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ABSTRACT 
Multimodal image registration suffers from intensity differences and geometric distortions. In case of visible 

and infrared images captured from Unmanned Aerial Vehicle (UAV), it is difficult to register due to variations 

in focal lengths and Field of Views (FOV). This paper introduces a novel hybrid registration pipeline and it 

integrates the Coarse-to-fine feature matching with Adjacent Self similar Three-Dimensional Convolutional 

(ASTC) descriptors. In this method, features are extracted via block FAST method and Adjacent self-similarity 

(ASS) model is applied for creating multidimensional features. The 3-D convolution is used for enrichment of 

features. For robust feature matching, an ASTC is used. Hybrid Thin Plate Spline (TPS) transformation is 

applied for non-rigid alignment. The proposed method is tested on VIR-UAV dataset and confirm that it 

outperforms over traditional methods such as RIFT, LGHD.   
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I. Introduction 

Unmanned Aerial Vehicles (UAVs) have 

become important instruments for remote sensing 

and data collection in numerous applications across 

various landscapes, due to their ability to integrate 

multiple sensors for data acquisition [1]. Alignment 

of two or more images of the same scene taken across 

time, differing viewpoints, or different sensors is 

called image registration. Single modal image 

registration techniques are not suitable to align 

multimodal images. So Multimodal remote sensing 

image registration (MRSIR) is very important for the 

multi-sensor data integration process that contributes 

to applications such as image fusion applications, 

change detection applications, and mosaicking 

applications [2].  

Therefore, the evolution from single-mode, 

such as optical sensors to multi-mode systems, 

including multispectral, hyperspectral, light detection 

and ranging (LiDAR), and synthetic aperture radar 

(SAR), had produced multi-modal remote sensing 

images (MRSIs), resulting in multiple different 

spatial, temporal, and spectral resolutions, which 

yielded different insights about the earth surface. 

However, having different sensors also brings 

challenges as different platforms can produce 

geometric distortions, and nonlinear radiometric 

differences (NRDs) between the several modalities 

(e.g., optical-infrared, optical-SAR, or optical-

LiDAR) [2]. 

Area-based methods like Normalized Cross 

Correlation (NCC) and Mutual Information (MI) can 

mitigate nonrigid transformation, but these are 

limited when there's a large geometric distortion and 

noise [3]. Feature-based methods can improve 

matching of images using maximum index maps to 

reduce matching problems for a given distortion in 

the radiometry, thus improving repeatability. 

However, they are still susceptible to some variations 

in scale and viewpoint [4]. Moreover, deep learning 

models applied to multimodal data sets, have 

promising applications but these are sensitive to 

scene complexity and computationally intensive 

which demonstrates a need for better approaches to 

be developed [5]. 

To Address the challenges in Multimodal 

image registration such as uneven feature 

distribution, low repeatability of feature points and 

differences in Field of Views (FOV), a novel hybrid 
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coarse to fine registration pipeline is proposed. The 

major contribution of this method is as follows: 

1) Introduces a coarse to fine registration to 

avoiding scaling differences. 

2) ASTC descriptors for enhanced multimodal 

matching is used. 

3) A hybrid TPS transformation for non-rigid 

warping is considered. 

II. Adjacent Self Similarity 3-D Convolution 

(ASTC) 

ASTC builds upon self-similarity in 

structure on images by applying an approach using a 

uniform feature point extractor based on block FAST 

(Features Accelerated Segment Test) detection 

strategy and an enhanced descriptor based on 

adjacent self-similarity (ASS) modeling. The 3-D 

convolution is adopted for saliency enhancement of 

the features [6]. This method improves efficiency of 

matching of feature points. The similarity measure 

employs a Fast Fourier transform (FFT)-based 

approach, and outlier rejection uses Fast Sample 

Consensus (FSC). 

The ASTC method mainly include the following 

three steps: 

1) Feature point extraction using Block FAST 

method. 

2) Construction of ASTC feature Descriptor 

3) Similarity measure and outlier rejection 

For ensuring feature points spread evenly, the 

image is divided into n 𝘹 n sub blocks, then perform 

FAST detection to each block. ASTC feature 

descriptor is constructed by using Adaptive 

Histogram Equalization (AHE), Adjacent Self-

Similarity (ASS) feature computation and three-

dimensional convolution optimization.  AHE is used 

to enhance the contrast of image by measuring local 

histogram of the image [9]. ASS computation is 

compute the Sum of Squared Differences (SSD) 

between mid-patch and offsets patches [10]. The 3-D 

Gaussian convolution sort out self-similarity values, 

filter noise and improves the structural prominence. 

III. Proposed Method 

The block diagram of proposed method is 

represented in Fig-1. The visible and infrared images 

are the input images and the scaling differences 

between the input images are reduced in coarse 

registration stage by using Affine transformation. 

Feature maps are generated using Phase Congruency 

then PC map of coarse registration result 𝐼𝑖𝑟
′ by 

divided it into n × n blocks. Based on ASTC 

descriptor, the feature points in both images are 

optimized. Those feature points are matched by using 

FFT technique. 

 

 

Fig-1: Block Diagram of proposed method
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3.1 Phase Congruency (PC)  

Phase Congruency is a dimensionless quantity 

that is invariant to changes in image brightness or 

contrast, it provides an absolute measure of the 

significance of feature points. The phase congruency 

function in terms of the Fourier series expansion of a 

signal at some location  𝑥 is [7]:  

 

𝑃𝐶(𝑥) =  
∑ 𝑊(𝑥)⌊𝐴𝑛(𝑥)(cos(△𝜙(𝑥))−| sin(△𝜙(𝑥))|−𝑇̂ ⌋𝑛

∑ 𝐴𝑛(𝑥)+ԑ𝑛
 (1) 

                                                                

𝑊(𝑥) is the frequency spread weight, △ 𝜙(𝑥) is the 

deviation between 𝜙(𝑥) and 𝜙̅(𝑥). Here constant ԑ is 

introduced to ignore division by zero. 𝐴𝑛(𝑥) is 

implies the amplitude of Fourier components [7]. 

PC feature maps for both images ensure robust 

feature extraction across modalities with noise 

compensation.                                         

3.2 Coarse registration 

Let visible and infrared images be 

represented by 𝐼𝑣𝑖𝑠 and 𝐼𝑖𝑟 . The translation parameters 

and scaling parameters are included in similarity 

transformation and this is special affine 

transformation.   

The coarse registration result is 𝐼𝑖𝑟
′ and it 

includes scaling (𝑋𝑠𝑐𝑎𝑙𝑒) and translation parameters 

(𝑡𝑥,𝑡𝑦) [8]. 

                 𝐼𝑖𝑟
′ = [

𝑋𝑠𝑐𝑎𝑙𝑒       0        𝑡𝑥

 0         𝑋𝑠𝑐𝑎𝑙𝑒      𝑡𝑦  

0             0          1

]                  (2)                                                              

The translation parameters are represented as  𝑡𝑥 and 

𝑡𝑦 

𝑡𝑥 =
1

2
(𝐶𝑜𝑙𝑣𝑖𝑠 −  𝑋𝑠𝑐𝑎𝑙𝑒𝐶𝑜𝑙𝑖𝑟) 

𝑡𝑦 =
1

2
(𝑅𝑜𝑤𝑣𝑖𝑠 −  𝑋𝑠𝑐𝑎𝑙𝑒𝑅𝑜𝑤𝑖𝑟) 

where the Row and Col are the height and width of 

input images respectively.  

To maintain evenly distribution of feature 

points in the PC Maps of infrared and visible images, 

the feature points are taken out by using a block-

FAST detector. The image is split into 𝐻𝑆𝑢𝑏 × 𝑊𝑆𝑢𝑏  

small blocks, then FAST feature detection is 

conducted for each block. 

3.3. Hybrid ASTC descriptor: 

For template matching, the descriptor 

construction is playing key role. The ASTC 

descriptor is the combination of the AHE, ASS 

computation and it is integrated with CFOG, finally 

the 3-D gaussian convolution is applied to the ASS-

CFOG features. 

3.3.1. Adaptive Histogram Equalization (AHE) 

AHE improves the local contrast of the 

image and get more textural information in an image. 

Let the image be indicated as 𝑆, the AHE function of 

the image is follows as [6]: 

                       𝑆′ = 𝑓𝐴𝐻𝐸(𝑆)                                     (3)                                                         

where 𝑆′ denotes the image after applying AHE 

function, 𝑓𝐴𝐻𝐸(. ) is the AHE function. 

3.3.2 Adjacent Self Similarity (ASS) feature 

computation 

The ASS feature computation contains of 

Sum of Squared Differences (SSD) constitution of 

image block concentrated on the ASS feature point of 

a pixel. The SSD is defined as [6]: 

                   𝑃(𝑖, 𝑗) = exp (−
𝑆𝑆𝐷(𝑖,𝑗)

max(𝜆,𝛾)
)                   (4)                                                                         

where 𝜆 is a constant parameter and 𝛾 is the maximal 

variance. 

3.3.3 CFOG integration 

The Channel Feature of Oriented Gradient 

(CFOG) generates gradient map 𝑔0 for each ASS map 

convolving with 2-D gaussian kernel by using the 

following equation [15]: 

                               𝑔0 = [𝜕𝑆/𝜕𝑂]+                      (5)                                                    

where 𝑆 is the image, 𝑂 is the orientation of the 

derivative. []+ represents that the enclosed quantity 

equal to itself when its value is positive or otherwise 

zero. 

3.3.4 3-D convolution optimization 

The 3-D gaussian kernel enhances the 

prominence of the self-similarity features and also it 

smooths the image’s self-similarity values. The 3-D 

gaussian convolution function is described as [6]: 

   𝐺(𝑥, 𝑦, 𝑧)3𝐷 = [

𝑆𝜎(𝑥, 𝑦) ⊗ 𝐺1) 

𝑆𝜎+1(𝑥, 𝑦) ⊗ 𝐺2)

𝑆𝜎+2(𝑥, 𝑦) ⊗ 𝐺3)

] [
1
3
1

]

𝑇

            (6)                                                                               
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where G(x, y, z)3D  is result of 3-D gaussian 

convolution function, x and y represent the row and 

column directions of the 3-D image,  σ indicates the 

standard deviation of the Gaussian kernel function, 

and ⊗ denotes the matrix multiplication.  

3.4. Fine Registration 

            For feature matching, the Fast Fourier 

Transform (FFT) based Sum of squared differences is 

adopted. The SSD between two images is defined as 

[8]: 

𝑆𝑖(𝑣𝑖) =  ∑ 𝐷1
2(𝑥)𝑇𝑖(𝑥)

𝑛
+  ∑ 𝐷2

2(𝑥 −
𝑛

𝑣)𝑇𝑖(𝑥) − 2 ∑ 𝐷2(𝑥 − 𝑣)𝐷1(𝑥)𝑇𝑖(𝑥)
𝑛

                (7) 

where 𝐷1 and 𝐷2 are the features of input images of 

per pixel, 𝑥 represents the position of a pixel in 

feature of D and i is the template window, 𝑇𝑖(𝑥) is the 

masking function, and  𝑣𝑖 is the offset vector that 

matches 𝐷1 with  𝐷2. 

             At final stage of image registration, the Thin 

Plate Spline (TPS) is used which introduce the local 

warping by interpolating deformation fields based on 

features. Further, it employs a non-linear deformation 

between the images. Finally, the non-rigid alignment 

of Infrared and visible images done by TPS.   

IV. Experimental Results 

             The proposed fine registration method is 

tested on dataset VIR-UAV. This dataset contains of 

17 pairs of visible and infrared images. These images 

are divided into three groups. The first and third 

group images pairs are having 1600 ×1200 pixels of 

resolution. Second group image pairs having 

resolution of 1920 × 1080 pixels of resolution.  

            The proposed method compares with two 

existing algorithms that is Log Gabor Histogram 

Descriptor (LGHD) and Radiation variation 

Insensitive Feature Transform (RIFT). The LGHD 

method is designed to match feature points between 

images with non-linear intensity differences, such as 

those between visible (RGB) and infrared (NIR or 

LWIR) images [13]. These image pairs often differ 

significantly due to variations in colour, texture, and 

gradient directions. RIFT integrates PC with a 

Maximum Index Map (MIM) to create a radiation-

insensitive feature matching framework. RIFT 

employs PC maps derived from log-Gabor filters to 

detect features [14]. 

4.1 Performance Metric 

            The performance of the proposed method is 

measured by using Root Mean Square Error (RMSE) 

[8]. These are defined as follows: 

         RMSE = √1/𝐿 ∑ (𝑓𝑖 −  𝛤(𝑚𝑖))2𝐿

𝑖=1
            (8)                                                                      

where (𝑓𝑖 , 𝑚𝑖) is 𝑖𝑡ℎ checkpoint, L is the number of 

the selected check points. 𝛤(. ) represents the 

transformation model obtained by different methods. 

   The table-1 shows the RMSE errors of the 

registered images of RIFT, LGHD and proposed 

method. Root Mean Square Error (RMSE) is used to 

quantify the accuracy of registered image. The 

RMSE error of RIFT and LGHD methods were 

reported as 7.98 and 8.78 respectively. The RMSE 

error of proposed method is 6.12. That means the 

accuracy of proposed method is superior than the 

accuracy of RIFT, LGHD methods of registered 

images. 

Table-1 Root Mean Square Error (RMSE) of 

registered images 

 RIFT LGHD Proposed 

method 

I 7.9883 8.7859 6.1255 

II 6.7255 4.1871 3.8161 

III 6.1472 6.9792 5.269 

IV 7.6891 8.3395 6.9597 

MEAN 7.1375 7.0729 5.5424 

 

4.2  Visual evalution of Proposed method 

Fig-2 shows the image registration results of 

a proposed registration method. The visible and 

infrared images are shown in Fig-2(a), (b) 

respectively. The proposed method’s registration 

results are shown in Fig-2(c) and it is observed that 

the geometric differences and scaling differences are 

reduced. 
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Fig-2: Visual evaluation on the VIR-UAV dataset (a) Visible images. (b) infrared images. (c) Registered 

images of Proposed method. 

V. Conclusion 

In this work, a novel hybrid coarse to fine 

registration method is presented for registering 

visible and infrared images. In the coarse registration, 

the scaling differences are reduced by using Affine 

transformation.  The proposed method uses hybrid 

ASTC descriptor which is a combination of the AHE, 

ASS feature computation and integrated with CFOG 

and 3-D convolution optimization. Finally in the fine 

registration, the feature points are matched based on 

the FFT technique. The proposed registration method 

overcomes the scaling differences, intensity 

difference, and illumination differences. The 

performance of the registered results is measured by 

Root Mean Square Error (RMSE). The RMSE error 

is reduced from 8.78 to 6.12. It is also observed that 

the proposed method is superior than the RIFT, 

LGHD. 
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