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ABSTRACT- 
This paper enables real-time, virtual representation of physical assets to enhance operational efficiency and 

predictive maintenance. It integrates sensor data, system behavior, and machine dynamics to simulate and assess 

equipment conditions continuously. Existing traditional condition monitoring approaches often face challenges 

such as limited accuracy, inability to adapt to evolving system behavior, and poor generalization under varying 

operational conditions. To address these issues, this paper proposes a Hybrid Physics-Based and Data Driven 

Modeling (HP-DDM) framework that synergistically combines physical modeling of machinery dynamics with 

machine learning techniques (MLT) for robust and adaptive monitoring. The hybrid framework uses real-time 

sensor inputs and historical data to continuously update the digital twin, allowing it to detect anomalies, predict 

failures, and support informed maintenance decisions. This methodology is applied to rotating equipment in power 

plants, demonstrating how the digital twin adapts to operational variations and environmental conditions. The 

proposed HP-DDM framework enhances fault detection accuracy, reduces false alarms, and supports predictive 

maintenance strategies, leading to extended machinery lifespan and reduced downtime. Experimental results 

validate that the hybrid approach outperforms conventional methods in terms of precision, adaptability, and real-

time decision support. The findings of this research will pave path for industries in Papua New Guinea to enhance 

their machinery failure predication rate that will ultimately lead to improved maintenance management practices 

and improved productivity. 

 

Keywords: Digital Twin, Condition Monitoring, Hybrid Modeling, Predictive Maintenance, Machinery Health, 

Rotating Equipment 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 25-08-2025                                                                            Date of acceptance: 03-09-2025 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

I. Introduction 
Machinery condition monitoring is crucial 

for operational productivity, minimizing downtimes, 

and prolonging longevity of equipment in automation 

systems and predictive maintenance [1]. Some 

general limitations of condition monitoring systems 

include inability to simulate sophisticated dynamic 

operating conditions, the absence of real-time data 

amalgamation, and passive fault localization. These 

weaknesses can incur premature mechanical failures, 

exorbitant maintenance expenses, and resource 

squandering. What this research seeks to achieve is a 

faster, smarter, and more adaptive mode for 

monitoring using novel digital technologies [3]. Thus, 

for these all-present problems this research focuses 

on implementing Digital Twin (DT) technology to 

systems for state monitoring [4]. A digital twin can 

stand for an actual counterpart such as an object and 

be utilized for its simulation, predicting, and 

receiving real-time data through interfaces with 

sensors and computer intelligence models [5]. 

Through this research, these gaps will be bridged by 

developing an end-to-end DT-based framework that 

enhances predictive maintenance through anomaly 

detection, failure forecasting, and real-time diagnosis 

[6]. Through consideration of these issues, the 

research helps to improve intelligent maintenance 

practices [7] and results in the achievement of 

completely autonomous industrial systems that can 

adjust to new conditions and optimize operating 

efficiency with little or no human intervention [8]. 
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Various traditional and sophisticated 

methods have been used in machinery condition 

monitoring to identify malfunctions and forecast the 

time when equipment will fail [9]. Substantive 

machine health information can be derived from 

traditional methods such as vibration analysis, 

thermal imaging, acoustic emission testing, and oil 

analysis [10]. Although these techniques have their 

applications, they are reactive and not predictive and 

often require human interpretation [11]. Emergent 

developments have introduced data-based techniques 

like ML and DL algorithms, which analyze gigantic 

databases of sensors to find trends and failure 

prognoses [12]. Moreover, Internet-of-Things-based 

systems enabled distant monitoring through 

collecting information in real-time by way of 

networks of sensors [13]. Nonetheless, several 

hurdles are present. When presented with 

heterogeneous data from various machine types and 

manufacturers, such systems often experience 

integration issues and limited scalability [14]. A lot of 

ML/DL-based training methods require large labeled 

data sets, which might not be available in some 

industrial applications [15]. Finally, existing 

monitoring systems are not good enough to simulate 

and estimate how equipment would behave in various 

operating conditions in real time. Due to these 

limitations, the system is less flexible and less 

capable of making anticipatory decisions. DT 

technology, which offers a virtual representation that 

mirrors the physical equipment in real-time, promises 

to address several of these issues. However, there are 

some challenges to implementing DT as well, such as 

intricate data synchronization, high processing 

requirements, and the need for domain-specific 

modeling expertise [16]. Hence, solutions based on 

DT attempt to overcome the essential demand for a 

harmonized, extensible, and intelligent system 

despite conventional methods retaining core 

competencies. 

Problem statement: For most instances, traditional 

methods of machinery condition monitoring are not 

sufficient in identifying anomalies and predicting 

failures against the backdrop of changing operating 

conditions. They tend to be highly prone to false 

alarms, lack generalizability, and rest on static 

models or stand-alone data-driven techniques. On top 

of that, they don't understand how to physically 

merge data from sensors in real time with the known 

dynamics of the system. Timely maintenance 

decisions and operating efficiency are both adversely 

affected by this poor measure. Therefore, to enhance 

reliability and support predictive maintenance 

techniques, a clever, responsive, and continuously 

developing condition monitoring system that 

combines physical system knowledge with data-

driven knowledge is necessary. 

Motivation: Conventional system monitoring 

techniques are insufficient for industrial systems, 

especially the dynamic and constantly evolving 

behavior of power plant rotating equipment. The 

emergence of digital twin technology has presented a 

revolutionary chance to enhance condition 

monitoring by real-time prediction and simulation. 

Through the integration of physics-based models 

with machine learning techniques, a hybrid method 

can describe both the fundamental behaviours of the 

system and data-driven patterns. The objective of this 

research is to design a trustworthy monitoring system 

that can adapt to changing conditions, reduce the 

occurrence of false alarms, and yield valuable 

information. By taking data-driven maintenance 

actions at appropriate times, equipment performance 

is optimized, downtime reduced, and the lifespan of 

machines increased. 

Contribution: The research introduces a new DT 

monitoring framework for machinery conditions 

named HP-DDM. The platform continuously updates 

and optimizes the digital twin based on real-time 

sensor data as well as past records by blending 

physical modeling of machine dynamics with 

machine learning techniques. The methodology is 

very efficient if used to operate rotating machinery 

for power plants and eliminate false alarms, change 

their sensitivity with ambient conditions, and 

precisely diagnose faults. In this research work, 

contribution comes through designing, implementing, 

and experimentally demonstrating the HP-DDM 

approach; the proposed methodology allows for 

predictive maintenance and offers real-time decision-

making support that surpasses the limitations 

possible with earlier strategies. 

The following is included in this section, which 

organizes the structure of the research paper: The 

Digital Twin-Based Machinery Condition 

Monitoring project is the subject of the section II of 

this research. The section III of this dissertation will 

devote its attention to a comprehensive discussion of 

HP-DDM. Detailed examination, a comparison to 

earlier approaches, and an analysis of the 

consequences are all included in Section IV of the 

report's findings. Section V contains a complete 

examination of the outcomes that were taken into 

consideration. 

 

II. Related works 
Through predictive maintenance and 

enhanced operational effectiveness, technologies 

such as Digital Twin (DT) and Condition Monitoring 

(CM) are rapidly transforming industries. Fault 

diagnosis of complex environments, tool condition 
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monitoring (TCM), and bearing life-cycle monitoring 

can all be significantly benefited by data-driven 

modeling, real-time data flow, and physical-virtual 

system interactions. 

The application of condition monitoring 

(CM) and Digital Twin (DT) technology for 

predictive maintenance is suggested in a systematic 

review by Liu, H. et al [17]. The research draws DT's 

involvement regarding the historical overview, 

significant technologies, and the steps of execution, 

which enhances data assistance, capability, and 

maintenance approach. This analysis contributes 

auxiliary insights concerning DT-guided CM 

challenges relating to rigidity of the framework, 

granularity of data models, spatial-uncertainty 

quantification, and uncertainty quantification. 

A framework for digital twin-based real-

time anomaly detection during tool condition 

monitoring (TCM) in analogy machining has been 

developed by Liu Z et al. [18]. This work 

incorporates the numerical controller (NC) data and 

vibration signals to implement a physical virtual 

system with real-time data streaming. To model tool 

wear, frequency-based model features (MFFs) and 

data-driven modeling is applied in real-time. Field 

studies confirm that the dynamic TCM for complex, 

intelligent manufacturing systems achieves greater 

accuracy in anomaly detection. 

Guo L et al. [19] present a new BLDT model, 

an integrated dynamic model comprising a bearing, 

defect evolution simulation, and neural network 

degradation model. This technique provides direct 

real-time data from physical and virtual interfaces 

which captures the variability of defect size and 

structural deflection stiffness. The evaluation of the 

BLDT model with experimental signals showed very 

good accuracy for the prediction for bearing 

performance loss. This shows that the method can 

facilitate condition monitoring throughout the entire 

operational life of the bearing. Nejad, A. R. et al. [20] 

trace the origin and application of condition 

monitoring in ship propulsion systems by noting the 

more recent performance monitoring changes to 

digital twin based approaches. They address polar 

operations and other legal, environmental, and policy 

issues as well as onboard practices. The proposed 

technique is based on the application of digital twins 

for real-time health assessments to enable failure 

diagnosis at advanced stages. Results show that the 

use of digital twins in marine environments helped in 

reduced costs of maintenance, increased reliability, 

and clearly showed the advantages and limitations of 

such an approach. Bofill et al. [21] propose the 

combination of Predictive Fault Monitoring (PFM) 

and Digital Twin (DT) technologies for increased 

system reliability across various industries. Digital 

Transformation (DT) refers to the process of precise 

virtualization of physical assets using real time data, 

machine learning, and advanced analytics. This 

strategy improves maintenance, understanding of 

systems, and identification of the defects. In 

healthcare, energy, and manufacturing industries, DT 

brings improved efficiency, reduced downtime, and 

better data driven decision making. 

 

Table:1 Summarization of the above existing methods 

Authors Proposed method Outcomes 

Liu, H. et al. Systematic review of Digital Twin (DT)-guided 

Condition Monitoring (CM) predictive 

maintenance 

Highlights DT’s role in enhancing 

data support, maintenance 

capabilities; 

Liu, Z. et al. Real-time anomaly identification framework for 

Tool Condition Monitoring (TCM) using DT, 

based on NC data and vibration signals with model 

frequency features (MFFs) 

Achieves improved anomaly 

detection accuracy; enables 

intelligent TCM in dynamic, 

complex manufacturing 

environments 

Guo, L. et al. Bearing Life-Cycle Digital Twin (BLDT) model 

with defect evolution simulation and neural 

network-based degradation analysis 

High accuracy in forecasting 

bearing performance degradation; 

enables effective, real-time lifetime 

condition monitoring 

Nejad, A. R. et 

al. 

DT-enabled real-time condition monitoring system 

for ship propulsion systems, considering harsh 

environments and legal compliance 

Reduced maintenance cost, 

enhanced system reliability; 

addresses challenges in polar 

operations and highlights DT’s 

practical strengths and weaknesses 

Bofill et al. Integration of DT with predictive Fault Monitoring 

(FM) across various industries using real-time 

data, machine learning, and analytics 

Improved reliability, proactive 

maintenance, reduced downtime; 

supports data-driven decision 
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making across industries like 

healthcare, energy, and 

manufacturing 

 

Superior to traditional and other existing approaches 

in terms of precision and system robustness, the HP-

DDM method is the most efficient technique among 

those listed to enhance fault detection precision, 

flexibility, and real-time decision-making. 

 

III. Proposed method 
To enhance in-real-time physical asset monitoring, 

this research develops a hybrid physics based 

dynamics model and machine learning framework. It 

enables adaptive digital twin systems of high 

accuracy to be used in operational decision support, 

predictive maintenance, and defect detection. 

 

3.1. Integration of Hybrid Modeling Architecture 

To develop a unified digital twin architecture, the 

approach combines machine learning techniques 

with physical modeling of machinery dynamics. 

Through the application of domain knowledge and 

data-driven insights, the hybrid approach enables 

precise modeling of system behavior under various 

operating and environmental conditions. 

 
Figure 1: Architecture of the Proposed Real-Time 

Hybrid Digital Twin System 

 

Figure 1 depicts the architecture of the proposed HP-

DDM framework for predictive maintenance and 

real-time condition monitoring. The technology 

generates a hybrid digital twin model by combining 

historical and real-time sensor data. Since Combining 

Machine Learning Techniques (MLT) that acquire 

knowledge from patterns in data and system behavior, 

with a Physics-Based Model (PBM) that captures 

machinery dynamics, the model Combining both 

disciplines assists in measuring condition accurately 

and sensitively. The layer of condition assessment 

continually monitors equipment state, hence 

facilitating early defect detection and prevention. 

This analysis enables the system to yield beneficial 

insights upon which maintenance planning is 

supported in predictive maintenance plans, 

unplanned downtime is minimized, and schedule 

decisions are made better. This entire strategy ensures 

that the digital twin adapts to operational conditions, 

hence ensuring robust decision-making support for 

planning maintenance and enhancing overall 

equipment reliability in industrial operations such as 

in power plants. 
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HP-DDM architecture describes the interaction 

between physical movement and data-driven factors. 
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Equation (2) describes the normalized evolution in 

work |∆𝑊0|/𝑐0 as the function of displaced variation 
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 , adjusted from system-

specific parameters 𝐺(𝑤,𝑡,𝑡+) along with temporal 

reactions functions 𝐺(𝑤,𝑡,𝑡−). It improves predictive 

maintenance by letting the system record minute 

changes in mechanical behavior connected to 

possible defects. 



Granvile Embia, et.al. International Journal of Engineering Research and Applications 

www.ijera.com 

ISSN: 2248-9622, Vol. 15, Issue 9, September 2025, pp 24-39 

 

A 
\ 
www.ijera.com                                    DOI: 10.9790/9622-15092439                                     28 | Page 

                

 

 

( )
1 1

2 2

t

t

pd dt B
u C

p c Bd t
  



+
+

  
+ = − + + + −  

+   
                         

(3) 

δ is defined by equation (3) as the divergence 

between a reference state 
pd

p c


 
+  

+ 
  and a 

combined integral expression comprising time-

dependent deterioration 
( )

t

t

dt

d t



+  , pressure 

compliance metrics 
1 1

2 2
 − , and system stiffness 

B
C

B+

 
+  
 

 . Reflecting both immediate and 

cumulative system pressures helps the digital twin 
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Equation (4) specifies 𝐺exp as a function blending 

shown by the integral of 𝑈𝑤 with real-time dynamic 

components, including scaling stiffness 
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   This helps the digital representation to 

more precisely and facilitate adaptive fault estimation 

under different running conditions. 
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Equation (5) links a combination of the beginning 

displacement ∀𝑡 + (𝑢, 𝜏𝑤), velocity-induced 

distortion 𝑑0 + 𝜑𝑣, and the spatial-temporal impact 

of loading represented by w

 
 

 
 , to the entire 

system development over time 𝑝(𝑥,𝑦). It improves 

the capacity of the digital twin to replicate 

complicated load exchanges and forecast condition 

changes with spatial accuracy and real-time 

flexibility. 

 

 
Figure 2: Traditional Data-Driven and Hybrid Physics-Based Data-Driven Modeling Approaches 
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The proposed hybrid physics-based and 

data-driven modeling (HP-DDM) framework and 

conventional data-driven modeling are shown in 

Figure 2 in a comparison process. Usually resulting 

in problems like overfitting, poor generalization, and 

lack of physical interpretability, the conventional 

method on the left depends only on historical data to 

transfer input characteristics to output predictions 

using machine learning models. The hybrid approach 

introduces yet another level of physics-based 

modeling. The hybrid method enhances robustness 

and interpretability by incorporating domain-specific 

physical principles into the modeling process, thus 

enriching machine learning predictions with physics-

informed constraints. This combination allows the 

hybrid model to leverage both empirical observations 

and theoretical concepts, thus maximizing 

performance for tasks such as predictive maintenance 

and condition monitoring. The figure highlights how 

the hybrid method ensures improved prediction 

accuracy, reduced model uncertainty, and greater 

real-world applicability for intricate industrial 

systems by better handling evolving operating 

conditions than purely data-driven methods. 
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Equation (6) describes 𝑤ℎ as a product-integral 

including inverse degradation dynamics 
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displacement terms 
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. It supports the ability 

of the digital twin to measure equipment condition, 

therefore allowing accuracy in predictive 

maintenance and proactive corrections. 
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Equation (7) states the derivative of the system's 

efficiency 𝜕𝑤𝑁 as a mixture of time-evolving 

stresses 𝑄+(𝜏𝑤)+𝛼, delayed response 𝛽3(𝑡′, 𝑡+)𝑑𝑡′, 

system constants 𝜏𝑤𝑞+(𝜏𝑤)and load interaction. It 

lets the digital twin foresee performance declines and 

modify prediction models for better dependability 

and decision-making. 
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Equation (8) resembles temporal variation 𝜕𝑡 as an 

integral involving 𝑄+(𝜏𝑤) opposite compliance 
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This equation captures in the HP-DDM paradigm 

time-dependent compliance, material drowsiness and 

spatial temporal stress. 
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Equation (9) represents the effectiveness metric 𝑄𝑝0 

as a function of time driven by the strain energy 

relationship exp
y

k u y
d
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+  , mixed with geographical rate 

changes 
1 kp Du


 degradation penalty term. Through 

degradation patterns, performance loss initiates, and 

predictive maintenance. 

 

3.2. Real-Time Implementation and Adaptive 

Monitoring 

To keep the digital twin up to date, the 

architecture integrates real-time sensor inputs and 

historical data. In response to changes in system 

behavior, this adaptive approach enhances fault 

detection capabilities, accurately identifies anomalies, 

and provides consistent predictive maintenance 

alarms. 

For predictive maintenance and condition 

monitoring, Figure 3 depicts the end-to- end 

functional flow of the proposed Real-Time Hybrid 

Digital Twin system. The process begins with the 

physical asset and the sensor network attached to it 

that captures operating data in real time. 

Preprocessing of this raw data serves to remove noise 

and enhance quality such that appropriate analysis 

may ensue. The filtered data is input to a simulation 

and analytics module that combines machine learning 

with physics-based modeling to analyze system 

behavior. Fault diagnosis and prognostics are 

subsequently performed using this hybrid simulation, 

allowing for early anomaly detection and failure 

prediction. A maintenance decision support system 

inputs these findings to assist in planning corrective 

measures, scheduling interventions, and optimal 

utilization of maintenance resources. In dynamic 
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industrial environments, the system ensures an 

ongoing feedback cycle between asset behavior and 

decision-making, thus facilitating data-driven 

maintenance practices that minimize downtime, 

enhance system reliability, and extend asset lifespan. 

 
Figure 3: Proposed Real-Time Maintenance Decision Support Framework 
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Equation (10) describes 𝐶𝑞+ as a mixture of stress-dependent variables, including a deformation measure 
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.  Connecting real-time data and breakdown procedures for improved predictive maintenance and 

problem detection helps the digital twin. 
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Figure 4: Functional Components of the Proposed Hybrid Modeling Framework 

 

Figure 4 highlights the key functional 

components involved in developing and evaluating 

the hybrid physics-based and data-driven modeling 

(HP-DDM) approach. Including optimization, 

preprocessing, parameter selection, and modeling, 

the upper section indicates the model development 

phase. These activities ensure effective combination 

of physics-based understanding with machine 

learning, thus enabling accurate representation of 

equipment behavior. Whereas preprocessing cleans 

input data to enhance learning results, optimization 

ensures that the model can achieve optimal 

performance. The process of model evaluation that 

includes solution verification, target variable testing, 

parameter tuning, and hypothesis testing, is outlined 

in the lower part. Apply these techniques to check the 

accuracy, generalizability, and interpretability of the 

model. These factors provide a structured foundation 

to construct a resilient digital twin framework 

covering predictive maintenance and real-time fault 

detection. This figure describes how the technique 

achieves a balance between empirical confirmation 

and theoretical vigor and leads to enhanced decision-

making in industrial applications. 

 

3.3. Performance Evaluation on Industrial 

Equipment 

Large-scale rotating equipment in power 

plants tests verify the effectiveness of the system. 

Enabling real-world deployment for predictive 

maintenance and operational efficiency, performance 

results indicate increased accuracy, reduced false 

alarms, and increased flexibility compared to 

traditional monitoring systems. 

Using physics-informed loss functions, 

Figure 5 shows how the proposed Hybrid Physics 

Based and Data-Driven Modeling (HP-DDM) 

architecture uses simulation results and monitoring 

data to improve model learning. Monitoring signals 

allows one to record equipment activity; simulation 

models provide synthetic outputs reflecting 

theoretical system dynamics. These two data sources 

are fed into a machine learning environment that uses 

physical constraints—represented here as physics-

informed loss functions—to guide the training 

process. By embedding domain-specific physics into 

the learning objective, the framework improves 

prediction accuracy, model reliability, and 

generalization, especially in data-scarce or variable 

operational conditions. This integration guarantees 

that the machine learning model follows the rules of 

physics controlling the equipment and does not 

depend only on data patterns. For condition 

assessment, problem detection, and predictive 

maintenance in complex industrial systems, the 

hybrid framework generates hence more strong and 

understandable results. 
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Figure 5: Integration of Simulation and Physics-Informed Learning in the Hybrid Modeling Framework 

 

The integration of physical modeling and machine 

learning in the hybrid physics-based and data-driven 

modeling (HP-DDM) framework enhances digital 

twins. When applied to rotating machinery, it offers 

greater accuracy, flexibility, and decision support 

compared to traditional monitoring systems in 

challenging operating conditions. 

 

IV. Results and Discussion 

The accuracy of problem detection, real-

time monitoring capability, scalability, physical 

virtual integration, and maintenance optimization are 

five essential performance criteria that are examined 

in this comparative analysis of predictive 

maintenance systems based on DT. This research 

shows how DT technologies have changed the 

inclined by comparing and contrasting HP-DDM, 

which is based on hybrid physics and classical 

machine learning techniques, with MLT. The datasets 

are chosen from the link [22]. 

 

 
Figure 6. Accuracy of Fault Detection and Prediction Analysis 

 

Figure 6 shows how different DT and CM 

systems rank in terms of fault detection and 

prediction. The most accurate methods, as one can 

observe from the graph, are hybrid ones, and more 
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precisely, those using data-driven methodologies 

coupled with physics-based modeling HP-DDM. In 

the aim of being able to identify and predict early-

stage defects, the models use machine learning 

techniques, past system behavior, and real-time data. 

Note that the BLDT and TCM models surpass 

traditional monitoring methods in terms of prediction 

accuracy, with significant improvements. To provide 

timely maintenance responses and system reliability 

in general, the research shows that DT-enhanced 

prediction models greatly minimize false alarms and 

masked faults. Figure 6(a) shows that when 

compared to MLT, the accuracy of defect 

identification and prediction analysis is moderate, 

with occasional discrepancies. Figure 6(b) shows that 

the HP-DDM greatly improves accuracy, which 

guarantees consistent and accurate fault prediction 

under various conditions. 

   ( ), ( ),0 ( ),0,0 sin cosz x a

y

Y
Ww a W Y w u c c y

w
= + + +      

               (11) 

Combining spatially dependent components 𝑊(𝑎), 

displacement-based terms {𝑊𝑥(𝑌),0}, and sinusoidal 

stress-response variables {𝑤𝑎(𝑢),0,0}, equation (11) 

reflects a composite function sin cos
y

Y
c c y

w
+  . It 

improves the accuracy of anomaly detection and 

makes the digital twin more able to replicate and 

forecast the accuracy of fault detection and prediction 

analysis. 

 

 
Figure 7. Real-Time Monitoring Capability Analysis is compared with MLT and HP-DDM 

 

Figure 7 illustrates the performance of 

various Digital Twin (DT) frameworks with respect 

to real-time monitoring based on their responsiveness 

and data processing capacity. Improved monitoring 

capability is provided by systems that enable real-

time data exchange between physical and virtual 

entities. The ability to continually monitor system 

behavior is enabled through high-frequency inputs 

from numerical sensors and controllers. This 

facilitates rapid anomaly detection and status changes. 

Low latency and precise representation of operational 

states are provided by physical-virtual synchronized 

frameworks. The study establishes that real-time 

monitoring is significantly enhanced through DT 

ecosystem's real-time analytics, dynamic virtual 

model adjustments, and smooth data integration. 

Figure 7(a) compares the real time monitoring 

capabilities of MLT, highlighting processing speed 

restrictions and occasional delays under dynamic 

situations. Figure 7(b) shows that HP-DDM, 

improves real-time monitoring by processing data 

more quickly and accurately. In complicated 

situations, this enables efficient and rapid 

surveillance. 

2
tan *

cos  const 

gy A

ga h

B

U B

U x ps Cu




−

 = +
+

                      

(12) 

Equation (12) specifies, with system stiffness ratio 

2

hps Cu


 , the angle 

A

B

B
 −   as a function about 

inputs and outputs ratios cos𝑥 + 𝑐𝑜𝑛𝑠𝑡, stress 

adjusting terms 𝑡𝑎𝑛∅, and oxidation factors 
gy

ga

U

U
.  Its 

performance under different settings, hence 

permitting more precise forecasts of failure and best 

maintenance scheduling. 
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Figure 8. Integration of Physical and Virtual System Analysis is compared with MLT and HP-DDM 

 

Figure 8 shows the result of a survey of how 

far some DT infrastructures allow digital and 

physical systems to integrate. Successful integration 

is characterized by high model fidelity, bidirectional 

streaming of data, and real-time synchronization. 

Horizontal feedback loops between the virtual 

models and the real equipment, as well as reliable 

copying of the behavioral behavior, signify well-

integrated systems. Discrepancies arise during 

complicated system operations due to the limited 

synergy between physical data and virtual modeling, 

as shown in Figure 8(a), which contrasts the 

integration of physical and virtual systems utilizing 

MLT. By integrating real-time sensor data with 

virtual models, as shown in Figure 8(b), HP-DDM 

allows for a more precise and seamless 

synchronization of physical and virtual components, 

thereby integrating physical and virtual systems. 

Predictive insights and timely responses to anomalies 

or performance tuning are facilitated by such close 

coupling. Improved system awareness, operational 

transparency, and effective deployment of DTs in 

intricate industrial environments are all dependent on 

robust physical-virtual coupling. 

( )
2

cos sin 1/ (cos sin )a a wD B U y y y y
pc


 

 
=  + − −  

 
     

             (13) 

Equation (13) specifies 𝐷𝑎 as a 𝐵𝑎𝑈cos𝑦,sin𝑦 

function of mechanical labor 1/(cos𝑦.sin𝑦), 

important constants (𝛼 − 𝛼𝑤), and one stress-

deformation term ( 𝛾/𝑝𝑐2 ). It helps the digital twin 

understand and forecast complicated interactions 

among forces, and integration of physical and virtual 

system analysis. 

 
Figure 9. Scalability Analysis is compared with MLT and HP-DDM 

 

Figure 9 illustrates how various industrial 

applications can be helped by Digital Twin (DT) 

implementations regarding scalability. The ability of 

a system to handle increasing amounts of data, bring 

together disparate assets, and adjust to varying 

operational scopes without degrading performance is 

how scalability is measured. Studies indicate that 

adaptive data processing frameworks, cloud-based 

infrastructure, and modular architecture all work to 

create scalable DT models. These traits make DTs 

particularly suitable for large industrial ecosystems 

on a mass scale since they enable effective replication 

across many units and facilities. The figure identifies 

highly scalable systems as crucial for digital 
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transformation that is both pragmatic and cost-

effective in the long term. Scalability analysis 

utilizing MLT is shown in Figure 9(a). It shows that 

there are issues when it comes to responding to 

different system complexities and data quantities, 

which often means that models need to be retrained a 

lot. Scalability analysis utilizing HP-DDM is shown 

in Figure 9(b). The results show that HP-DDM is very 

adaptable and performs well at different operational 

scales because of its modular and flexible 

architecture. 

( )
1

( , ) * * cosm

dN C
q y Cq c q d w y

dx D
  = + − +                       

(14) 

Equation (14) expresses 𝑞(𝑦,𝜏) as a mix of rate of 

change in system state 1𝑑𝑁/𝑑𝑥 , destruction term 

Cq c q +  , material response (𝑑 + 𝑤𝑚), and other 

dynamic elements involving cos
C

y
D

 . It supports 

more exact anomaly identification and maintenance 

scheduling by helping the digital twin monitor by 

scalability analysis. 

 
Figure 10. Maintenance Optimization Analysis is compared with MLT and HP-DDM 

 

A review of maintenance optimization that 

was achieved by embedding Digital Twin (DT) 

technology is presented in Figure 10. The ability of 

DT systems to reduce overall maintenance expenses, 

extend equipment life, and reduce unplanned 

downtimes is the main emphasis of the study. The 

image illustrates how DT-enabled systems can 

analyze operational data in real-time and forecast 

faults prior to their occurrence, thus significantly 

supporting decision-making. Maintenance tasks are 

better planned, resources utilized more optimally, and 

operations less frequently disrupted by virtue of this 

forward-looking approach. The analysis emphasizes 

the key contribution of DT towards creating reliable 

and economical servicing plans. In Figure 10(a), the 

results of a maintenance optimization analysis that 

made use of MLT. This analysis indicates how the 

lack of contextual system awareness leads to less 

predictive precision and more reactive maintenance 

tendencies. Improved maintenance schedule, less 

downtime, and proactive fault mitigation through 

accurate modeling of system behavior are shown in 

Figure 10(b) of the maintenance optimization 

analysis with HP-DDM. 

3

ray 

sin sin * (1 )ha a

r w
Eu DC x B D y y N

s c







= + +  +                          

(15) 

Equation (15) specifies 𝐸𝑢ℎ𝑎 as a mix of spatial rate 

modifications 
r

s







 , dynamic stress alterations 

sinray DC x+ , and material along with operational 

terms including 𝐵𝑎𝐷 sin𝑦, 3(1 )
w

y N
c
 + . It offering 

a better understanding of equipment condition and 

helps with more exact preservation and failure 

prediction by maintenance optimization analysis. The 

results show that HP-DDM is always better than MLT, 

and that DT is a crucial component of smart, scalable 

industrial solutions because it improves accuracy, 

responsiveness, integration integrity, flexibility, and 

maintenance efficiency. 

 

V. Implications for Sustainable 

Maintenance Management Practices 

in Papua New Guinea 
 

The use of a Digital Twin-based Hybrid Physics-

Based and Data-Driven Modelling (HP-DDM) 

framework for monitoring the condition of 

machinery has big effects on improving sustainable 

maintenance management in Papua New Guinea's 

industrial sector.  
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1. Better capability for predictive maintenance: The 

HP-DDM framework gives better failure predictions 

for important assets like rotating equipment in power 

plants by using both physical models and machine 

learning approaches. This level of accuracy cuts 

down on unplanned downtime, which lets businesses 

in PNG plan maintenance ahead of time and use spare 

parts and personnel more efficiently.  

 

2. Extending the life of assets: Continuous real-time 

monitoring and adaptive fault detection assist find 

small problems before they turn into big ones. This 

means that expensive machine parts don't need to be 

replaced as often, which is in line with sustainable 

practices because it saves money and resources.  

 

3. Better Use of Resources: Fewer false alarms and 

better decision-making mean that maintenance work 

is only done when it is really needed. This 

optimisation cuts down on unnecessary shutdowns, 

too much material use, and operational disruptions. 

This is especially critical at PNG's remote industrial 

sites, where logistics and spare parts availability are 

hard to come by.  

 

4. Support for building skills and capacity o To use 

digital twin technologies, local maintenance workers 

need to learn more about data analytics, machine 

learning, and sensor integration. This helps build a 

qualified workforce that can run and maintain 

advanced monitoring systems, which helps PNG 

reach its long-term goals for industrial sustainability.  

 

5. Alignment with Environmental Sustainability 

Goals: More efficient machines use less energy and 

produce less greenhouse gas emissions. For PNG's 

energy-intensive industries, this is in line with both 

the country's goals for sustainability and its promises 

to fight climate change.  

 

6. Being able to handle tough operational and 

environmental conditions: The HP-DDM framework 

is adaptable, which means it can accurately monitor 

conditions even when the operational loads and 

environmental changes are frequent in PNG's 

industrial settings. This ensures constant 

performance and reliability.  

 

7. Facilitation of Data-Driven Maintenance Culture o 

The adoption of the digital twin paradigm encourages 

a shift in culture from reactive to predictive and 

condition-based maintenance methods. Over time, 

this leads to data-driven decision-making becoming 

the norm, which makes it possible for maintenance 

policies and procedures to get better all the time.  

 

To sum up, the HP-DDM-enabled digital twin 

method could change how Papua New Guinea 

manages maintenance in a more sustainable way by 

lowering costs, improving asset reliability, saving 

resources, and boosting technical skills. This not only 

helps the economy work better, but it also helps the 

environment and makes the region's industries more 

resilient. 

 

VI. Conclusion: 
This research has proposed a framework for 

condition monitoring of machinery through digital 

twins, focusing on an HP-DDM method that is 

physics-data combined. The proposed architecture 

has enhanced fault detection accuracy, improved 

adaptability to operational variations, and reduced 

false alarms by integrating physical models with 

machine learning methods and real-time sensor 

information. The ability of the framework to enable 

predictive maintenance and extend equipment life 

through informed decision-making has been 

established by its use in power plant rotating 

equipment. The future of the HP-DDM framework 

remains doubtful, despite ongoing studies examining 

its applicability across various sectors such as 

manufacturing, aerospace, and automotive. 

Autonomous diagnosis and real-time processing will 

get an upgrade by virtue of the adoption of cloud-

edge computing systems and state-of-the-art AI 

techniques. Another promising field of further 

widening Digital Twin implementations is the 

employment of augmented reality (AR) to enable 

interactive visualization and training in maintenance. 

Even though there are certain advantages of this 

research, there are certain limitations 

correspondingly. Development of accurate physical 

models is a time-consuming process and requires 

domain expertise. Moreover, in an industrial 

environment, sensor data quality and consistency 

may vary and affect the performance of the 

framework. Enhancement of the method and its 

usability in realistic scenarios will rely upon 

addressing these constraints. 
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