔26 − 𝛽2𝑥2
ℎ22𝑥7

ℎ27𝑥9
ℎ29 ,      

𝑥̇3 = 𝛼3𝑥2
𝑔32𝑥9

𝑔39 − 𝛽3𝑥3
ℎ33𝑥10

ℎ3,10𝑥11

ℎ3,11 , 

𝑥̇4 = 𝛼4𝑥2
𝑔42𝑥7

𝑔47 − 𝛽4𝑥4
ℎ44𝑥8

ℎ48 .(8) 

Figure 9:Branched metabolic pathway with a substrate cycle, adapted from [40]. 
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LQR-based operating principle:When identifying 

the operating principles for S-systems, the 

independent variables serve as inputs to the 

computing system and simultaneously as system 

inputs. In practice, this configuration isinherently 

unworkable. However, since the goal of deriving 

operating principles is solely to find a solution 

rather than to achieve real-time operation, the inputs 

to the biological system can be delayed before being 

fed into the computing system (Figure 10).We first 

examine the three-tier cascade pathway in the upper-

left panel in Fig. 1. Table 1 compares simulation 

results with target values for the serial system 

(independent variable 𝑥4 = 𝑢(𝑡), 𝒏 = 𝟑 > 𝑚 =
1). The results show a strong agreement between the 

desired and estimated states, confirming the 

method's efficacy even for inherently unsolvable 

cases. Figure 10 shows the block diagram for 

implementing operating principles in the three-tier 

cascade pathwaysystem, with independent variable 

values highlighted in red circles. We further use the 

branched pathway system with a substrate cycle in 

Fig. 9 to examine the infinite-solution case (𝒏 =
𝟒 < 𝑚 = 7). Figure 11 presents the block diagram 

for the branched pathway system, and Figure 

12 displays the dynamic behavior of the system state 

variables 𝑥1, 𝑥2, 𝑥3, 𝑥4 .The controller achieves a 

close fit between the target and simulated outputs 

(highlighted in red circles), effectively resolving the 

infinite-solution condition. These demonstrates that 

for systems where no exact algebraic solution exists 

(𝑛 >  𝑚 and 𝑛 <  𝑚), the proposed control strategy 

successfully achieves a close approximation 

between the desired and estimated steady states. 

 

 

desired states estimated states Control output, u(t) 

(estimated 𝒙𝟒) 

[5.3294,10.2805,1.7848] [5.31 10.24 1.778] 1.496 

[15.4812,29.8633,5.1846] [15.49,29.69,5.152] 2.996 

[57.0061,109.9655,19.0912] [56.95, 109.7, 19.04] 6.993 

Table 1:(LQR) Results of operating principles for the three-tier cascade pathway 

 
Figure 10: (LQR) Block diagram for operating principles of the three-tier cascade pathway. 
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Figure 11:(LQR) Block diagram for operating principles of branched pathwayin Fig. 9. 

 

 
Figure 12:(LQR) System states𝑥1, 𝑥2, 𝑥3, 𝑥4for the branched pathway in Fig. 9. 

 

Optimal fuzzy control-based operating principle: 

The concept of sector nonlinearity transformation is 

intuitively simple but becomes computationally 

cumbersome for multivariate systems. Given that 

biological systems typically involve numerous 

variables, the method proposed by Kanaka and 

Wang [48] is unsuitable for such applications. In our 

2013 work on modeling cancer molecular 

mechanisms [49], we developed a fuzzy system 

framework accounting for tissue environmental 

variations in multi-branch growth signaling 

pathways. Here, a Takagi-Sugeno (T-S) fuzzy 

system can be interpreted as a nonlinear system 

formed by blending multiple linear subsystems—

each representing local characteristics (regions)—

through fuzzy inference. Each local characteristic 

corresponds to a specific tissue environment or 

experimental condition as conceptualized in 

[49].For S-systems, Equation (9) or fuzzy rule (10) 

describes dynamic behavior near a steady state 

under a specific experimental condition: 
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𝑧̇(𝑡) = (𝐴𝐷。𝐸)𝑧(𝑡) + (𝐴𝐼。𝐹)𝑢(𝑡) = Å𝑧(𝑡) +

ℬ𝑢(𝑡).     (9) 

Rule𝑅𝑙: IF𝑢1 is 𝐴𝑙, 𝑢2 is 𝐵𝑙 , …, 𝑢𝑚 is 𝑀𝑙 ,then 

𝑧̇(𝑡) = Å𝑙𝑧(𝑡) + ℬ𝑙𝑢(𝑡).(10) 

In contrast to typical fuzzy modeling approaches—

such as linearizing inverted pendulum systems at 

extreme angles (0° and 180°) [50] or cruise control 

systems at speed extremes (𝑉𝑚𝑎𝑥 and 𝑉𝑚𝑖𝑛) [51]—

where nonlinear systems become linear at boundary 

values, S-systems remain nonlinear even under 

extreme experimental conditions. The locally 

linearized Equation (9) only approximates dynamics 

near steady states under specific conditions. Thus, 

fuzzy blending in this context can only represent 

behavior near steady states across various 

experimental conditions, not global nonlinear 

dynamics.In 2000, we derived an energy-based 

framework demonstrating a one-to-one 

correspondence ( 𝒊 -to- 𝒊 ) between optimal fuzzy 

controllers (Equations 6 and 7) and T-S fuzzy 

systems (Equation 10), leading to simplified control 

laws [41, 42]. However, these mathematical 

formulations remain inaccessible to many biologists. 

To address this, we have developed a modular 

graphical representation (Figure 13) to improve 

interpretability. The independent variable, 𝑥4,  and 

the deviation from a nominal states, E_xs1,  are used 

as inputs of fuzzy controllers.A practical challenge 

arises because independent variables serve as both 

inputs to the fuzzy inference system and system 

inputs, creating implementation conflicts. To resolve 

this, we delayed system inputs before feeding them 

into the fuzzy inference system. While predictive 

compensation was initially attempted, its 

performance was unsatisfactory. Instead, we 

incorporated real-time error feedback to mitigate 

delay effects and generate immediate corrective 

control actions.Since the problem of infinite 

solutions (𝑛 <  𝑚) only requires finding one set of 

independent variables that drives the system 

variables to the target values, we focus here on 

validating the method for the non-solution case (n 

> m).Table 2 shows a simulation comparing results 

with target values for the three-tier cascade 

pathwayin the upper-left panel of Fig.1(independent 

variable 𝑥4 = 𝑢(𝑡), 𝒏 > 𝑚). Figure 13 displays the 

block diagram and the identified 𝑥4 values with a 

comparison between the estimated states and desired 

states(highlighted in red circles).The controller 

achieves a close fit between the target and simulated 

outputs, effectively resolving the non-solution 

condition. 

 

desired states estimated states Control output, u(t) 

(estimated 𝒙𝟒) 

[8.2965 16.00402.7785] [8.2710 15.94272.7676] 2 

[15.481229.86335.1846] [15.4926  29.69155.1513] 3 

Table 2: (Fuzzy controller) Simulation results vs. target valuesfor the three-tier cascade pathway. 



Shinq-Jen Wu, et.al. International Journal of Engineering Research and Applications 

www.ijera.com 

ISSN: 2248-9622, Vol. 15, Issue 9, September 2025, pp 59-78 

 

A 

\ 
www.ijera.com                                    DOI: 10.9790/9622-15095978                                     73 | Page 

                

 

 

 

 

 
Figure 13:(Fuzzy controller) Block diagram for operating principles of the three-tier cascade pathway. 

 

IV. CONCLUSION 
This study successfully addressed the dual 

challenges of parameter sloppiness and operating 

principle derivation in S-system models of 

biological networks. By integrating control-theoretic 

frameworks with advanced visualization techniques, 

we developed a unified computational approach to 

transform these theoretical obstacles into actionable 

biological insights.Our key contributions are 

threefold.(Visualization of sloppiness) We 

implemented a Simulink-based Hessian matrix 

workflow to quantify and visualize parameter 

sloppiness spectra across S-systems of varying 

complexity (3 to 30 genes). This approach revealed 
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that while large-scale systems exhibit extensive 

parameter sloppiness (e.g., 127 of 128 eigenvalues 

spanning six orders of magnitude in a 30-gene 

network), their dynamic behavior remains stiff—

meaning perturbations in kinetic parameters 

consistently influence system output. This confirms 

that sloppiness does not preclude identifiability or 

controllability but necessitates geometric analysis of 

parameter manifolds. (Control-theoretic operating 

principles) We established that operating 

principles for biological intervention can be derived 

by reframing the steady-state transition problem as a 

control task. By treating independent variables as 

system inputs and dependent variables as states, we 

demonstrated that both LQR and optimal fuzzy 

controllers can effectively drive systems from 

nominal to target states—even for algebraically 

intractable cases (𝑛 >  𝑚 with no solution or 𝑛 <
 𝑚  with infinite solutions). The proposed fuzzy 

control architecture notably handled nonlinearities 

and multi-variable interactions more robustly than 

classical LQR. (Biological interpretability) Through 

modular block diagrams and interactive visual 

analytics, we bridged the gap between theoretical 

models and biological applicability. The graphical 

representation of sloppiness spectra and control laws 

provides biologists with an intuitive toolkit to 

explore parameter sensitivities, identify dominant 

regulatory interactions, and design targeted 

interventions—for instance, steering gene 

expression profiles in disease models.Future 

work will focus on developing real-time predictive 

compensation mechanisms to enhance the feasibility 

of in silico control strategies for experimental 

validation. Ultimately, this research underscores the 

power of interdisciplinary integration—leveraging 

control theory, computational visualization, and 

systems biology—to derive actionable principles for 

manipulating complex biological systems. 
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Figure S1: Sloppiness spectrum near steady stateof S-Systems [15] 
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Figure S2: Block diagram for dynamic densitivity of the three-tier cascade pathway S-Systems [24] 
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Figure S3: Biological systems and related S-system representations for validating S-system sloppiness. The 

parameter values are cited from [43-47]. 


