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Abstract: 
Although RES play a crucial role in sustainable development, they pose difficulties for effective regulation 

because to their nonlinear, time-varying, and unpredictable character. In the face of such unknowns, Sliding 

Mode Control (SMC) provides resilience, while AI methods boost performance and adaptability. An extensive 

investigation of the use of artificial intelligence in conjunction with adaptive sliding mode control (ASMC) to 

improve the performance of renewable energy systems is detailed in this work. In most of the existing systems, 

Fuzzy Controller, Neural Network based Controller and Artificial Neuro-Fuzzy Inference System (ANFIS) have 

been used for SMC. However, still adaptivity is the major issue due to the dynamic energy environment. In this 

paper, we proposed an AI-inspired ASMC (AI-ASMC) for RES. Each of SMC and Self-Excited Induction 

Motor (SEIG) big efforts was its own concentration. On the other hand, wind systems perform better under 

dynamic situations when SEIG and SMC are integrated. We present a hybrid AI method for AMC and SEIG 

integrated control in this paper.We delve into the theory, design process, simulation findings, and performance 

evaluation of AI-based ASMC in several renewable energy source (RES) applications, including solar and wind 

power plants. The simulations made in MATLAB show that the proposed work shows better results in stability, 

reliability as well as power outputs. 
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 Fuzzy Logic, PSO. 
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I. Introduction 

The implementation of renewable energy 

systems (RES) has been expedited due to the 

increasing need for environmentally friendly power. 

Wind turbines and solar photovoltaic (PV) systems 

are examples of such nonlinear systems that are 

susceptible to environmental fluctuations and 

uncertainty. Optimal performance under these 

situations is typically lost when using traditional 

control tactics. For its ability to withstand disruptions 

and model errors, SMC has gained renown. 

Chattering and lack of flexibility can occur with 

fixed-parameter SMCs. Integrating AI into control 

techniques enables systems to acquire new 

knowledge and adjust accordingly in real-time. In 

this research, we present a framework for Adaptive 

Sliding Mode Control (ASMC) that makes use of 

artificial intelligence (AI) tools such neural networks, 

reinforcement learning, and fuzzy logic. Our goal is 

to show how ASMC with AI enhancements make 

RES more efficient, stable, and reliable. 

Depending on the generator's rotor, wind 

turbines used to generate wind power are either 

inductive or synchronous [1]. In the beginning, 

doubly-fed induction generators were the norm for 

wind power generation. These generators allowed 

operators to adjust the operating speed with a slip. 

Offshore wind power generation complexes are only 

one example of a scenario where permanent magnet 

synchronous generators are finding growing use due 

to their high generation capacity, low maintenance 

management requirements, and cost effectiveness. 

Benefits of permanent magnet synchronous 

generators (PMSG) include lighter generators, less 

maintenance required, lower operating noise from 

permanent magnets in the rotors, and lower 

production costs as a result of processing 

technological advancements. Because of their high 

efficiency and magnetic flux density, they are able to 

produce more torque than doubly-fed induction 

generators, which is a major benefit [2, 3]. 

Both fixed- and variable-speed designs are 

possible for wind turbines [4]. Induction generators 
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directly linked to a three-phase power grid convert 

wind energy into electrical energy in fixed-speed 

operating systems. A fixed-ratio gearbox keeps the 

wind turbine's rotor speed constant while it's 

connected to the generator shaft. In contrast, 

synchronous generators often make use of variable 

speed operating systems, which allow the generator's 

rotors to spin at different speeds. Aerodynamic 

control allows the operator to alter the generator's 

torque, speed, and power, and variable operating 

wind power generators link to the grid via a converter 

rather than a direct connection. As a result, the wind 

power turbine may be fine-tuned to run at its 

maximum output coefficient throughout a broader 

range of wind speeds, with less mechanical stress and 

aerodynamic noise [5]. 

Max power point tracking (MPPT) is the 

control approach used here to ensure energy 

production is done at its most efficient [6]. For 

different wind speeds, an MPPT controller 

determines the best rotor rotation speed. 

Consequently, it is reasonable to assume that the 

placement and precision of the wind speed sensors 

are critical variables. Conventional vector control 

using proportional-integral loops is one example of a 

linear controller that uses an estimated linear model 

to maximize power extraction [7], [8]. Because the 

PMSG is a nonlinear system with wide-range 

operation points, various control solutions might not 

work as expected. A feedback linearizing control 

based MPPT is suggested to enhance performance. 

This technique involves designing the mechanical 

rotation speed controller and current controllers using 

linear control methods. Nevertheless, this leads to a 

control rule that is complicated and not very resilient 

to changes in parameters or outside influences. 

Because wind speeds differ depending on where on 

the turbine they are measured—and because wind 

power turbine rotors often have quite large 

diameters—wind speed readings might not always be 

an appropriate number for maximizing energy output. 

Since both the measurement site and the sensors 

themselves contribute to environmental uncertainty, 

wind speed measurement is better suited to systems 

with high levels of noise. Due to the high degree of 

mechanical uncertainty in wind power turbine 

systems, control strategies are necessary to address 

this issue. 

Among the several robust control approaches, 

sliding mode control (SMC) has seen extensive usage 

as a robust control for disturbance and uncertainty. 

The use of SMC in wind energy conversion systems 

has been the subject of a few published articles in the 

last several decades [9]. Using SMC for MPPT in a 

wind energy conversion system with uncertainties 

was done in the early investigations of [10]. An ideal 

torque SMC technique is suggested for the 

implementation of MPPT tasks in a system of 

variable speed wind turbines. So, to manage the 

electromagnetic torque in MPPT for PMSG, the SMC 

technique was used. An unstructured uncertainty 

wind energy conversion system is subjected to SMC 

and an input-output linearization approach. A PMSG 

wind turbine system that is linked to the grid was 

used to test and develop an SMC that is based on the 

Enhanced Exponential Reaching Law. By utilizing 

SMC, we were able to decrease inaccuracies between 

the actual current on the d- and q-axis and the 

required command values, and we increased 

resilience under changing operating situations such 

parameter changes and load fluctuation. A sliding 

mode controller and a suggested artificial neural 

network controller were used in the construction of 

an induction generator (IG) speed drive. The ideal 

sliding surface was established by studying the 

relationship between rotor speed and torque in [11]. 

In [12], researchers looked into adaptive SMCs by 

first creating one to fix PMSG's rotor speed 

inaccuracy, then another to fix controller gain and 

mechanical torque estimate. 

When it comes to renewable energy, SMC 

has been the subject of a great deal of research. 

While adaptive systems were developed 

subsequently, fixed-gain SMC was the primary focus 

of early research. The improved handling of 

nonlinearities and uncertainties made possible by AI 

integration has attracted a lot of interest. Important 

contributions encompass: 

• Fuzzy-based SMC to mitigate chattering. 

• Neural Network-based adaptive controllers 

for maximum power point tracking (MPPT). 

• Reinforcement learning for dynamic tuning 

of control parameters. 

II. Related Works 

For floating wind turbine systems, this 

research suggests an adaptive switched sliding mode 

controller that can improve performance even when 

actuators fail or when the environment is unclear. 

Floating wind turbines that take the average stay 

duration into account are modeled using a control-

oriented switching linear model. The suggested 

controller is based on an adaptive law and a full-

order state observer, which make up for the impaired 

control outputs caused by identifying mistakes, 

disturbances, and defects. A combination of the 
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linear matrix inequality method, the average dwell 

time approach, and the Lyapunov stability theory 

provide stability theorems, from which the control 

parameters are determined. On the NREL 5MW wind 

turbine and spar-buoy platform, the suggested model 

and controller are tested with the help of the high-

fidelity fatigue, aerodynamics, structures, and 

turbulence (FAST) code. Under varying wind-wave 

combination circumstances, the suggested controller's 

performance is contrasted with that of an optimum 

gain-scheduling proportional-integral controller. 

Whether the floating wind turbine is operating 

normally or not, the findings demonstrate that the 

suggested controller reduces mechanical stresses and 

enhances power quality. Clinicians, Please Take 

Note—There has been a lot of buzz about floating 

wind turbines as a sustainable energy source. It is 

critical for offshore floating wind turbines to be able 

to withstand component failures and continue 

producing steady power quality when operating in 

rough seas. Finding a solution that lessens the impact 

of a defect on the wind turbine system is no easy feat. 

For floating wind turbines, this study suggests an 

adaptive fault-tolerant control approach for when 

actuator faults occur [13]. 

The renewable energy sector is greatly 

affected by hybrid energy storage systems because of 

their significance in improving grid stability and 

regulating its fluctuation. But sophisticated control 

tactics are needed to put these systems into action so 

they work as intended. In this study, we offer an 

algorithm for the control and power phases of a 

hybrid energy storage system that combines a 

bidirectional Zeta converter, a battery, and a 

supercapacitor. A power circuit parameter-co-

designed adaptive sliding-mode controller is used in 

the control stage. Compatibility with inexpensive 

microcontrollers and protection of the battery against 

life-reducing high-frequency transients are features 

of the design methodology. The Zeta converter's 

constant output current also keeps the load, 

microgrid, and battery free of current harmonics. The 

suggested method outperforms a traditional cascade 

PI architecture, as shown in an application example 

run using the PSIM electrical simulation program 

(version 2024.0) [14]. 

This article proposes an adaptive fractional 

sliding-mode control (AFSMC) method based on 

improved convergence rate performance of the 

FOPMSG to track accuracy, response speed, and 

robustness, as a solution to the Mittag-Leffler 

synchronization (MLS) problem of a wind turbine 

system based on a fractional-order permanent magnet 

synchronous generator (FOPMSG) that is subject to 

unknown disturbances like variations in the external 

load torque and uncertainties in the system 

parameters. Simplifying the system's time to the 

sliding-mode surface and improving the chattering in 

the control signal are the main goals of the AFSMC 

technique, which is based on a fractional-order term 

integrated into the new rule for reaching the sliding 

mode. The robust controller that was built ensures the 

robust sliding-mode dynamics by deriving sufficient 

requirements. For the first time, this study proposes 

an adaptive sliding-mode control (ASMC) with a 

terminal function that, at a predetermined time, 

correctly manages the FOPMSG model. In addition, 

the ASMC that was created can eliminate the 

reaching phase according to Lyapunov stability 

theory, which effectively reduces the presence of 

disturbances and uncertainties [15]. 

Using an adaptive reference model called 

Model Reference Adaptive Control (MRAC), this 

work provides a direct power control (DPC) solution 

for the Doubly Fed Induction Generator (DFIG). In 

order to circumvent the problems that arise from 

using PID controllers alone, this method is based on 

the conventional DPC. To overcome these 

constraints, solutions frequently include balancing 

speed and efficiency or, in the case of fast changes in 

wind speed, deviating from peak power. These are 

the DFIG (Double Fed Induction Generator) 

equations in the d-q reference frame. Then, to 

regulate the DFIG, we create a direct power control 

(DPC) method that uses PID controllers and space 

vector modulation (SVM) to keep the switching 

frequency constant. One level of stator side power 

factor is maintained via the Maximum Power Point 

Tracking (MPPT) method. In the DPC architecture, 

Model Reference Adaptive Control (MRAC) takes 

the role of traditional PID controllers. In addition, we 

compare and contrast the performance of the PID 

controller with that of DPC-based MRAC [16]. 

This paper introduces an adaptive 

supertwisting sliding mode controller (AST-SMC) 

that enhances the original benefits of sliding mode 

control (SMC) by eliminating chattering and 

prioritizing reliability through dynamic control 

setting adjustments that do not require prior 

knowledge of uncertainty limits. We begin by 

simulating and constructing the wind turbine system 

using three distinct controllers: the AST-SMC, the 

ST-SMC, and eventually the FOSMC. A different 

comparison is required. Due to concealed state 

information, which utilizes the whole system state, 

the control law only has access to the rotor speed. An 

asymptotic observer triangle is employed to estimate 

the unknown rotor acceleration with the goal of 
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minimizing observing errors over time. The optimal 

controller is discovered using particle swarm 

optimization by enhancing the control law of AST-

SMC. Applying the Lyapunov stability theorem, we 

prove that AST-SMC is stable for limited time. When 

compared to conventional SMC, the results of the 

simulation show that it performs better in controlling 

the system of wind turbines. In terms of energy 

consumption, settling time, tracking precision, and 

the smoothness of control inputs, it shines [17]. 

Due of its low impact on the environment, 

wind energy conversion systems (WECSs) are 

currently the subject of intense research and 

development efforts. An appealing advancement is 

the maximum power extraction (MPE) that is 

affected by changes in wind speed. The MPE with 

parametric variation and wind speed is the focus of 

this work. Creating a GGSMC, or generalized global 

sliding mode control, to monitor wind turbine speeds 

accomplishes this goal. Feed forward neural 

networks (FFNNs) are used to predict the nonlinear 

drift terms and input channels, which often change in 

the presence of uncertainty. Starting from the 

beginning with suppressed chattering, the planned 

GGSMC algorithm imposed sliding mode. Because 

of this, the maximum power point tracking (MPPT) 

management is extremely robust right from the start, 

which is something that is always required in real-

world situations. Thoroughly presenting the results of 

the suggested design's closed loop stability study and 

conducting simulations to validate the robust MPE 

[18]. 

To successfully address the problems 

generated by measurement noise in the system, our 

controller implements an Arbitrary Order Sliding 

Mode Control (AOSMC), which is its fundamental 

uniqueness. An input-output form that is control-

convenient is created from the model that is being 

studied. In order to further improve the system 

performance, we also incorporate a high-gain 

differentiator (HGO) and feedforward neural 

networks (FFNN) into the control mechanism all at 

once. In contrast to the FFNN, which calculates 

essential nonlinear functions like the input channel 

and drift term, the HGO calculates higher derivatives 

of the system's outputs and feeds them back into the 

control algorithms. The control rule becomes more 

realistic with HGO since it lessens the sensitivity of 

the sensors to noise. Our extensive MATLAB-based 

simulation studies verify the remarkable efficacy of 

the suggested innovative control method in 

optimizing power extraction in standalone wind 

energy applications, and we compare the findings to 

those in the existing literature to back up our claims 

[19]. 

The use of renewable energy sources to 

create electricity is a developing trend globally in 

recent years. The fundamental parameters impacting 

the power production of wind turbines—the wind's 

speed and direction—are dynamic and ever-

changing. Changing the blade angle is one way to 

regulate the power output of a wind turbine. The 

wind turbine pitch angle is controlled using an 

adaptive control approach in this article. The sliding 

mode control coefficients were computed using the 

particle swarm optimization-support vector machine 

approach, and they form the basis of the proposed 

method. A comparison with the Model Reference 

Adaptive Controller (MRAC) in operating under 

disturbance was conducted to assess the efficacy of 

the suggested technique. The findings demonstrate 

that when disturbances are present, the suggested 

controller outperforms the MRAC. Power production 

at various wind velocities has, according to 

simulations, accelerated to its maximum potential 

[20]. 

III. Proposed AI-ASMC Model 

3.1. Mathematical Model of Wind System 

The system model is depicted The wind, the 

primary force behind wind turbines (WTs), is both 

swift and directional. It starts with air masses moving 

through the atmosphere as a result of pressure or 

temperature variations. Delays in wind speed and 

direction caused by frictional forces and obstructions 

in the lower atmosphere are known as wind 

deceleration. The turbulent flows begin here. Because 

turbulence grows with increasing ground roughness 

and diminishes with increasing distance from the 

ground, wind speed varies over a large frequency and 

amplitude range. The essential feature of lower-layer 

winds, as described by the Van der Hoven spectra, is 

the distribution of kinetic energy in the frequency 

domain. Eq.(1) expresses the model's prediction that 

the wind speed (v) may be divided into two parts: a 

deterministic component with a slow variable (vm) 

and a stochastic component with a fast variable (vt): 

𝑣 = 𝑣𝑚 + 𝑣𝑡    (1) 

In the turbulence domain, the turbulence 

spectra seen by a blade element in motion deviate 

from those at a fixed point, where a portion of the 

kinetic energy is concentrated at higher frequencies; 

in the stationary domain, changes in wind speed over 

the rotor disc are caused by tower shadow effects and 
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wind shear, which is the change in mean wind speed 

with height due to earth's skin friction. 

SEIG 

Generator AC GRID

Voltage 

Source 

+

-

Fig.1. Wind Energy System Model 

In major works, SMC and SEIG focused 

individually. However, integration of SEIG and SMC 

improves the overall efficacy of the wind systems 

under dynamic conditions. In this work we have 

proposed a hybrid AI algorithm for integrated control 

of AMC and SEIG. It works as follows, 

1. A wind turbine is used to power the SEIG by 

transforming the energy of the wind into mechanical 

energy.  

2. Self-Excitation: The SEIG can generate electricity 

without an external excitation source, such as a DC 

voltage supply, because it functions in self-excited 

mode. Capacitors or a power converter attached to 

the stator terminals of the generator instead supply 

the reactive power.  

3. SMC (sliding mode controller): When the wind 

speed and direction fluctuate in a wind energy 

system, an SEIG's performance is controlled using an 

SMC. SMC offers reliable control and is capable of 

enduring interruptions from outside sources.  

4. Converting Power: The SEIG can produce 

alternating current (AC), which can be rectified into 

direct current (DC) and then inverted back into AC at 

grid frequency. During this conversion process, the 

SMC assists in stabilizing the DC connection voltage 

and frequency. 

 

3.2. ASMC Model 

One method for designing nonlinear systems for 

control is SMC, which involves using a 

discontinuous control signal to alter the dynamics of 

a nonlinear system such that it follows a segment of 

its ideal behavior.  

As a recursive approach, the BSMC technique 

ensures that the closed-loop system is globally 

asymptotically stable by connecting the selected 

Lyapunov function to the specified feedback 

controller. 
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In order for the PV voltage, 𝑋𝑼𝑋, to follow the 

reference voltage, 𝑋𝑓𝑒𝑓, the controller design in this 

work aims to modify the DC-DC converter's duty 

cycle. Thus, the PV system may be optimized to 

harvest the highest amount of electricity possible. 

The PV system's MPPT was efficiently controlled by 

a BSMC. The PV system has the capability to operate 

near MPP by adjusting the duty cycle. How is the 

tracking error defined as,  

𝑒1 = 𝑉𝑟𝑒𝑓 − 𝑉𝑊and 𝑒2 = 𝑒1 + 𝐾1𝑒1. 

𝑆 = 𝑐2 − 𝐾2𝑒1 = (𝐾1 − 𝐾2)𝑒1 + 𝑒1 

The following eqn shows the control input variable, 

𝑢𝐵𝑆𝑀𝐶(𝑡),  

𝑢𝐵𝑆𝑀𝐶(𝑡) = 𝑢𝑎𝑞(𝑡) + 𝑢∞(𝑡) 

where𝑢𝑒𝑞(𝑡) and 𝑢𝑐𝑜(𝑡) are defined in (9): 

𝑢𝑒𝑞(𝑡) =
−
𝑉𝑃𝑉

𝐿
+ 𝑖𝑝𝑣 − 𝐶1𝑉‾𝑟𝑓 + 𝐶1(𝐾2 − 𝐾1)𝑖

𝛿𝐿

𝑢𝑐0(𝑡) =
−𝐶1𝑎(𝑆 + ssgn⁡(𝑆))

𝛿𝐿

 

Because of sgn⁡(𝑆), the control signal is 

discontinuous and we have hard switching. In [26], 

the dynamic of the sliding surface is defined as (10). 

𝑆̇ = −𝑎(𝑆 + 𝑏sgn⁡(𝑆)) 

Asymptotic stability of the sliding surface and the 

convergence to reference voltage were ensured using 

the following Lyapunov function (11) as in [26]: 

{
 

 𝑉1 =
𝑒1
2

2

𝑉𝑙𝑦𝑝 = 𝑉1 +
𝑆2

2
=
𝑒1
2 + 𝑆2

2

 

3.3. AI-ASMC Model  

The sliding mode speed controller that was suggested 

is seen in Figure 2. Here we define the state 

variables, 

𝑥1(𝑡) = 𝑤𝑜𝑝𝑡 − 𝑤𝑟(𝑡) 

𝑥1(𝑡)́ = −𝑤𝑟(𝑡) = −𝑥2(𝑡) 

Voltage 

Input

Adaptive Sliding 

Mode Controller

Turbine/Generator 

System

Hybrid PSO-

ANFIS

Fig.2 Closed Loop Block Diagram of Hybrid ASMC 

Next, the following state-space representation can be 

used to describe the IG drive system: 

[
𝑥̇1(𝑡)
𝑥̇2(𝑡)

] = [
0 −1
0 −𝐵/𝐽

] [
𝑥1(𝑡)
𝑥2(𝑡)

] + [
0
𝐾𝑡/𝐽

] 𝑖𝑞𝑠
∗ (𝑡)

+ [
𝑜

−1/𝐽] 𝑇̇𝑚 

We can rewrite the above eqn as follows, 

𝑋̇(𝑡) = 𝐴𝑋(𝑡) + 𝐵𝑈(𝑡) + 𝐷𝑇̇𝑚 

where 

𝐴 = [
0 −1
0 −𝐵/𝐽

] , 𝐵 = [
0
𝐾𝑡/𝐽

] , 𝐷 = [
0

−1/𝐽
] , 𝑈(𝑡)

= 𝑖𝑞𝑠
∗ (𝑡) 

and𝑈(𝑡) is output of the proposed sliding mode 

controller. 

As seen in Figure 4, the suggested ANN controller is 

implemented using a three-layer neural network. The 

first layer of the artificial neural network (ANN) is 

fed by the variables x_1^1=ϋ_opt-ϋ_r and 

x_2^1=ϋ_"opt " in this research. Multiple processing 

units, each linked to a sigmoidal function, are located 

in the hidden and output layers. In the hidden layer, 

node j's net input (net _j) and output (O_j) are 

𝑛𝑒𝑡𝑗 = Σ(𝑊𝑗𝑖 ⋅ 𝑂𝑖) + 𝜃𝑗 , 𝑂𝑗 = 𝑓( net 𝑗) 

where f is the sigmoidal activation function that is 

used. 

𝑓( net 𝑗) =
1

1 + 𝑒−𝑛𝑒𝑡𝑗
 

in addition to the net input (net_k) and matching 

output (O_k) for node k in the output layer, 
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𝑛𝑒𝑡𝑘 =∑ (𝑊𝑘𝑗 ⋅ 𝑂𝑗) + 𝜃𝑘 , 𝑂𝑘 = 𝑓(𝑛𝑒𝑡𝑘)

= 𝑑𝑢𝑝 

SEIG Design 

In order to design the dynamic model of SEIG, we 

have utilized the following equations. 

𝑥 = 𝑓(𝑥, 𝑦, 𝑧)

𝑧 = 𝑔(𝑥, 𝑢)
 

Here 𝑥is state variables, 𝑧 is output variables, 𝑢 is the 

input variables. It can be summarized as follows: 

𝑧 = [𝑣𝑑𝑟 , 𝑣𝑞𝑟 , 𝑣𝑑𝑔 , 𝑣𝑞𝑔]
𝑇
𝑢 = [𝑣𝑑𝑠, 𝑣𝑞𝑠, 𝑣𝑑𝑔 , 𝑣𝑞𝑔]

𝑇

𝑥 = [𝜔, 𝛽, 𝜃𝑡𝑤 , 𝑠, 𝑖𝑑𝑠, 𝑖𝑞𝑠 , 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝐸𝑑
′ , 𝐸𝑞

′ , 𝑉𝐷𝐶]
𝑇 

Hybrid AI Algorithm Design 

The FIS is built using if-then rules, which allow the 

regulations to establish the link between input and 

output variables. Because standard prediction 

approaches do not take data uncertainties into 

account when operating in scenarios with extremely 

uncertain input and output data, this model can be 

used as a prediction tool in such cases. The two main 

inference systems used in fuzzy logic are Mamdani 

and Takagi-Sugeno. The inference system of Takagi-

Sugeno is typically used to apply ANFIS.  

Figure 3 shows that the ANFIS structure has five 

layers. Nodes in each layer can be either fixed or 

flexible. Layers 2, 3, and 5's (circular) nodes stand 

for fixed nodes in this system, whereas layers 1 and 

4's (square) nodes, or adaptive nodes, are nodes that 

may learn new parameters. 
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Funnction

Defuzzification 

Layer

Output Layer

Fig.3 ANFIS Model 

In order to explain the rules of each layer, we take 

two fuzzy if-then rules into consideration as follows: 

𝑅𝑢𝑙𝑒⁡1: 𝐼𝑓⁡𝑥⁡𝑖𝑠⁡𝐴1𝑎𝑛𝑑⁡𝑦⁡𝑖𝑠⁡𝐵1 , 𝑇ℎ𝑒𝑛⁡𝑓
= 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1 

𝑅𝑢𝑙𝑒⁡2:⁡𝐼𝑓⁡𝑥⁡𝑖𝑠⁡𝐴2⁡𝑎𝑛𝑑⁡𝑦⁡𝑖𝑠⁡𝐵2, 𝑇ℎ𝑒𝑛⁡𝑓
= 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2 

The output (linguistic variables) is denoted by f, 

whereas the input variables are x and y, the fuzzy sets 

are Ai and Bi. You should measure the subsequent 

parameters {pi, qi, ri} while you are training ANFIS. 

Here is how to measure the function of each layer: 

Layer 1: In this layer, a membership function defines 

each node, i. In fuzzy logic, membership functions 

make the variables more nebulous. Membership 

functions are curves that convert points in the input 

space to membership values between 0 and 1. 

Triangular, trapezoidum, and Gaussian membership 

functions are the most prevalent types among many 

more. 

𝑂1,𝑓 = 𝜎𝐴1(𝑥) 

𝑂1,𝑓 = 𝜎𝐵1(𝑥) 

That is, x is the data that node i and O1 receive as 

input.Ai's membership function, denoted by i, is 

often described by the following Gaussian function: 

𝜎𝐴𝑡(𝑥) = exp (
−(𝑥 − 𝑐)2

𝜎2
) 

Standard deviation (𝜎) and the center of the Gaussian 

membership function (C), which are referred to as 

antecedent parameters, are included in this 

calculation. The optimization algorithm measures the 

value of these parameters, which are crucial to 

membership functions. 

Layer 2: We may define the firing strength of a rule 

using the following relation: 

𝑤1 = 𝜎𝐴𝑥 × 𝜎𝐵1(𝑥) 

Layer 3: By dividing the firing strength of the ith rule 

by the total firing power of all rules, the firing 

strength of each rule is normalized. 

𝜎3,𝑡 = 𝑤𝑡̅̅ ̅ =
𝑤𝑡

𝑤1 + 𝑤2
 

Layer 4: The following is the measurement for the 

fuzzy rule's outcome section: 
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𝜎4,𝑡 = 𝑤𝑡̅̅ ̅(𝑝1𝑥 + 𝑞1𝑦 + 𝑟𝑡) 

The set of subsequent parameters, which are 

calculated by the optimization process, are 

represented here by {pi, qi, ri}. 

Layer 5: This layer simply adds up all of Layer 4's 

outputs. 

𝜎5,1 =∑𝑤𝑡̅̅ ̅𝑓𝑡

𝑅

𝑡=1

 

Antecedent and consequent parameters are the two 

main structural parameters in the ANFIS model. 

When fine-tuning the ANFIS model's antecedent and 

consequent parameters, gradient-based approaches 

are typically employed. One drawback of gradient-

based approaches is their sluggish convergence rate 

and the fact that they place the solution in the context 

of local optimality. If you're having trouble with the 

gradient-based approaches, try using a metaheuristic 

optimization algorithm like GA or particle swarm 

optimization (PSO). Figure 4 shows the ANFIS 

model training process using PSO and GA, two 

metaheuristic optimization methods. 
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Fig.4 Flow of Hybrid ANFIS Model 

In a manner similar to the genetic algorithm, 

the method generates a population of solutions at 

random and then searches the problem area for the 

answer, much like the PSO algorithm. However, PSO 

algorithms differ from genetic algorithms in that they 

randomly assign velocities to each particle—or 

possible solution to the optimization problem—so 

that any given particle's velocity can be changed in 

each iteration. In particle swarm optimization, the 

speed of individual particles determines their relative 

positions. Particle i's location in the search space at 

time step t is denoted by x_i (t). Unless otherwise 

specified, t stands for discrete time steps. Adding a 

velocity, v_i (t), to the particle's present position 

changes its position: 

𝑥𝑖(𝑡) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡) 

𝑣𝑖(𝑡) = 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡))

+ 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡)) 

The variables r_1 and r_2 are random 

vectors, the acceleration coefficients c_1 and c_2 are 

given, and the variables pbest and gbest are the local 

best and global best, respectively. One possible 

method for fixing the ANFIS issues is PSO. With 

respect to PSO, ANFIS is like a particle, and the 

factors that affect the ANFIS process are like its 

dimensions. In contrast, the PSO has particles, which 

represent competing ANFIS processes that aim to 

solve the objective function problem. 

IV. Experimental Analysis 

4.1. Simulation Setup 

Figure 3 depicts the total system block diagram. Here 

are the parameters of the wind turbine generating 

system that was utilized in the simulation:  

(1) This wind turbine has the following parameters: 

Pmec=3.5KW, ρ=1.25Ns 2 /m4, R=2.51M, 

J=0.0466Nmsec2, B=0.0077Nmsec/rad, C1(β)=-0.11, 

C2(β)=0.067, and C3(β)= 0.07. 

(2) The induction generator's parameters are as 

follows: stator resistance (2.12 Ω), rotor resistance 

(0.04 Ω), stator inductance (0.0059 Ω), rotor 

inductance (0.0069 Ω), magnetizaton inductance 

(0.0061 Ω), gear ratio (N1/N2)=1. 
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Table 1. Characteristics of the DC generator. 

Quantity Unit Value 

Resistance (R) Ω 3 

Inductance (L) μH 700 

Back-emf constant (Kb) mV/rpm 8.01 

Torque constant (Ki) mNm/A 68.2 

Viscous-friction (B) - 0.001876 

Rotor inertia (J) g/cm2 100 

 

Fig.5 Wind Speed Profile 

 

4.2. Comparative Analysis 

The constructed ANN is validated by checking the 

values of the correlation coefficient (Rcor), root-

mean-square error (RMSE), and relative error (RE) 

given in equations (25) to (27). Table 1 lists the 

characteristics of the created ANN, which showed 

acceptable correlation values. 

𝑅𝑀𝑆𝐸 = √
1

𝑛𝑇
∑(𝑦𝑝 − 𝑦𝑇)

2

𝑛𝑇

𝑛=1

 

𝑅𝐸 =
𝑅𝑀𝑆𝐸

𝑦𝑝
 

𝑅𝐶𝑜𝑟 =
∑ (𝑦𝑝 − 𝑦𝑝̅̅ ̅)𝑖𝑒𝑇 ∑ (𝑦𝑇 − 𝑦𝑇̅̅ ̅)𝑖𝑒𝑇

√∑ (𝑦𝑝 − 𝑦𝑝̅̅ ̅)𝑖𝑒𝑇 √∑ (𝑦𝑇 − 𝑦𝑇̅̅ ̅)𝑖𝑒𝑇

 

According to Figure 6, the speed controller has bad 

performance and that improving it requires adjusting 

the parameters of the three PI controllers. Most 

tuning is done by trial and error, which is a tedious 

process because finding the best values is not easy. 

Also, the wind turbine's linked electrical and 

mechanical equations make it different from a single-

input-output linear system, which is the basis for the 

PI controller's development. The identical PI 

regulators utilized for the current and voltage 

controllers in the previous experiment are employed 

in Figure 7, which applies a sliding mode speed 

controller with a constant sliding gain γ. While speed 

tracking is enhanced, the voltage regulation is 

impacted by the modifications made to the speed 
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steps. As shown in Figure 8, the adaptive SMC speed 

controller improves speed tracking and voltage 

regulation by adjusting the sliding gain online and 

compensating for its influence on the torque turbine 

through estimate. 

 

(a)

 

(b) 

 

(c) 

Fig.6 Comparative Analysis on (a) RMSE (b) RE (c) 

RCor 

 

It can be seen that the proposed hybrid ANFIS model 

reduces the error in all forms when compared to the 

original ANFIS model. This is due to the 

improvement in training phase using PSO.  

V. Conclusion 

The nonlinear, time-varying, and 

unpredictable nature of RES makes effective control 

of them challenging, despite their critical significance 

in sustainable development. When confronted with 

such uncertainties, Sliding Mode Control (SMC) 

offers durability, while artificial intelligence 

technologies enhance performance and flexibility. 

This article details an exhaustive examination of the 

application of AI with adaptive sliding mode control 

(ASMC) to enhance the performance of renewable 

energy systems. Artificial Neuro-Fuzzy Inference 

System (ANFIS), Fuzzy Controller, and Neural 

Network based Controller are the most often utilized 

methods for SMC in current systems. Nevertheless, 

in light of the ever-changing energy landscape, 

adaptability remains the key concern. Our proposal 

for RES is an AI-inspired ASMC, which we call AI-

ASMC. Our investigation of artificial intelligence 

(AI)-based ASMC for use in solar and wind power 

plants, among other RES applications, covers its 

theory, design process, simulation results, and 

performance assessment. Results in stability, 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

20 40 60 80 100

R
M

S
E

Time (s)

Fuzzy

ANN

ANFIS

Proposed PSO-ANFIS

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

20 40 60 80 100

R
E

Time (s)

Fuzzy

ANN

ANFIS

Proposed PSO-ANFIS

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

20 40 60 80 100

R
C

o
r

Time (s)

Fuzzy

ANN

ANFIS

Proposed PSO-ANFIS



S.Radha Krishna Reddy, et.al. International Journal of Engineering Research and Applications 

www.ijera.com 

ISSN: 2248-9622, Vol. 15, Issue 9, September 2025, pp 40-52 

 

A 
\ 
www.ijera.com                                    DOI: 10.9790/9622-15094052                                     50 | Page 

                

 

 

dependability, and power outputs are all improved by 

the suggested work, according to the MATLAB 

simulations. 
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