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Abstract— 
Code smells negatively impact the maintainability, readability, and overall quality of software. Traditional 

detection methods primarily rely on rule-based approaches and manual intervention, making them less adaptable 

and inflexible in handling diverse codebases. These methods often fail to capture the underlying semantics of 

the code, limiting their ability to provide meaningful suggestions—such as appropriate method names. The 

current existing researches don’t focus on Reinforcement learning approach for code smells detection and 

refactoring. The few existing studies that do apply RL typically concentrate on a single refactoring operation—

such as the Extract Method—rather than encompassing comprehensive smell detection or supporting multiple 

refactoring strategies. This paper proposes a reinforcement learning (RL)-based framework for automatic 

detection and refactoring of multiple code smells in Java programs, including Long Method, God Class, and 

Feature Envy. The proposed system integrates structural features (AST paths, code metrics) and semantic 

embeddings (via Code BERT) to construct rich state representations. A multi-objective reward function guides 

the RL agent using improvements in code quality metrics, static tool confirmations (e.g PMD), and human 

readability indicators. Furthermore, we introduce an explainability module that translates refactoring actions 

into natural language suggestions for developers. The framework is implemented entirely in Python and 

validated using a curated dataset of real-world Java codebases. Results demonstrate enhanced detection 

accuracy and context-aware refactoring capabilities. 
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I. Introduction 
Refactoring is the process of improving the 

overall design and structure of the code without 

changing its overall behavior. The goal of 

refactoring is to improve maintainability and 

facilitate future functionality extension, making it 

essential for adapting to ever-evolving software 

requirements. However, despite its benefits, many 

developers hesitate to refactor due to the time and 

effort involved [4].The code smell detection model 

identifies software issues that may cause severe 

problems in the future. Identifying code smells is 

always recommended, which helps to reduce the 

software maintenance cost and increases the code 

reusability.[3]Code smells, first introduced by 

Fowler, are indicators of sub-optimal code structures 

that can lead to software degradation if left 

unaddressed. These smells include duplicated code, 

long methods, and large classes, which contribute to 

increased maintenance effort and potential software 

defects [2].Automatic code generation refers to the 

process of writing code automatically through 

algorithms or programs.[5] By removing code 

smells the practice aims to improve maintainability, 

encapsulating quality attributes such as readability, 

flexibility, and testability[1].Code smells are parts 

of code that are not wrong but may add more 

complexity to code, which poses a technical debt 

and which is harder to maintain.[6].Code smells are 

one of the most accepted approaches to identifying 

design problems in the source code.[7]Overly 

complicated methods, duplicated code, and 

improper encapsulation are a few examples of code 

smells that impair flexibility and maintainability. 

o Long Method: An approach that is difficult 

to comprehend and uphold because it is overly 

drawn out and takes on too many tasks.  

o Large Class: A class that has too many 

duties, which goes against the Single Responsibility 

Principle and makes it challenging to oversee or 

grow. 

RESEARCH ARTICLE                                                                  OPEN ACCESS 



Riya Sachan, et.al. International Journal of Engineering Research and Applications 

www.ijera.com 

ISSN: 2248-9622, Vol. 15, Issue 9, September 2025, pp 53-58 

 

A 
\ 
www.ijera.com                                    DOI: 10.9790/9622-15095358                                     54 | Page 

                

 

 

o Duplicate Code: Code blocks that are 

repeated across the codebase raise maintenance 

costs and the possibility of inconsistent changes.  

o Inappropriate Intimacy: When a class 

utilizes another class's methods or attributes 

excessively, it creates a tight coupling and less 

modularity.  

o Feature Envy: A method that shows 

misplaced responsibilities by extensively relying on 

accessing the methods or attributes of another class 

rather than concentrating on its own. 

o Switch Statements: Polymorphism could be 

used to improve extensibility and maintainability in 

favour of the overuse of if-else or switch structures.  

o Data Clumps: For better organization, 

groups of data fields that commonly occur together 

could be enclosed into a separate class.  

Software refactoring techniques are categorized into 

several types, including code-based refactoring, 

design refactoring, and architectural refactoring 

[1].A reinforcement learning (RL)-based framework 

is proposed for the detection and refactoring of 

multiple code smells, including Long Method, God 

Class, and Feature Envy, in Java programs. 

 

II. Related Background Work 
Code Smells 

Code smells are indicators of potential design flaws 

in source code that may not directly cause bugs but 

degrade software quality, readability, and 

maintainability. Introduced by Fowler, code smells 

include patterns such as Long Method, God Class, 

Feature Envy, and Duplicated Code[2].Code 

smells are warning signs which refer to certain 

patterns or characteristics observed in source code 

that indicate potential design faws or violate basic 

design rules such as abstraction, hierarchy 

encapsulation, etc.[7]In this dataset, we identified 

and analyzed four code smells: God Class, Long 

Method, Feature Envy, and Refused Bequest. Naive 

Bayes, Logistic Regression, Multilayer 

Perceptron, Decision Trees, K-Nearest 

Neighbors, Random Forest, and Gradient Boosting 

Machine.[8]These smells often result from rapid 

development, poor modularization, or evolving 

requirements. 

 

Refactoring 

Refactoring is the process of restructuring existing 

code without altering its external behavior to 

improve internal structure. Common techniques 

include Extract Method, Move Method, Inline 

Method, and Rename Variable. Refactoring aims 

to reduce code complexity, enhance readability, and 

support maintainability. Manual refactoring is error-

prone and time-consuming, motivating research into 

automated techniques.Refactoring is an important 

software development activity that employs various 

techniques to enhance the structure and quality of 

source code without altering its functionality.Extract 

method refactoring is one of the most commonly 

applied refactoring techniques that involves moving 

a coherent code fragment from a method into a new, 

aptly named method.[14] 

Feature Envy 

A method that is more interested in the data of 

another class(the envied class) than that of the class 

it is actually in. This anti-pattern represents a 

symptom of the method’s misplacement, andis 

characterized by a lot of accesses to foreign 

attributes and methods.[13] 

 

Reinforcement Learning (RL) 

Reinforcement Learning (rl) is a branch of machine 

learning focused on training agents to take actions in 

an environment to maximize some notion of 

cumulative reward often involving a series of 

decisions.[15]Reinforcement Learning is a branch of 

machine learning where an agent learns optimal 

policies by interacting with an environment. The RL 

model is defined by a tuple (S, A, R, T, γ), where: 

o S: Set of states (e.g., code representations 

like ASTs or token sequences), 

o A: Set of actions (e.g., refactoring 

operations), 

o R: Reward function quantifying code 

quality improvement, 

o T: Transition function modeling state 

changes, 

o γ: Discount factor for future rewards. 

In the context of code smell detection and 

refactoring, the RL agent observes code states and 

learns policies to perform transformations that 

maximize software quality metrics (e.g., 

maintainability, modularity). Reinforcement 

Learning for Sequence Generation Reinforcement 

Learning is a branch of machine learning focused on 

training agents to take actions in an environment to 

maximize some notion of cumulative reward often 

involving a series of decisions .It uses a model 

known as the Markov Decision Process (MDP) , 

which deals with decision-making where each 

action is determined by steps, and outcomes are 

influenced by randomness. In RL, an agent (i.e., an 

autonomous entity that takes action in the given 

environment) improves its decisions through trial-

and-error interactions with its environment, learning 

from the rewards it receives based on its actions.[1] 

 

Code Representations 

Effective RL depends on how source code is 

represented. Popular choices include: 
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o Abstract Syntax Trees (ASTs): Tree-

based syntactic structures. 

o Control Flow Graphs (CFGs): Represent 

execution paths. 

o Embeddings: Learned vector 

representations from models like CodeBERT, 

GraphCodeBERT, or Token2Vec, capturing both 

syntax and semantics[16] 

 

Resources to be searched 

Selection of proper resources to search for relevant 

literature plays a significant role in an Research 

Work . We selected the following resources to 

search for all the available literature relevant to our 

research questions: 

IEEE Xplore digital library 

(http://ieeexplore.ieee.org)  

ACM digital library (https://dl.acm.org)  

ScienceDirect (http://www.sciencedirect.com)  

SpringerLink (https://link.springer.com)  

Scopus (https://www.scopus.com)[10][3] 

 

This review follows a structured methodology to 

identify, filter, and analyze research on 

reinforcement learning (RL)-based techniques for 

code smell detection and automated refactoring. The 

process was designed to ensure relevance, coverage, 

and reproducibility. 

A comprehensive search was conducted across 

major databases: IEEE Xplore, ACM Digital 

Library, SpringerLink, and Google Scholar, 

focusing on works published between 2020 and 

2025. Keywords used included: “reinforcement 

learning”, “code smell detection”, “automated 

refactoring”, “software quality”, “RL-based 

refactoring”. 

 

III. Review of Literature 
 

The application of machine learning to software 

maintenance has evolved significantly, with 

reinforcement learning (RL) emerging as a powerful 

tool for code analysis and transformation. Early 

works applied Q-Learning to basic code smells 

such as Long Method and Duplicated Code, using 

syntactic structures like Abstract Syntax Trees 

(ASTs) to model states and refactoring actions as 

rewards-based transitions. These studies 

demonstrated the feasibility of framing code quality 

improvement as a Markov Decision Process (MDP). 

Alabza et al. conducted a review on deep learning-

based approaches for bad smell detection, and their 

focus was to summarise and synthesize the studies 

that used deep learning for bad smell detection. 

They collected and analyzed 67 studies until 

October 2022.[11].To identify the code smell, 

researchers leverage both manual and automatic 

detection approaches. Early detection for code smell 

are conducted manually.[12] 

More recent studies have leveraged Deep 

Reinforcement Learning (DRL) algorithms, 

including DQN, PPO, and A3C, enabling agents to 

learn from complex, high-dimensional code 

representations. Models such as CodeBERT, 

Code2Vec, and GraphCodeBERT have been 

integrated to encode semantic and syntactic 

information. This fusion has improved the ability to 

detect smells like God Class, Feature Envy, and 

Shotgun Surgery with higher precision. 

Several works propose hybrid systems that 

combine RL with static analysis or rule-based 

heuristics to balance learning efficiency with 

domain constraints. However, most are constrained 

to Java datasets and often lack generalization across 

languages or projects. Evaluation is typically based 

on code metrics (e.g., cohesion, coupling), reward 

values, or manually validated transformations. 

This literature points to RL's growing maturity in 

software refactoring while revealing critical gaps in 

scalability, interpretability, and real-world 

applicability. 

 

Comparison of Related Work with Proposed Research 

No. 
Authors & 

Year 
Type 

Uses 

RL 

Smell 

Detection 
Refactoring 

Multi-

Smell 

Support 

Remarks 

1 

Palit& 

Sharma 

(2024) 

Research 

Paper 
Yes 

No (assumes 

need for 

refactoring) 

 Extract 

Method 

(PPO) 

 No 

Focus on single 

refactoring action 

using PPO; lacks 

integrated smell 

detection 

2 
Yadav et 

al. (2024) 
Survey No 

Yes (ML 

techniques 

reviewed) 

 No Yes 

Extensive review 

of ML methods 

and datasets; no 

original RL 
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contribution 

3 
Maini et al. 

(2024) 

Research 

Paper 
 No 

Yes 

(heuristic + 

metrics) 

Optimized 

sequences 
Partial 

Optimization of 

refactoring order, 

but static, not 

learning-based 

4 

Xu et al. 

(2025, 

MANTRA) 

Research 

Paper 
No  No 

Yes (via 

LLM + 

RAG) 

Partial 

Uses collaborative 

LLM agents, no 

learning or 

adaptive decision-

making 

5 
Ye et al. 

(2025) 

Research 

Paper 
 Yes No 

Guided 

generation 
 No 

Combines 

procedural 

guidance with RL, 

but not used for 

code smell repair 

6 
Ali et al. 

(2025) 

Research 

Paper 
 No 

Yes 

(transformer-

based) 

 No Yes 

Detects smells 

using transformer 

model; no 

refactoring action 

involved 

7 

Nasraldeen

& Nehez 

(2024) 

Research 

Paper 
 No 

Yes (ML + 

data 

balancing) 

No  Yes 

Focus on 

improving 

detection accuracy, 

not on repair or 

refactoring 

8 
Cruz et al. 

(2025) 

Research 

Paper 
 No 

 Yes 

(feedback-

enhanced 

ML) 

 No Yes 

Continuous 

feedback loop 

improves ML 

detection, no 

automated 

correction 

9 
Skipina et 

al. (2023) 

Research 

Paper 
 No 

 Yes 

(Feature 

Envy, Data 

Class) 

No  No 

Specific to certain 

smells, uses 

classical ML 

models 

10 
Azeem et 

al. (2019) 

SLR & 

Meta-

Analysis 

 No  Yes  No  Yes 

Review and meta-

analysis of ML 

models; no novel 

technique proposed 

11 

Proposed 

Method 

(2025) 

Research 

Paper 

 Yes 

(PPO/D

QN) 

Yes (via 

metric 

analysis + 

RL states) 

 Yes (multi-

action 

dynamic 

refactoring) 

 Yes 

Fully integrated 

RL-based system 

that detects and 

resolves smells 

using adaptive 

feedback-driven 

refactorings 

 

IV. Conclusion and Future Work 
This review shows that reinforcement 

learning (RL) has strong potential to help with 

automatically finding and fixing code smells. Unlike 

traditional rule-based tools, RL methods can learn 

from experience and adapt to different situations in 

code. These approaches are especially useful for 

fixing common problems like long methods or 

feature envy. They often use deep learning with 

structured code formats like abstract syntax trees 

(ASTs) and code features from pretrained models. 
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Still, there are several challenges. It is hard 

to design reward functions that guide the RL agent 

properly, and it’s difficult to make these models 

work well across many types of code. Many current 

methods also haven't been tested enough on real-

world projects or large, complex systems. 

After studying more than 10 important 

research papers and many ideas from past work, this 

paper proposes a new RL-based approach to solve 

these issues. The method combines automatic smell 

detection with dynamic, self-healing refactoring in 

one system. It uses software quality measures and 

testing to make sure the refactoring is correct. 

Unlike older studies that focus on single smells or 

static rules, this new approach learns and improves 

over time. 

In the future, researchers should look into 

RL models that handle multiple goals (like 

performance and readability), combine symbolic 

and neural techniques for better understanding, and 

include developer feedback in the process. Making 

tools that work across programming languages and 

creating shared benchmark datasets will also help 

move this field forward. 
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