
Riya Sachan, et.al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 9, September 2025, pp 53-58

A
\
www.ijera.com DOI: 10.9790/9622-15095358 53 | Page

A Reinforcement Learning-Based Techniques for Automated

Code Smells Detection and Refactoring

Riya Sachan1, Rakesh Kumar Tiwari2, Onkar Nath Thakur3, Dr. Mayank

Pathak4
MTech Scholar1 , Assistant Professor2&3, professor4

DepartmentofComputerScience&Engineering1’2’3&4

Technocrats Institute of Technology & Science, Bhopal. India1’2’3&4

Abstract—
Code smells negatively impact the maintainability, readability, and overall quality of software. Traditional

detection methods primarily rely on rule-based approaches and manual intervention, making them less adaptable

and inflexible in handling diverse codebases. These methods often fail to capture the underlying semantics of

the code, limiting their ability to provide meaningful suggestions—such as appropriate method names. The

current existing researches don’t focus on Reinforcement learning approach for code smells detection and

refactoring. The few existing studies that do apply RL typically concentrate on a single refactoring operation—

such as the Extract Method—rather than encompassing comprehensive smell detection or supporting multiple

refactoring strategies. This paper proposes a reinforcement learning (RL)-based framework for automatic

detection and refactoring of multiple code smells in Java programs, including Long Method, God Class, and

Feature Envy. The proposed system integrates structural features (AST paths, code metrics) and semantic

embeddings (via Code BERT) to construct rich state representations. A multi-objective reward function guides

the RL agent using improvements in code quality metrics, static tool confirmations (e.g PMD), and human

readability indicators. Furthermore, we introduce an explainability module that translates refactoring actions

into natural language suggestions for developers. The framework is implemented entirely in Python and

validated using a curated dataset of real-world Java codebases. Results demonstrate enhanced detection

accuracy and context-aware refactoring capabilities.

Keywords: Code Refactoring, Reinforcement learning, Code BERT, Abstract Syntax Tree(AST)

--- ----------

Date of Submission: 25-08-2025 Date of acceptance: 03-09-2025

--- ----------

I. Introduction
Refactoring is the process of improving the

overall design and structure of the code without

changing its overall behavior. The goal of

refactoring is to improve maintainability and

facilitate future functionality extension, making it

essential for adapting to ever-evolving software

requirements. However, despite its benefits, many

developers hesitate to refactor due to the time and

effort involved [4].The code smell detection model

identifies software issues that may cause severe

problems in the future. Identifying code smells is

always recommended, which helps to reduce the

software maintenance cost and increases the code

reusability.[3]Code smells, first introduced by

Fowler, are indicators of sub-optimal code structures

that can lead to software degradation if left

unaddressed. These smells include duplicated code,

long methods, and large classes, which contribute to

increased maintenance effort and potential software

defects [2].Automatic code generation refers to the

process of writing code automatically through

algorithms or programs.[5] By removing code

smells the practice aims to improve maintainability,

encapsulating quality attributes such as readability,

flexibility, and testability[1].Code smells are parts

of code that are not wrong but may add more

complexity to code, which poses a technical debt

and which is harder to maintain.[6].Code smells are

one of the most accepted approaches to identifying

design problems in the source code.[7]Overly

complicated methods, duplicated code, and

improper encapsulation are a few examples of code

smells that impair flexibility and maintainability.

o Long Method: An approach that is difficult

to comprehend and uphold because it is overly

drawn out and takes on too many tasks.

o Large Class: A class that has too many

duties, which goes against the Single Responsibility

Principle and makes it challenging to oversee or

grow.

RESEARCH ARTICLE OPEN ACCESS

Riya Sachan, et.al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 9, September 2025, pp 53-58

A
\
www.ijera.com DOI: 10.9790/9622-15095358 54 | Page

o Duplicate Code: Code blocks that are

repeated across the codebase raise maintenance

costs and the possibility of inconsistent changes.

o Inappropriate Intimacy: When a class

utilizes another class's methods or attributes

excessively, it creates a tight coupling and less

modularity.

o Feature Envy: A method that shows

misplaced responsibilities by extensively relying on

accessing the methods or attributes of another class

rather than concentrating on its own.

o Switch Statements: Polymorphism could be

used to improve extensibility and maintainability in

favour of the overuse of if-else or switch structures.

o Data Clumps: For better organization,

groups of data fields that commonly occur together

could be enclosed into a separate class.

Software refactoring techniques are categorized into

several types, including code-based refactoring,

design refactoring, and architectural refactoring

[1].A reinforcement learning (RL)-based framework

is proposed for the detection and refactoring of

multiple code smells, including Long Method, God

Class, and Feature Envy, in Java programs.

II. Related Background Work
Code Smells

Code smells are indicators of potential design flaws

in source code that may not directly cause bugs but

degrade software quality, readability, and

maintainability. Introduced by Fowler, code smells

include patterns such as Long Method, God Class,

Feature Envy, and Duplicated Code[2].Code

smells are warning signs which refer to certain

patterns or characteristics observed in source code

that indicate potential design faws or violate basic

design rules such as abstraction, hierarchy

encapsulation, etc.[7]In this dataset, we identified

and analyzed four code smells: God Class, Long

Method, Feature Envy, and Refused Bequest. Naive

Bayes, Logistic Regression, Multilayer

Perceptron, Decision Trees, K-Nearest

Neighbors, Random Forest, and Gradient Boosting

Machine.[8]These smells often result from rapid

development, poor modularization, or evolving

requirements.

Refactoring

Refactoring is the process of restructuring existing

code without altering its external behavior to

improve internal structure. Common techniques

include Extract Method, Move Method, Inline

Method, and Rename Variable. Refactoring aims

to reduce code complexity, enhance readability, and

support maintainability. Manual refactoring is error-

prone and time-consuming, motivating research into

automated techniques.Refactoring is an important

software development activity that employs various

techniques to enhance the structure and quality of

source code without altering its functionality.Extract

method refactoring is one of the most commonly

applied refactoring techniques that involves moving

a coherent code fragment from a method into a new,

aptly named method.[14]

Feature Envy

A method that is more interested in the data of

another class(the envied class) than that of the class

it is actually in. This anti-pattern represents a

symptom of the method’s misplacement, andis

characterized by a lot of accesses to foreign

attributes and methods.[13]

Reinforcement Learning (RL)

Reinforcement Learning (rl) is a branch of machine

learning focused on training agents to take actions in

an environment to maximize some notion of

cumulative reward often involving a series of

decisions.[15]Reinforcement Learning is a branch of

machine learning where an agent learns optimal

policies by interacting with an environment. The RL

model is defined by a tuple (S, A, R, T, γ), where:

o S: Set of states (e.g., code representations

like ASTs or token sequences),

o A: Set of actions (e.g., refactoring

operations),

o R: Reward function quantifying code

quality improvement,

o T: Transition function modeling state

changes,

o γ: Discount factor for future rewards.

In the context of code smell detection and

refactoring, the RL agent observes code states and

learns policies to perform transformations that

maximize software quality metrics (e.g.,

maintainability, modularity). Reinforcement

Learning for Sequence Generation Reinforcement

Learning is a branch of machine learning focused on

training agents to take actions in an environment to

maximize some notion of cumulative reward often

involving a series of decisions .It uses a model

known as the Markov Decision Process (MDP) ,

which deals with decision-making where each

action is determined by steps, and outcomes are

influenced by randomness. In RL, an agent (i.e., an

autonomous entity that takes action in the given

environment) improves its decisions through trial-

and-error interactions with its environment, learning

from the rewards it receives based on its actions.[1]

Code Representations

Effective RL depends on how source code is

represented. Popular choices include:

Riya Sachan, et.al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 9, September 2025, pp 53-58

A
\
www.ijera.com DOI: 10.9790/9622-15095358 55 | Page

o Abstract Syntax Trees (ASTs): Tree-

based syntactic structures.

o Control Flow Graphs (CFGs): Represent

execution paths.

o Embeddings: Learned vector

representations from models like CodeBERT,

GraphCodeBERT, or Token2Vec, capturing both

syntax and semantics[16]

Resources to be searched

Selection of proper resources to search for relevant

literature plays a significant role in an Research

Work . We selected the following resources to

search for all the available literature relevant to our

research questions:

IEEE Xplore digital library

(http://ieeexplore.ieee.org)

ACM digital library (https://dl.acm.org)

ScienceDirect (http://www.sciencedirect.com)

SpringerLink (https://link.springer.com)

Scopus (https://www.scopus.com)[10][3]

This review follows a structured methodology to

identify, filter, and analyze research on

reinforcement learning (RL)-based techniques for

code smell detection and automated refactoring. The

process was designed to ensure relevance, coverage,

and reproducibility.

A comprehensive search was conducted across

major databases: IEEE Xplore, ACM Digital

Library, SpringerLink, and Google Scholar,

focusing on works published between 2020 and

2025. Keywords used included: “reinforcement

learning”, “code smell detection”, “automated

refactoring”, “software quality”, “RL-based

refactoring”.

III. Review of Literature

The application of machine learning to software

maintenance has evolved significantly, with

reinforcement learning (RL) emerging as a powerful

tool for code analysis and transformation. Early

works applied Q-Learning to basic code smells

such as Long Method and Duplicated Code, using

syntactic structures like Abstract Syntax Trees

(ASTs) to model states and refactoring actions as

rewards-based transitions. These studies

demonstrated the feasibility of framing code quality

improvement as a Markov Decision Process (MDP).

Alabza et al. conducted a review on deep learning-

based approaches for bad smell detection, and their

focus was to summarise and synthesize the studies

that used deep learning for bad smell detection.

They collected and analyzed 67 studies until

October 2022.[11].To identify the code smell,

researchers leverage both manual and automatic

detection approaches. Early detection for code smell

are conducted manually.[12]

More recent studies have leveraged Deep

Reinforcement Learning (DRL) algorithms,

including DQN, PPO, and A3C, enabling agents to

learn from complex, high-dimensional code

representations. Models such as CodeBERT,

Code2Vec, and GraphCodeBERT have been

integrated to encode semantic and syntactic

information. This fusion has improved the ability to

detect smells like God Class, Feature Envy, and

Shotgun Surgery with higher precision.

Several works propose hybrid systems that

combine RL with static analysis or rule-based

heuristics to balance learning efficiency with

domain constraints. However, most are constrained

to Java datasets and often lack generalization across

languages or projects. Evaluation is typically based

on code metrics (e.g., cohesion, coupling), reward

values, or manually validated transformations.

This literature points to RL's growing maturity in

software refactoring while revealing critical gaps in

scalability, interpretability, and real-world

applicability.

Comparison of Related Work with Proposed Research

No.
Authors &

Year
Type

Uses

RL

Smell

Detection
Refactoring

Multi-

Smell

Support

Remarks

1

Palit&

Sharma

(2024)

Research

Paper
Yes

No (assumes

need for

refactoring)

 Extract

Method

(PPO)

 No

Focus on single

refactoring action

using PPO; lacks

integrated smell

detection

2
Yadav et

al. (2024)
Survey No

Yes (ML

techniques

reviewed)

 No Yes

Extensive review

of ML methods

and datasets; no

original RL

Riya Sachan, et.al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 9, September 2025, pp 53-58

A
\
www.ijera.com DOI: 10.9790/9622-15095358 56 | Page

contribution

3
Maini et al.

(2024)

Research

Paper
 No

Yes

(heuristic +

metrics)

Optimized

sequences
Partial

Optimization of

refactoring order,

but static, not

learning-based

4

Xu et al.

(2025,

MANTRA)

Research

Paper
No No

Yes (via

LLM +

RAG)

Partial

Uses collaborative

LLM agents, no

learning or

adaptive decision-

making

5
Ye et al.

(2025)

Research

Paper
 Yes No

Guided

generation
 No

Combines

procedural

guidance with RL,

but not used for

code smell repair

6
Ali et al.

(2025)

Research

Paper
 No

Yes

(transformer-

based)

 No Yes

Detects smells

using transformer

model; no

refactoring action

involved

7

Nasraldeen

& Nehez

(2024)

Research

Paper
 No

Yes (ML +

data

balancing)

No Yes

Focus on

improving

detection accuracy,

not on repair or

refactoring

8
Cruz et al.

(2025)

Research

Paper
 No

 Yes

(feedback-

enhanced

ML)

 No Yes

Continuous

feedback loop

improves ML

detection, no

automated

correction

9
Skipina et

al. (2023)

Research

Paper
 No

 Yes

(Feature

Envy, Data

Class)

No No

Specific to certain

smells, uses

classical ML

models

10
Azeem et

al. (2019)

SLR &

Meta-

Analysis

 No Yes No Yes

Review and meta-

analysis of ML

models; no novel

technique proposed

11

Proposed

Method

(2025)

Research

Paper

 Yes

(PPO/D

QN)

Yes (via

metric

analysis +

RL states)

 Yes (multi-

action

dynamic

refactoring)

 Yes

Fully integrated

RL-based system

that detects and

resolves smells

using adaptive

feedback-driven

refactorings

IV. Conclusion and Future Work
This review shows that reinforcement

learning (RL) has strong potential to help with

automatically finding and fixing code smells. Unlike

traditional rule-based tools, RL methods can learn

from experience and adapt to different situations in

code. These approaches are especially useful for

fixing common problems like long methods or

feature envy. They often use deep learning with

structured code formats like abstract syntax trees

(ASTs) and code features from pretrained models.

Riya Sachan, et.al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 9, September 2025, pp 53-58

A
\
www.ijera.com DOI: 10.9790/9622-15095358 57 | Page

Still, there are several challenges. It is hard

to design reward functions that guide the RL agent

properly, and it’s difficult to make these models

work well across many types of code. Many current

methods also haven't been tested enough on real-

world projects or large, complex systems.

After studying more than 10 important

research papers and many ideas from past work, this

paper proposes a new RL-based approach to solve

these issues. The method combines automatic smell

detection with dynamic, self-healing refactoring in

one system. It uses software quality measures and

testing to make sure the refactoring is correct.

Unlike older studies that focus on single smells or

static rules, this new approach learns and improves

over time.

In the future, researchers should look into

RL models that handle multiple goals (like

performance and readability), combine symbolic

and neural techniques for better understanding, and

include developer feedback in the process. Making

tools that work across programming languages and

creating shared benchmark datasets will also help

move this field forward.

Reference

[1]. Indranil Palit, Tushar Sharma. Generating

refactored code accurately using

reinforcement learning [2024]

https://arxiv.org/abs/2412.18035

[2]. Pravin Singh Yadav, Rajwant Singh Rao,

Alok Mishra and Manjari Gupta. Machine

Learning-Based Methods for Code Smell

Detection: A Survey[2024]

https://www.theaspd.com/ijes.phpa

[3]. Ritika Maini, Navdeepkaur and

Amardeepkaur. Optimized Refactoring

Sequence for Object-Oriented Code Smells.

[2024] https://www.mdpi.com/2076-

3417/14/14/6149

[4]. Yisen Xu, Feng Lin, Jinqiu Yang, Tse-Hsun

(Peter) Chen and Nikolaos Tsantalis.

MANTRA: Enhancing Automated Method

Level Refactoring with Contextual RAG and

Multi-Agent LLM Collaboration. [27 MAR

2025] https://arxiv.org/abs/2503.14340

[5]. Yufan Ye, Ting Zhang ,Wenbin Jiang , Hua

Huang. Process-Supervised Reinforcement

Learning for Code Generation.[3 FEB2025]

https://arxiv.org/abs/2502.01715

[6]. Israr Ali, Syed Sajjad, Hussian Rizvi and

Syed Hasan Adil. Enhancing Software

Quality with AI: A Transformer-Based

Approach for Code Smell Detection [2025]

https://www.mdpi.com/2076-3417/15/8/4559

[7]. Nasraldeen Anor adamkhleel, karoly Nehez.

Improving Accuracy of Code Smells

Detection using Machine Learning with Data

Balancing Techniques [2024]

https://doi.org/10.1007/s11227-024-06265-9

[8]. Daniel Cruz, Amanda Santana andEduardo

Figueiredo.Evaluating a Continuous

Feedback Strategy to Enhance Machine

Learning Code Smell Detection [2025]

https://www.sciencedirect.com/science/article

/abs/pii/S0167642325000851

[9]. MilicaSkipina, JelenaSlivka and

Nikolsluburic and Aleksandarkovacevic.

Automatic Detection of Feature Envy and

Data Class Code smells using Machine

Learning [2023]

https://www.sciencedirect.com/science/article

/abs/pii/S0957417423033572

[10]. Muhammad IlyasAzeem, Fabio Palomba, Lin

Shi and Qing Wang. Machine Learning

techniques for Code Smell Detection: A

systematic Literature Review and Meta

Analysis[2019]

https://www.sciencedirect.com/science/article

/abs/pii/S0950584918302623

[11]. Amal Alazba, HamoudAljamaan, and

Mohammad R. Alshayeb. 2023. Deep

learning approaches for bad smell detection: a

systematic literature review. Empirical

Software Engineering 28 (2023).

https://api.semanticscholar.org/CorpusID:258

591793

[12]. Yang Zhang, Chuyan Ge, Haiyang Liu, and

Kun Zheng. 2024. Code smell detection

based on supervised learning models: A

survey. Neurocomputing 565 (2024), 127014.

https://doi.org/10.1016/j.neucom.2023.12701

4

[13]. Antoine Barbez, FoutseKhomh, and Yann-

GaëlGuéhéneuc. 2019. A Machine-learning

Based Ensemble Method For Anti-patterns

Detection. ArXiv abs/1903.01899 (2019).

https://api.semanticscholar.org/CorpusID:678

77051

[14]. M. Fowler, P. Becker, K. Beck, J. Brant, W.

Opdyke, and D. Roberts. 1999. Refactoring:

Improving the Design of Existing Code.

Addison-Wesley Professional.

[15]. Ashish Kumar Shakya, Gopinatha Pillai, and

SohomChakrabarty. 2023. Reinforcement

learning algorithms: A brief survey. Expert

Systems with Applications 231 (2023),

120495.

[16]. Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou

Yang, Kailong Wang, Li Li, Xiapu Luo,

David Lo, John Grundy, and Haoyu Wang.

https://arxiv.org/search/cs?searchtype=author&query=Palit,+I
https://arxiv.org/search/cs?searchtype=author&query=Sharma,+T
https://arxiv.org/abs/2412.18035
https://www.theaspd.com/ijes.phpa
https://www.mdpi.com/2076-3417/14/14/6149
https://www.mdpi.com/2076-3417/14/14/6149
https://arxiv.org/abs/2503.14340
https://arxiv.org/abs/2502.01715
https://www.mdpi.com/2076-3417/15/8/4559
https://doi.org/10.1007/s11227-024-06265-9
https://www.sciencedirect.com/science/article/abs/pii/S0167642325000851
https://www.sciencedirect.com/science/article/abs/pii/S0167642325000851
https://www.sciencedirect.com/science/article/abs/pii/S0957417423033572
https://www.sciencedirect.com/science/article/abs/pii/S0957417423033572
https://www.sciencedirect.com/science/article/abs/pii/S0950584918302623
https://www.sciencedirect.com/science/article/abs/pii/S0950584918302623

Riya Sachan, et.al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 9, September 2025, pp 53-58

A
\
www.ijera.com DOI: 10.9790/9622-15095358 58 | Page

2024. Large Language Models for Software

Engineering: A Systematic Literature

Review. arXiv:2308.10620 [cs.SE]

https://arxiv.org/abs/2308.10620

https://arxiv.org/abs/2308.10620

