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ABSTRACT 
Leukemia, characterized by abnormal white blood cell development, is challenging to diagnose due to its wide 

range of signs and fast-changing condition. To improve patient outcomes and ensure successful medication, early 

and precise detection is critical. Traditional blood cancer detection methods may rely on subjective interpretations, 

delaying diagnosis until symptoms appear. Machine learning (ML) can detect patterns early and distinguish 

invisible patterns, making it a more accurate alternative.  ML methods, however, have challenges with huge 

datasets and need careful feature selection. Leukemia detection methods have been refined by recent developments 

in Deep Learning (DL). One of them is a low-weight YOLOv8 model that contains a residual attention mechanism, 

which is designed to enhance the performance of leukemia detection and classification. To improve feature 

extraction and contextual information collection, this model was built by superimposing Residual Convolution 

Block Attention Mechanism (RCBAM) and Depthwise Separable Convolution (DWSCNN) layers on top of 

YOLOv8n architecture. However, while RCBAM can highlight relevant features, it is also possible for it to assign 

high weights to redundant or irrelevant features, potentially hindering performance. This paper proposes an 

advanced attention mechanism using Explainable AI (XAI) model. The capacity of XAI methods can disclose the 

reasoning behind network. The proposed explainable AI based attention mechanism is developed by integrating a 

Pixel-Level Fourth-Order Entropy guided Class Activation Map (PLFOECAM).  In this work, fourth-order 

entropy information is leveraged to enhance Class Activation Maps (CAMs). To create feature map weights, 

entropy values are used instead of the conventional gradient averaging method.  Since entropy is used directly to 

weight and sum feature maps, gradient-based approaches are not relied upon as much, which helps with the 

reliability of the CAM model. To identify and classify leukemia, the whole thing is called YOLOv8 with 

PLFOECAM Attention (YPALDC). Finally, the experimental results prove that the proposed model perform 

achieves 93.85%, 90.42% and 91.87% on SN-AM dataset, MiMM_SBILab Dataset, C-NMC dataset 

outperforming other standard models. 
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I. INTRODUCTION 

Leukemia refers to a malignant disorder of 

hematopoietic origin, characterized by abnormal 

proliferation of immature blood cells [1]. This 

unregulated expansion leads to overcrowding of the 

bone marrow, thereby inhibiting the formation of 

functional erythrocytes, leukocytes, and platelets, 

which are needed for oxygen carriage, immune 

function and coagulation [2]. As a result, patients 

often exhibit symptoms such as persistent fatigue, 

recurrent infections, pale complexion, excessive 

bruising, and unexplained bleeding, which typically 

worsen as the disease progresses [3].  

Leukemia is broadly classified into four 

major types: acute lymphoblastic leukemia (ALL) 

[5], acute myeloid leukemia (AML) [6], chronic 

lymphocytic leukemia (CLL) [7] and chronic myeloid 

leukemia (CML) [8]. Acute ones manifest rapidly and 

necessitate prompt medical attention, but chronic 

ones take their time to manifest and may initially 

show no symptoms at all [9]. Given the heterogeneity 

in clinical presentation and genetic abnormalities 

across these subtypes, early detection and accurate 

classification are critical for initiating appropriate 

treatment and improving survival outcomes [10]. 

Traditional detection methods include 

peripheral blood smear analysis, bone marrow 
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biopsy, immune-phenotyping, and cytogenetic testing 

[11]. However, there is a lot of inter-observer 

variability, and many of these methods are laborious 

and necessitate specialist knowledge. To overcome 

these limitations, recent advancements have focused 

on the integration of automated diagnostic systems 

and computational models.  

The use of artificial intelligence (AI) has the 

potential to greatly enhance the precision and 

efficiency of leukemia detection and categorization, 

making it a game-changer in medical diagnostics 

[12]. By leveraging large volumes of clinical data, AI-

driven models can learn complex patterns in blood 

smear images, genetic profiles, and laboratory test 

results that may not be easily discernible by human 

experts [13]. ML techniques have been applied to 

various types of input data, including hematological 

parameters, gene expression profiles and microscopic 

images of blood cells, to assist in diagnosis and 

subtype classification [14]. However, traditional ML 

models, such as Support Vector Machines (SVM), 

Decision Trees (DT), Random Forests (RF) and k-

Nearest Neighbors (k-NN) require handcrafted 

feature extraction, which limits their scalability and 

generalization to unseen data. 

As a subset of ML, Deep Learning (DL) has 

grown in popularity as a solution to these problems 

because of its capacity to automatically generate 

hierarchical structures from unstructured data [15]. 

DL models excel at processing very small pictures, 

such as blood smears, and have demonstrated 

outstanding performance in image-based leukemia 

diagnosis workloads [16].Also, DL models can 

capture spatial hierarchies, textures and 

morphological variations between healthy and 

leukemic cells [17]. Recent studies have 

demonstrated that DL-based models can achieve 

diagnostic accuracies, and facilitate rapid screening, 

particularly in under-resourced healthcare settings. 

Manescu et al., [18] employed a Multiple 

Instance Learning for Leukocyte Identification 

(MILLIE) framework to detect acute leukemia and 

differentiate between Acute Promyelocytic Leukemia 

(APL) and other subtypes, even without detailed cell-

level annotations. DenseNet121, ResNet50, and 

MobileNet models have also been evaluated on acute 

leukemia datasets, achieving superior classification 

accuracies ranging from after WBC segmentation 

using active contour methods [19]. A progressive 

Residual Neural Network with multigranularity 

(PMG) training framework was used to analyze 

21,208 annotated peripheral blood cell images across 

eight leukemic and five benign cell types. The model 

demonstrated strong APL detection with high 

precision [20]. In another study, ALNet leveraged 

VGG16, ResNet101, DenseNet121, and SENet154 in 

fine-tuned pipelines with 16,450 single-cell images, 

achieving high diagnostic accuracy for acute 

leukemia classification [21].  

These models highlight a growing trend 

toward hybrid architectures, and scalable pipelines 

tailored for robust leukemia screening and 

classification. However, most of the aforementioned 

DL approaches primarily focus on classification tasks 

after pre-segmenting the white blood cells (WBCs), 

often requiring separate detection or segmentation 

stages that can introduce bottlenecks in fully 

automated diagnostic pipelines. To address these 

limitations and enable end-to-end leukemia detection 

from whole blood smear images, object detection 

models such as You Only Look Once (YOLO) have 

gained attention. YOLO models are ideal for real-

time medical applications due to their lightning-fast 

localization and object classification capabilities, 

which allow them to process numerous images in a 

single forward pass. Unlike traditional convolutional 

neural network (CNN) based classifiers that rely on 

cropped and pre-labeled inputs, YOLO can process 

raw microscopic images and directly detect leukemic 

cells, thus reducing the need for manual pre-

processing. or patch-wise analysis. This streamlines 

the diagnostic workflow and facilitates large-scale 

deployment in clinical settings, particularly where 

expert resources are scarce. 

One notable application of YOLO in leukemia 

detection was presented by Prakash et al., [22] who 

developed a lightweight and optimized YOLOv8-

based architecture tailored for blood smear analysis. 

Their approach tackled common challenges in 

medical image classification, such as overfitting and 

computational inefficiency, by incorporating 

DWSCNN and a RCBAM into the YOLOv8 

framework. These modifications enhanced the model 

capability to extract discriminative structures whereas 

significantly reducing the number of parameters. 

However, although RCBAM is designed to highlight 

important features, it may sometimes assign high 

attention weights to redundant or irrelevant regions, 

which can negatively impact the model’s 

performance. 

 

1.1 Major contributions 

To address the above challenge, this study 

proposes an advanced attention framework called 

YPALDCdriven by Explainable AI (XAI). 
Specifically, a novel Pixel-Level Fourth-Order 

Entropy Guided Class Activation Map (PLFOCAM) 

is introduced in this model to enhance the 

interpretability and effectiveness of attention. Unlike 

conventional CAMs that depend on gradient-based 



T.Subamathi, et. al. International Journal of Engineering Research and Applications 

www.ijera.com 

ISSN: 2248-9622, Vol. 15, Issue 9, September 2025, pp 127-145 

 

A 
www.ijera.com                                    DOI: 10.9790/9622-1509127145                               129 | Page 

                

 

weighting, which can be unstable or less reliable, the 

proposed method leverages fourth-order entropy to 

assign more informative and discriminative weights 

to feature maps. This entropy-driven approach 

captures richer contextual cues at the pixel level, 

enabling the model to focus more accurately on 

disease-relevant regions in leukemia images. This 

study is structured as follows: A comprehensive 

analysis of recent DL procedures for leukemia 

detection was present in section 2. The proposed 

methodology of the research was described in section 

3. The experimental results and comparative studies 

are reported in section 4. Finally, Conclusion and 

future enhancement discussed in section 5. 

 

II. LITERATURE SURVEY 

Asar and Ragab [23] developed an 

optimization algorithm called FOADCNN-LDC that 

uses an advanced convolutional neural network for 

the diagnosis and categorization of leukemia. It used 

the ShuffleNetv2 model for feature extraction and 

CDAE model to perform the detection and 

classification tasks. To enhance the performance of 

the CDAE model, the hyper parameters were fine-

tuned using the Falcon Optimization Algorithm 

(FOA). However, the model may hinder real-time or 

embedded deployment unless optimized which may 

cause lower accuracy. Awad & Aly [24] created a 

technique for detecting ALL using the YOLOv8 and 

YOLOv11 DL models. Initially, the blood smear 

images were preprocessed to remove irrelevant 

elements such as background noise and unrelated 

blood components. Data augmentation methods such 

as mosaic augmentation and random rotation were 

used to increase robustness and avoid overfitting. 

Then, both the YOLOv8 and YOLOv11s model were 

selected for evaluation. However, the specificity of 

the model was compromised due to an imbalanced 

dataset, which marginally affected the model's 

capacity to accurately categorize normal cells. 

Awais et al. [25] developed a way to sort 

ALL into two groups and subtypes. Initially, they 

used a Greedy Differential Evolution (GDE) method 

to strengthen the visual contrast. This method used 

local neighborhood pixel values to better preserve 

edges and improve contrast adaptively. However, 

training used fixed parameters which may not be 

optimal across all datasets, thereby affects accuracy 

values. Himel et al. [26] developed a dual-phase 

ensemble DL-based Computer Aided Diagnosis 

model to diagnose acute leukemia by analyzing blood 

smear images under a microscope. The model uses 

two stages: augmented images using rotation and 

flipping, and image enhancement techniques. The 

model extracts feature maps from the last dense layers 

of two base models, which are then sent to a fully 

linked meta-classifier for classification. However, the 

ensemble structure increases memory usage during 

deployment. 

Mahesh et al. [27] introduced a hybrid 

optimization technique combining to improve feature 

selection for leukemia prediction using microarray 

gene expression data  when used with Particle Swarm 

Optimization(PSO), Ant Lion Optimizer (ALO). This 

strategy combines the exploration and exploitation 

skills of these algorithms to make feature selection 

more accurate and faster to converge. But, the model 

relies on fine-tuning multiple parameters, which are 

time-consuming and sensitive to initial settings. 

Using microscope images of blood smears, Shree et 

al. [28] trained an Optimized Deep Recurrent Neural 

Network (ODRNN) based on deep learning to aid in 

the diagnosis of leukemia.  In order to extract 

characteristics and categorize them, the approach 

employed DRNNs.  The DRNN's performance was 

enhanced by optimizing its weights using the Red 

Deer Optimization Algorithm (RDOA).  Due to its 

great computational complexity, the model, however, 

displays lower recall and precision. 

Almahdawi et al. [29] suggested a DL-based 

way to use microscope pictures to diagnose leukemia 

cells by combining Particle Swarm Optimization 

(PSO) and Ant Colony Optimization (ACO) to 

indicate one feature at a time. However, small dataset 

size restricts the generalizability and robustness of the 

conclusions, limiting confidence in specificity. Dutta 

et al. [30] created a multi-class classification 

approach for ALL using peripheral blood smear 

(PBS) images and an attention-based CNN model 

called LEU3. But, the model relies heavily on high-

quality datasets, which may not always reflect real-

world data variability. Thiriveedhi et al.  [31] 

presented a modified CNN named ALL-Net to 

distinguish between benign (hematogones) and 

malignant (Early-B, Pre-B, and Pro-B) cells based on 

the PBS images of the latter. However,the 

performance then can break down when 

trained/deployed on poor-quality data or datasets. 
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III. PROPOSED METHODOLOGY 
In this section, the given methodology is 

completely illustrated. Fig. 1 depicts the schematic 

representation of the suggested technique.  

3.1 Image Pre-processing 

Effective pre-processing greatly affects the 

efficiency of object detection models in medical 

image analysis, particularly for hematological 

malignancies, by increasing clarity and consistency 

across different samples. In this study, a hybrid pre-

processing approach was adopted to enhance blood 

cell images for efficient leukemia detection. 

• Initially, an edge-preserving bilateral filter 

[32] was applied to remove background 

noise while maintaining the sharp 

boundaries of white blood cells, ensuring the 

retention of morphological details critical 

for classification.  

• Then, Color Deconvolution [33] is applied 

to separate overlapping stain components. In 

this context, it helped isolate nucleus-rich 

regions by separating eosin and hematoxylin 

stain components, thereby enhancing 

contrast between leukemic and non-

leukemic cells.  

• Further, adaptive histogram equalization 

method [34] was applied to the stain-

separated channels to enhance cellular 

structures and improve local contrast 

without causing overexposure. Also, this 

method adjusts image intensity based on 

local regions, making it more effective for 

images with uneven lighting. 

• Z-score normalization [35] was applied to 

scale pixel intensities to a standardized 

range, improving feature consistency for the 

YOLOv8 detection pipeline.  
This pre-processing pipeline ensures the fine-

grained details critical for distinguishing between 

malignant and benign cells are preserved and 

emphasized. The result is improved detection 

accuracy, especially in early-stage leukemia where 

visual differences are often subtle and localized. 

 

 
Figure 1. Overall flow of the suggested technique 

This pre-processing pipeline ensures the fine-

grained details critical for distinguishing between 

malignant and benign cells are preserved and 

emphasized. The result is improved detection 

accuracy, especially in early-stage leukemia where 

visual differences are often subtle and localized. 

3.2  General YoloV8 Structure 

YOLOv8 is applied for real-time object detection 

and image segmentation model developed by 

Ultralytics. It features an anchor-free architecture, 

improved feature extraction and high adaptability 

across various model sizes (nano to extra-large). 

YOLOv8 is perfect for real-world detection and 

medical applications because it strikes a great balance 

between speed and accuracy. The three primary parts 

that make up YOLOv8's architecture are the 

backbone, the neck, and the head.  
The Backbone based on Cross Stage Partial 

Darknet-53 (CSPDarknet53), is responsible for 

feature extraction. It uses standard convolutional 

(Conv) layers to produce initial feature maps and 

Cross Stage Partial (C2f) layers to improve gradient 

flow and learning efficiency. Within the C2f module, 

bottleneck blocks are employed to compress and 

refine the feature maps, reducing redundancy while 

maintaining essential information for the subsequent 

stages.  

The Neck connects the spinal column to the brain 

by fusing features at different scales.  It takes its 

design cues from PANet and the Feature Pyramid 

Network (FPN). This component enhances 
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information flow and aggregates features using both 

top-down and bottom-up pathways, effectively 

preserving fine-grained spatial details and improving 

detection at multiple scales.  

 

 

 

Figure 2.(a) C2f Structure 

             

                            Figure 2. (b)  bottleneck                             Figure 2. (c) SPFF module          

The Head component generates the final 

predictions for object detection, which include 

confidence scores, class probabilities, and bounding 

box coordinates. It utilizes convolutional layers to 

refine features passed from the neck and supports loss 

computation during training. The head transforms 

high-level visual features into actionable detection 

data, ensuring accurate localization and classification 

across various object sizes. 

Since, the standard YOLOv8 lacks the fine-

grained feature extraction needed for subtle leukemia 

detection, the authors enhanced it by integrating 

DWSCNN and RCBAM. These additions improved 

accuracy and contextual focus while reducing model 

complexity. As a result, the modified YOLOv8 

achieved faster inference speed highly suitable for 

real-time clinical use. 

Since the standard YOLOv8 architecture lacks 

the fine-grained feature extraction required for 

detecting subtle patterns in leukemia, the authors 

enhanced it by incorporating DWSCNN and 

RCBAM. These enhancements improved both 
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contextual focus and detection accuracy while 

reducing model complexity. As a result, the tweaked 

YOLOv8 has better performance and faster inference 

speed, making it ideal for use in real-time clinical 

settings. 

 

3.3 Enhanced YOLOV8 Structure 

The enhanced YOLOv8 structure optimized for 

leukemia detection is illustrated below. Its 

modifications improve fine-grained feature extraction 

and contextual information aggregation, both critical 

for accurately detecting and staging blood cancer. 

3.3.1 Enhanced Backbone 

Starting with an input image of dimensions 640 

× 640 × 3, the upgraded YOLOv8 model gradually 

decreases the image's spatial accuracy while 

increasing the length of the feature channels, forming 

its backbone. Initially, convolutional (Conv) layers 

reduce the dimensions from 320 × 320 × 16 to 160 × 

160 × 32. A C2f block maintains the size at 160 × 160 

× 32, while refining feature representations.  

To improve efficiency, the model incorporates 

DWSCNN layers. DWSCNN used a two-step process 

like depthwise convolution and pointwise 

convolution.  Fig.3 depicts the DWSCNN 

Architecture.

Figure 3. DWSCNN Architecture

After applying a distinct filter to each input 

channel in depthwise convolution, the outputs are 

fused using a 1 x 1 kernel in pointwise convolution. 

This structure significantly reduces computational 

cost while preserving critical feature information. The 

downsampling continues until the spatial size reaches 

20 × 20 × 256, at which point the data enters the SPPF 

block. This block combines multi-scale features, 

enabling robust detection across varying object sizes. 

The application DWSCNN is particularly 

advantageous for processing high-resolution blood 

smear images, as it ensures rapid, accurate feature 

extraction. Because it keeps computational overhead 

minimal, the model can be deployed on devices with 

limited resources and used in real-time applications. 

3.3.2 Enhanced Neck 

The neck module begins by upsampling the 20 × 

20 × 256 feature map to 40 × 40 × 128, which is 

concatenated with the corresponding feature map 

from the backbone, forming a 40 × 40 × 256 map. 

This is refined using a RCBAM and a C2f block 

maintaining the output size of 40 × 40 × 128. Similar 

process follows with upsampling to 80 × 80 × 64, 

concatenation, and refinement using another 

RCBAM and C2f preserving the 80 × 80 × 64 

resolution. 
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Figure 4. Design of RCBAM 

Fig. 4 depicts the structure of RCBAM module. In the 

bottom-up pathway, convolutional layers reduce the 

map to 40 × 40 × 128, which is concatenated with 

earlier features and processed by a C2f block to yield 

40 × 40 × 192. Further C2f block made a reduction to 

20 × 20 × 256 is performed followed by final 

concatenation with backbone features and processing 

through RCBAM and a concluding C2f block. 

 

 

Figure 5. (a) Channel Attention 5(b) Spatial Attention

The RCBAM block improves significant 

functionalities through two attention: channel 

attention and spatial attention. Channel attention 

applies average (𝐹𝑎𝑣𝑔
𝐶 ) and maximum (𝐹𝑚𝑎𝑥

𝐶 ) 

pooling, followed by a common Multi-Layer 

Perceptron (MLP) is generating an attention map as 

in equation (1) 

 

𝑀𝑐(𝐹)  =  𝜎 (𝑀𝐿𝑃(𝐴𝑣𝑔𝑝𝑜𝑜𝑙(𝐹)) +

𝑀𝐿𝑃(𝑀𝑎𝑥𝑝𝑜𝑜𝑙(𝐹))) =  𝜎 (𝑊1(𝑊0𝐹𝑎𝑣𝑔
𝐶 )) +

(𝑊1(𝑊0𝐹𝑚𝑎𝑥
𝐶 ))                                                         (1) 

 

Where, 𝑀𝑐(𝐹) is the channel attention map obtained 

from the feature map F.  𝜎 is the sigmoid activation 

map, 𝑊0 and 𝑊1 are the MLP weights, 𝐹𝑎𝑣𝑔
𝐶  and 

𝐹𝑚𝑎𝑥
𝐶  are the average and max-pooled features on the 

channel dimensions. Afterwards, the channel-

weighted feature map that is produced is fine-tuned 

by employing spatial attention, which brings together 

spatial data by average and max pooling, and then a 

7 ×  7 convolution, just like in equation (2). 

 

𝑀𝑐(𝐹) =  𝜎 (𝑓7×7([𝐴𝑣𝑔𝑝𝑜𝑜𝑙(𝐹); 𝑀𝑎𝑥𝑝𝑜𝑜𝑙(𝐹); ])) 

                                                                                (2) 

Where, the convolution operation 𝑓7×7 has a filter 

size of 7 ×  7. 

In order for RCBAM to function properly, it 

combines channel attention with spatial attention.  

The channel attention module and the spatial attention 
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module's respective structures are shown in Fig. 5(a) 

and 5(b). 

To get 𝐹′, apply channel attention to the feature map 

𝐹 as in equation (3) 

 

𝐹′ = 𝑀𝑐(𝐹) ⨂ 𝐹                                                    (3)     

To get 𝐹′′, apply channel attention to the feature map 

𝐹′ as in equation (4) 

 

𝐹′′ = 𝑀𝑠(𝐹′) ⨂ 𝐹′                                                 (4)  

 

These residual attention enhancements help 

preserve key features, improve focus on informative 

regions, and support robust feature learning essential 

for accurate leukemia detection. 

 

3.3.3 Enhanced Head 

The Head section of the network is designed for 

multi-scale object detection. It processes the 80 × 80 

× 64, 40 × 40 × 128 and 20 × 20 × 256 feature maps 

from the Neck through separate detection blocks each 

optimized for identifying large, medium and small 

objects respectively. This multi-scale approach uses 

the improved features from the Backbone and Neck 

to accurately detect blood cancer cells of different 

sizes and stages. Every Detect layer manages 

different spatial resolutions, allowing for fine-grained 

detection and classification crucial for accurate blood 

cancer staging. 

The integration of DWSCNN and RCBAM 

layers significantly enhances the YOLOv8 

architecture. DWSCNN layers reduce computational 

complexity while preserving fine feature details and 

crucial for identifying subtle differences in blood 

cancer cells. Enhancing the model's capacity to 

differentiate between blood cancer stages, RCBAM 

layers incorporate attention methods that allow it to 

zero in on the most informative areas of the feature 

maps. This combination effectively handles the 

complex and varied presentation of blood cancer for 

better decision-making. 

 

3.4  Design of PLFOECAM 

Explainable AI (XAI) is vital in medical imaging 

as it enhances the transparency and interpretability of 

deep learning models. For critical tasks like leukemia 

detection, it ensures not only high accuracy but also 

clear visual explanations of model decisions. 

Traditional DL models often act as "black boxes," 

lacking insight into their predictions. XAI techniques, 

like CAMs, aid in identifying critical areas in input 

photos; however, conventional CAMs often rely on 

gradients, which can be unstable or noisy. 

To address the limitations of gradient-based 

CAMs, this study introduces a novel attention 

mechanism called PLFOECAM. Instead of relying on 

gradients, PLFOECAM uses pixel-level fourth-order 

entropy to weight feature maps, enhancing the 

stability and interpretability of attention maps. This 

entropy-driven approach highlights regions with high 

informational complexity, capturing richer contextual 

cues. Integrated into the YOLOv8 pipeline, 

PLFOECAM enables more reliable focus on subtle, 

clinically relevant features in leukemia detection. 

Consider the scalar conservation law in the feature 

space as in equation (5) 

 
𝜕

𝜕𝑡
𝑎 +

𝜕

𝜕𝑥
𝑓(𝑢) = 0                                                     (5)                    

                  

Where, 𝑢 is the deep feature map value at pixel level, 

𝑓(𝑢) will be the spatial distribution entropy in CAM. 

𝑎 can be interpreted as entropy accumulation over 

time (e.g., over layers or frames). The entropy 

solution satisfies the entropy condition for CAM 

stability as given in equation (6) 

 
𝜕

𝜕𝑡
𝜂(𝑢) + 

𝜕

𝜕𝑡
𝑞(𝑢)  ≤ 0                                             (6) 

 

Here, 𝜂(𝑢) =  𝐸4(𝑥, 𝑦) will be the fourth order 

entropy function of feature map 𝑢. 𝑞(𝑢) is the entropy 

flux i.e., movement of information saliency in CAM. 

Also, it satisfies the entropy variable 𝛾 =
𝜕𝜂

𝜕𝑢
 . The 

semi-discrete strategy, as in equation (7), is used to 

answer equation (5) using the conservative difference 

method. 

 

 
𝑑𝑢𝑖

𝑑𝑡
=  

𝑓𝑖+1
2⁄ −𝑓𝑖−1

2⁄

∆𝑥
                                                   (7) 

 

Where, 𝑢𝑖 represents the pixel-level activation at the 

uniform node 𝑥𝑖 Geometric grid.  𝑓𝑖+1
2⁄  and 𝑓𝑖−1

2⁄  

will be difference between the entropy between 

adjacent pixels. If equation (7) meets a discrete form 

of the entropy criterion as in equation (6), updated in 

equation (8), we say that it is entropy stable. 
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𝜕

𝜕𝑡
𝜂(𝑢𝑖) + 

𝑞𝑖+1
2⁄ −𝑞𝑖−1

2⁄

∆𝑥
 ≤ 0                                   (8) 

                                                                                     

𝜂(𝑢𝑖) is the fourth order entropy function of feature 

map 𝑢. This ensures the attention map remains 

consistent, without artificial amplification. The 

entropy conservative equation (8) is equivalent to the 

discrete entropy equality in equation (9) when 

implemented. 

 

𝜕

𝜕𝑡
𝜂(𝑢𝑖) + 

𝑞𝑖+1
2⁄ −𝑞𝑖−1

2⁄

∆𝑥
= 0                                   (9) 

 

In this work, the ordinary equation (7) is solved 

using a four-order Runge-kutta technique. Improving 

the numerical flow 𝑓𝑖+1
2⁄  that is entropy stable is the 

current emphasis. The numerical flux is first divided 

into two parts, one for entropy conservatism and the 

other for numerical diffusion, based on equation (10) 

 

𝑓𝑖+1
2⁄ =  𝑓

𝑖+1
2⁄

𝐸𝐶 −
1

2
 𝛿𝑖+1

2⁄ (𝑣
𝑖+1

2⁄
+ − 𝑣

𝑖+1
2⁄

1 )        (10) 

 

Where,  𝑓
𝑖+1

2⁄
𝐸𝐶  is the conservative CAM flow,  𝛿𝑖+1

2⁄  

is the entropy based attention weight, 𝑣
𝑖+1

2⁄
+   is the 

CAM attention values reconstructed on the pixel 

interface, equation (10) constructs the CAM maps 

using the fourth–order entropy reconstruction.  

Here, 𝑓
𝑖+1

2⁄
𝐸𝐶  is the fourth order entropy conservative 

flux is expressed in equation (11) 

 

 𝑓
𝑖+1

2⁄
𝐸𝐶 =  

4

3
𝑓 (𝑢𝑖 , 𝑢𝑖+1) −

1

6
𝑓 (𝑢𝑖−1, 𝑢𝑖+1) −

𝑓 (𝑢𝑖 , 𝑢𝑖+2)                                                                     (11) 

 

Tadmor [36] defines the second-order entropy 

conservative flow as𝑓 (𝛼, 𝛽)  , which represents the 

pairwise entropy similarity between feature pixels. 

This ensures smooth yet accurate propagation of 

attention information.In most cases, the value of 

𝛿𝑖+1
2⁄  in the numerical diffusion section is selected as 

[𝑓′ (𝑢𝑖+1
2⁄ )]. If the entropy variables 𝑣𝑖  reconstrued 

values at the interfaces  𝑣
𝑖+1

2⁄
+   satisfy equation (12) 

 

𝑠𝑖𝑔𝑛 (𝑣
𝑖+1

2⁄
+ − 𝑣

𝑖+1
2⁄

1 ) = 𝑠𝑖𝑔𝑛 (𝑣𝑖+1 − 𝑣𝑖)          (12) 

 

The numerical flux in equation (11) achieves 

entropy stability for PLFOECAM. When the sign of 

the underlying point value leap matches the sign of 

the reconstructed point values at each cell interface, 

then equation (12) satisfies the sign property. This is 

crucial in PLFOECAM to ensure entropy-weighted 

attention aligns with local intensity transitions. The 

fourth order reconstruction is provided in order to 

meet the sign property as follows to get 𝑣
𝑖+1

2⁄
+ . Take 

the polynomial reconstruction in equation (13) 

 

 𝑝𝑖  (𝑥) =  𝑣𝑖 + 𝑑𝑖 (
𝑥−𝑥𝑖

∆𝑥
) + (

𝑣𝑖−1−2𝑣𝑖+𝑣𝑖+1

2
) (

𝑥−𝑥𝑖

∆𝑥
)

2

+

(
−𝑣𝑖−1+𝑣𝑖+1−2𝑑𝑖

2
) (

𝑥−𝑥𝑖

∆𝑥
)

3

                                       (13) 

Where, 𝑝𝑖  (𝑥) is the smooth reconstruction of entropy 

based CAM.  𝑑𝑖 being the slope function of entropy 

variation around pixel 𝑖. This yields a fourth-order 

smooth PLFOECAM map that reduces noise and 

sharpens attention on key pathological features in 

leukemic cells. 

 

3.5  Integrating PLFOECAM in YOLOv8 

In the proposed YOLOv8 architecture for 

leukemia detection, the PLFOECAM module is 

integrated into three different scales within the head 

section to enhance visual interpretability through 

explainable AI. Specifically, PLFOECAM is applied 

after the detect heads responsible for predicting class 

probabilities at three spatial resolutions: 80 × 80 × 64 

× w, 40 × 40 × 128 × w, and 20 × 20 × 256 × w × r. 

At each of these levels, once the class predictions are 

computed by the detect layer, PLFOECAM utilizes 

the corresponding feature maps to generate pixel-

level fourth-order entropy guided class activation 

maps that highlight regions with high informational 

complexity, such as leukemic nuclei and abnormal 

morphological structures, while suppressing less 

relevant or redundant area. Fig. 6 represents the 

integration of PLFOECAM in YOLOv8. 

To compute this attention, the feature maps 

𝐹𝑘(𝑥, 𝑦) from the detect head are first normalized 

across channels to determine the soft activations as in 

equation (14) 

 

 𝑝𝑘(𝑥, 𝑦) =  
𝐹𝑘(𝑥,𝑦)

∑ 𝐹𝑗(𝑥,𝑦)+𝜖𝐾
𝑗=1

                                      (14) 

 

Using these normalized activations, the pixel-wise 

fourth order entropy is calculated as in equation (15)    

 

𝐸4(𝑥, 𝑦) =  − ∑ 𝑝𝑘(𝑥, 𝑦)4. 𝑙𝑜𝑔(𝑝𝑘(𝑥, 𝑦)4 + 𝜖)𝐾
𝑘=1   
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                                                                              (15) 

     This entropy map quantifies the information 

richness at each pixel. Then, channel-wise attention 

weights are derived by combining entropy with 

original activations as in equation (16) 

 

𝑎𝑘 =  
1

𝑍
 ∑ ∑ 𝐸4(𝑥, 𝑦). 𝐹𝑘(𝑥, 𝑦)𝑊

𝑦=1
𝐻
𝑥=1                   (16) 

 

The resulting PLFOECAM attention map is 

computed by applying these weights over the original 

feature channels as in equation (17) 

 

 𝑃𝐿𝐹𝑂𝐸𝐶𝐴𝑀 (𝑥, 𝑦) = 𝑅𝑒𝐿𝑈 (∑ 𝑎𝑘 .𝐾
𝑘=1 𝐹𝑘(𝑥, 𝑦))     

                                                                (17)  

This map is then up-sampled to match the 

resolution of the preceding layers in the architecture 

and injected back into earlier stages. The up-sampled 

attention output from the 20 × 20 × 256 × w × r level 

is fused into the neck section just before the C2f layer. 

Similarly, the output from the 40 × 40 × 128 × w scale 

is fed into the neck before the convolutional fusion 

and RCBAM block, while the attention map from the 

80 × 80 × 64 × w scale is injected into the backbone 

before the corresponding convolutional block. The 

fusion of PLFOECAM into the feature hierarchy is 

mathematically modelled as in equation (18) 

 

𝐹𝑘
𝑓𝑢𝑠𝑒𝑑(𝑥, 𝑦) = 𝐹𝑘

𝑝𝑟𝑒(𝑥, 𝑦) + 𝜆. 𝐴𝑢𝑝 (𝑥, 𝑦)             (18)      

                                                                 

 

  

                                         

 

Figure 6. Block Structure of the Proposed PLFOECAM in YOLOv8 Model (* w = width; r = ratio) 

Where, 𝐹𝑘
𝑓𝑢𝑠𝑒𝑑(𝑥, 𝑦) the original feature map before 

convolution, 𝐴𝑢𝑝 (𝑥, 𝑦) is the upsampled 

PLFOECAM attention map and 𝜆 is a scaling factor 

controlling attention influence. This feedback 

mechanism allows high-level semantic attention to 

guide and refine low- and mid-level feature learning 
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across both the backbone and neck. As a result, the 

proposed architecture enhances spatial awareness, 

improves focus on diagnostic features and offers 

better explainability and confidence for automated 

leukemia detection. 

 

3.6  Detection and Classification 

In the proposed PLFOECAM-enhanced 

YOLOv8 architecture for leukemia detection, the 

detect head plays a central role in producing both the 

bounding box predictions and the class probabilities 

required to localize and identify leukemic cells. Fig. 

7 depicts the Detect Head's Structure. 

 

Figure 7. Detect Head's Structure 

As illustrated, each detect head consists of 

multiple convolutional layers that separately handle 

object localization and classification. Specifically, at 

each scale (20×20, 40×40, and 80×80), the feature 

maps from the neck are first processed through 

stacked convolutional blocks to generate intermediate 

spatial representations. These are then passed through 

final Conv2D layers to compute the bounding box 

regression output and the classification logits.The 

bounding box regression module predicts four 

coordinates (𝑥, 𝑦, 𝑤, ℎ) for each detected region, 

optimized using a loss such as Complete Intersection 

of Union (cIoU) as in equation (19) 

ℒ𝑏𝑏𝑜𝑥 = 1 − cIoU (𝑏𝑏𝑝 , 𝑏𝑏𝑔𝑡  )                             (19) 

 

Where the predicted bounding box is denoted as 𝑏𝑏𝑝 

and the ground truth bounding box as 𝑏𝑏𝑔𝑡. 

Simultaneously, the classification head produces a set 

of logits for each class, which are converted to 

probabilities via the softmax function as in equation 

(20) 

 

𝑃(𝑐𝑖|𝑥, 𝑦) =  
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐶

𝑗=1

                                              (20) 

 

Where, 𝑃 (𝑐𝑖)  suppresses the final class probability 

for class 𝑖, 𝐶 is the total number of leukemia subtypes 

and 𝑧𝑖 is the logit for class 𝑖. According to equation 

(21), the classification loss is calculated by taking the 

cross entropy of the predicted probability and the 

ground truth class labels. 

 

𝐿𝑐𝑙𝑠 =  ∑ 𝑦𝑖
𝐶
𝑖=1 . 𝑙𝑜𝑔(𝑃(𝑐𝑖))                                       (21)    

            

The total detection loss is a combination of both 

localization and classification elements as in equation 

(22) 

 

  𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑏𝑏 .  𝐿𝑏𝑏 + 𝜆𝑐𝑙𝑠  .  𝐿𝑐𝑙𝑠                            (22)  

  

Where, the weighting factors that equalize the impact 

of each loss term are denoted as   𝜆𝑏𝑏 and 𝜆𝑐𝑙𝑠.  

Following the location of the bounding boxes and the 

results of the class's confidence tests are predicted at 

each detection scale, these outputs are passed to the 

PLFOECAM module to generate entropy-guided 

class activation maps. The leukemia detection process 

is made easier to understand with the help of these 

maps, which show the specific geographic areas that 

the model used to make its predictions. The 

integration of PLFOECAM ensures that even subtle 

leukemic cell patterns are effectively captured and 

visualized providing more transparent decision-

making task through entropy-based attention 

heatmaps for accurate leukemia prediction. 

Algorithm: YPALDC for Leukemia Detection and 

Classification 

Input: Blood smear image from leukemia dataset 

Output: Leukemia prediction  

1. Start 

2. \\Image Preprocessing 

3. Apply bilateral filter to remove background 

noise while preserving WBC boundaries 

4. Perform color deconvolution to separate eosin 

and hematoxylin stain components 

5. Enhance contrast via adaptive histogram 

equalization 

6. Normalize pixel intensity using Z-score 

normalization 

7. \\Feature Extraction – Enhanced YOLOv8 

Backbone 

8. Resize image to 640×640×3 pass through 

initial convolutional layers 

9. Apply DWSCNN for lightweight feature 

extraction 

10. Pass through C2f blocks and SPPF for 

multiscale contextual learning 
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11. Extract multi-resolution features at scales 

20×20, 40×40, 80×80 

12. \\Context Aggregation – Enhanced Neck 

13. Perform upsampling and concatenation for 

multi-scale fusion 

14. Apply RCBAM 

15. Compute channel attention via pooled MLP 

layers (equation 1) 

16. Compute spatial attention via 7×7 convolution 

(equation 2) 

17. Refine features using C2f blocks at each scale 

18. \\PLFOECAM  

19. Extract feature maps from each detection head 

20. Normalize activations across channels 

(equation 14) 

21. Compute fourth-order entropy map at each 

pixel (equation 15) 

22. Calculate entropy-based channel attention 

weights (equation 16) 

23. Generate PLFOECAM attention maps by 

weighted sum of channels (equation 17) 

24. Upsample attention maps to match resolution 

and inject into Backbone, Neck and Head of 

YOLOv8 

25. Fuse attention maps with original features 

using residual connection (equation 18) 

26. \\Detect Head 

27. Predict bounding boxes and class scores at 3 

scales (small, medium, large objects) 

28. Compute bounding box loss using Complete 

IoU (equation 19) 

29. Compute class probabilities using softmax 

(equation 20) 

30. Compute classification loss using cross-

entropy (equation 21) 

31. \\Final Prediction and Visualization 

32. Refine detection output with entropy-

enhanced features 

33. Generate final bounding boxes and leukemia 

subtype classification 

34. Produce interpretable heatmaps highlighting 

key regions via PLFOECAM 

35. End 

Thus, the proposed YPALDC model effectively 

enhances leukemia detection and classification by 

integrating PLFOECAM into the YOLOv8 

framework, enabling accurate predictions with 

improved interpretability and diagnostic confidence. 

 

IV. RESULT AND DISCUSSION 

a. Data Description 

There are three datasets that have been used for 

the experiments. 

SN-AM Dataset [37]: The Nikon Eclipse-200 

microscope was used to acquire images at a resolution 

of 1000x from bone marrow aspirate slides of 

individuals who were diagnosed with B-lineage ALL 

(B-ALL) and with MM.  Staining the slides with 

Jenner-Giemsa was done. Ninety B-ALL photos and 

one hundred MM images totaling 2560x1920 pixels 

were taken in raw BMP format. There is enough 

variation in MM and B-ALL pictures from one image 

to the next to allow for a thorough testing of any 

suggested stain normalization techniques. 

MiMM_SBILab Dataset [38]: The images were 

captured at a magnification of 1000x using a digital 

camera and a Nikon Eclipse-200 microscope. The 

bone marrow aspirate slides of individuals with 

multiple myeloma (MM) were stained with Jenner-

Giemsa stain. The 85 photos are all stored in raw 

BMP format and have dimensions of 2560 by 1920 

pixels. Our patented technology was used to stain 

normalize all 85 photos, ensuring that they are 

adequate for cell segmentation tasks. 

C-NMC dataset [39]: The ALL Disease Diagnostics 

Competition was an opportunity for the Cancer 

Imaging Archive (TCIA) to make this dataset 

available. It covers 10,661 micrographs of blood 

clots, divided as follows: 7272 from 47 leukemia 

patients and 3389 from 26 healthy people. The 

photographs are 450 by 450 pixels in size and use a 

24-bit RGB color format. 

 

b. Experimental Evaluation and Performance 

metrices 

Using the dataset provided in section 4.1, this 

section compares the proposed YPALDC model to 

other existing models. The code was executed in 

Python 3.11 on a PC with an Intel CoreTM.i5-4210 

3GHz, 4GB RAM, and 1TB HDD running Windows 

10 64-bit.  One option is to use all of the data with 4-

fold cross validation, while another is to split the data 

into 70% training and 30% testing.   The model's 

confusion matrix, as shown in Table 1, when applied 

to the test data set. Table 2 depicts the parameter 

settings for the proposed work. 

Table 1. Confusion Matrix for Proposed and 

Existing Models on Testing Set 
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Dataset Class TP TN FP FN 

SN-AM 

Dataset 

ALL 84 169 7 10 

AML 85 170 6 9 

MM 84 169 7 10 

MiMM_ 

SBILab 

MM 440 414 6 20 

Non-MM 414 440 6 20 

C-NMC 

dataset 

ALL 1370 1370 122 140 

Normal 980 1370 122 140 

 

The model's ability to forecast MI from the 

available datasets is assessed using the following 

performance measures. 

Intersection over Union (IoU): It evaluates the 

degree to which the leukemia region annotations on 

the ground and the anticipated PLFOECAM heatmap 

overlap.  Like in equation (23) it quantifies the 

accuracy with which the predicted region pinpoints 

the real leukemic regions. 

Table 2. Hyperparameter Settings for YPALDC 

Model 

Hyperparameter Value 

Batch Size 32 

Number of Epochs 100 

Learning Rate 0.001 

Optimizer Adam 

Dropout Rate 0.5 

PLFOECAM Entropy 

Scaling Factor (α) 
0.5 – 1.0 

PLFOECAM Solver 
Runge-Kutta 

(Order 4) 

Activation Function ReLU 

Input Image Size 640 × 640 

Normalization Method Z-score 

Detection Scales 
80×80, 40×40, 

20×20 

Channel MLP Ratio 1/2 

CBAM Spatial Kernel Size 7 × 7 

 

𝐼𝑜𝑈 =  
| 𝐻𝑒𝑎𝑡𝑚𝑎𝑝 ⋂ 𝐺𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ|

| 𝐻𝑒𝑎𝑡𝑚𝑎𝑝 ⋃ 𝐺𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ|
                              (23) 

 

Dice Coefficient (DC): Using recall and precision, 

the DC determines how close the predicted region is 

to the ground reality.  According to equation (24), it 

works very well for segmenting and localizing 

different sized regions in medical images: 

 

  𝐷𝐶 =  
2×| 𝐻𝑒𝑎𝑡𝑚𝑎𝑝 ⋂ 𝐺𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ|

| 𝐻𝑒𝑎𝑡𝑚𝑎𝑝|+| 𝐺𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ|
                         (24) 

 

Accuracy: According to equation (25), it is 

calculated as the ratio of the number of samples to the 

proportion of cases that were correctly identified 

(both leukemia and non-leukemia): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+ 𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                      (25)  

 

In equation (26), True Positive (TP) means that the 

model correctly predicted a leukemia case. When the 

model correctly identifies a case that is not leukemia, 

it is called a true negative (TN). False Positive (FP) 

denotes non-leukemia case incorrectly classified as 

leukemia. False Negative (FN) refers where leukemia 

cases incorrectly classified as non-leukemia cases. 

Precision: The model's accuracy in predicting 

leukemia cases is determined by dividing all positive 

predictions by the total number of cases, as shown in 

equation (26) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                      (26)

                                                                                    

Recall\Sensitivity: The percentage of true leukemia 

cases that the model accurately identified is computed 

using the formula in equation (27) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                       (27) 

 

F1-score: In equation (28) shows that it is the 

weighted mean of recall and precision. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                     (28)     

                                                            

c. Performance Evaluation of Different CAM 

models 

In this section, the proposed PLFOECAM model 

is compared with standard visualization models like 

CAM, Grad-CAM, Grad-CAM++ and Layer CAM. 

These models are evaluated using different metrics 

like IoU and DC as in section 4.2 The illustration of 

these standard visualization models is given below. 

CAM: By superimposing the final classification 

layer's weights onto the convolutional feature maps, 

CAM employs global average pooling to produce 

attention maps that are class-specific. Although 

simple and interpretable, CAM is limited to specific 

network architectures and tends to offer low spatial 

resolution, which can hinder precise medical region 

localization. 
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Grad-CAM: Grad-CAM takes a look at the target 

class gradients that go into the final convolutional 

layer to figure out how important each feature map. It 

typically produces localization maps that are 

somewhat coarse, making it difficult to identify 

important details in leukemia cell images that are 

either too small or too subtle to be picked up by such 

maps. 

Grad-CAM++: Grad-CAM++ ranges Grad-CAM by 

combining higher-order derivatives, allowing for 

improved localization of multiple discriminative 

regions in a single image. This is especially useful in 

complex datasets with overlapping structures. 

However, its performance is still bounded by the 

quality of backpropagated gradients, which may be 

noisy in deeper models. 

Layer-CAM: Layer-CAM improves spatial detail by 

leveraging element-wise gradients across different 

layers, thus enhancing localization precision in 

shallow and deep parts of the network. It addresses 

some spatial limitations of Grad-CAM but still retains 

dependency on gradient flow and lacks a statistical 

interpretation of pixel importance. 

Figure 8. IoU comparison of PLFOECAM with alternative visualization techniques 

In Fig. 8 and Fig. 9 depicts the IoU and DC evaluation 

for three dataset. In this analysis, the proposed 

PLFOECAM model achieves highest IoU and DC 

values than other standard models. This consistent 

improvement highlights PLFOECAM’s ability to 

capture fine-grained leukemic features with greater 

spatial precision. Its fourth-order entropy mechanism 

enables better discrimination of pathological regions 

compared to gradient-based CAMs. The enhanced 

attention maps lead to more accurate and interpretable 

localization across diverse staining and cell 

morphology conditions. 

 

d. Performance evaluation on classification 

models 

In this segment, the productivity of the suggested 

YPALDC model compared to integration of 

visualization methods with CNN models like 

CAM+YOLOv8, Grad-CAM+ YOLOv8, Grad-

CAM++ + YOLOv8 and Layer-CAM+YOLOv8. 

These models are evaluated using the dataset in 

Section 4.1 on all key metrics available in Section 4.2. 

Fig. 10 shows the results of comparing the proposed 

and existing models for ALL, AML, and MM 

prediction on the SN-AM dataset. In this analysis, the 

proposed YPALDC model achieves accuracy is 

16.69%, 10.72%, 7.24% and 3.98% higher than 

CAM+YOLOv8, Grad-CAM+ YOLOv8, Grad-

CAM++ + YOLOv8 and Layer-CAM+YOLOv8 

models respectively.   

 
Figure 9. Comparative DC study of alternative visualization approaches to the proposed PLFOECAM 
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Figure 10. Comparison of Current and Proposed Models for ALL, AML, and MM Prediction Using 4-Fold 

Cross Validation 

 
Figure 11. Comparison of Current and Proposed Models for MM Prediction Using 4-Fold Cross Validation 

 

Figure 12. Comparing the Performance of the Proposed and Existing Models for ALL Prediction using 4-fold 

Cross Validation

Fig. 11 shows the results of comparing the 

proposed model with the existing one for MM 

Prediction on the MiMM_SBILab dataset. In this 

analysis, th proposed YPALDC model achieves 

accuracy of is 18.54%, 11.98%, 8.09% and 4.61% 

higher than other models respectively.  Similarly, In 

Fig. 12, we can see the results of comparing the new 

model with the existing one for ALL prediction on the 

C-NMC dataset. In this analysis, the proposed 

YPALDC model achieves accuracy of is 21.29%, 

13.91%, 10.12%, 6.6% higher than other models 

respectively. In this analysis, the proposed YPALDC 

model provides higher results than other standard 

models. This is because the proposed YPALDC 

model effectively integrates the pixel-level entropy-

guided attention and optimized feature extraction for 

accurate leukemia subtype prediction. 

Table 3. Comparison of robustness for YPALDC against adversarial inputs 

Test condition Metrics SN-AM 

 Dataset 

MiMM_SBILab 

Dataset 

C-NMC 

Dataset 

Without pre-processing 

(i.e., dataset has 

Accuracy (%) 90.13 87.62 88.71 

Precision (%) 89.87 88.30 87.54 

8
0

.4
2

8
1

.9
5

8
0

.1
9

8
1

.0
2

8
4

.7
6

8
3

.3

8
4

.6
5

8
3

.4
7

8
7

.5
1

8
6

.1
3

8
6

.4
4

8
7

.2
8

9
0

.2
6

8
9

.0
2

8
9

.1
8

9
0

.1

9
3

.8
5

9
3

.6
7

9
3

.9
1

9
3

.7
9

0
20
40
60
80

100

Accuracy Precision Recall F1-Score

R
a

n
g

e 
(%

)

Performance Analaysis on SN-AM Dataset

CAM + YOLOv8

Grad-CAM + YOLOv8

Grad-CAM++ + YOLOv8

Layer-CAM + YOLOv8

YPALDC

7
6

.2
8

7
5

.1
9

7
6

.8
5

7
5

.3
4

8
0

.7
4

7
9

.1
2

8
0

.5
3

7
9

.3
2

8
3

.6
5

8
2

.2
8

8
3

.4
2

8
2

.3
5

8
6

.4
3

8
5

.1
5

8
6

.2
7

8
5

.2
1

9
0

.4
2

9
1

.1
3

9
0

.3
5

9
1

.2
4

0
20
40
60
80

100

Accuracy Precision Recall F1-Score

R
a

n
g

e 
(%

)

Performance Analaysis on MiMM_SBILab Dataset

CAM + YOLOv8

Grad-CAM + YOLOv8

Grad-CAM++ + YOLOv8

Layer-CAM + YOLOv8

YPALDC

7
5

.7
4

7
6

.1
2

7
6

.5
3

7
5

.3
2

8
0

.6
5

8
1

.2
8

8
0
.4

2

8
1
.3

5

8
3

.4
3

8
4

.1
5

8
3

.2
7

8
4

.2
1

8
6

.1
8

8
7

.2

8
6

.1
2

8
7

.0
6

9
1

.8
7

9
0

.7
3

9
1

.9
1

9
0

.8
2

0
20
40
60
80

100

Accuracy Precision Recall F1-Score

R
a

n
g

e 
(%

)

Performance Analaysis on C-NMC Dataset

CAM + YOLOv8

Grad-CAM + YOLOv8

Grad-CAM++ + YOLOv8

Layer-CAM + YOLOv8

YPALDC



T.Subamathi, et. al. International Journal of Engineering Research and Applications 

www.ijera.com 

ISSN: 2248-9622, Vol. 15, Issue 9, September 2025, pp 127-145 

 

A 
www.ijera.com                                    DOI: 10.9790/9622-1509127145                               142 | Page 

                

 

adversial input) Recall (%) 90.35 87.41 88.93 

F1-score (%) 90.10 87.82 88.21 

With pre-processing 

(i.e., dataset has 

no adversarial inputs) 

Accuracy (%) 93.85 90.42 91.87 

Precision (%) 93.67 91.13 90.73 

Recall (%) 93.91 90.35 91.91 

F1-score (%) 93.79 91.24 90.82 

Table 3 presents a robustness comparison of the 

YPALDC model across the SN-AM, 

MiMM_SBILab, and C-NMC datasets under varying 

conditions. Without pre-processing, the presence of 

adversarial noise leads to a clear decline in all key 

metrics, causing more misclassifications in leukemia 

subtype prediction. However, applying techniques 

like normalization and noise reduction significantly 

improves performance. YPALDC shows greater 

reliability and consistency in detecting ALL, AML, 

and MM, even in complex imaging scenarios. This 

underscores the vital role of pre-processing in 

enhancing model robustness and generalizability, 

especially for real-world medical image analysis with 

noise and background variability.  

Table 4 shows the YPALDC model's 

computational efficiency results on the SN-AM, 

MiMM_SBILab, and C-NMC datasets 

simultaneously. Training time, inference time, and 

memory utilization were measured separately for both 

CPU and GPU environments. The results clearly 

indicate that GPU-based training and inference are 

significantly faster than those on CPU. Among the 

datasets, SN-AM shows relatively lower 

computational demands due to its more uniform 

image quality and structure, while MiMM_SBILab 

and C-NMC datasets require higher processing power 

and memory because of greater variability in image 

quality, background complexity, and class diversity. 

These factors lead to longer training times and 

increased memory usage. This underscores the fact 

that real-world medical datasets are computationally 

more intensive than clean or standardized ones, and 

demonstrates the effectiveness of GPU-based 

implementation in accelerating training and inference 

while managing memory more efficiently. 

Table 4. Computational efficiency of the YPALDC on collected dataset 

Computational Metrics 
SN-AM 

Dataset 

MiMM_SBILab 

Dataset 

C-NMC 

Dataset 

Training time (sec) 
CPU 8120 7635 7890 

GPU 1420 1335 1390 

Inference time (sec) CPU 286 271 278 

GPU 135 123 120 

Memory usage (MB) CPU 6140 5975 6020 

GPU 2140 2035 2080 

 

Table 5. Comparison of YPALDC Model with and without hyperparameter optimization 

Test condition Metrics SN-AM 

 Dataset 

MiMM_SBILab 

Dataset 

C-NMC 

Dataset 

Without 

hyperparameter 

optimization 

Accuracy (%) 89.34 86.52 88.73 

Precision (%) 88.92 87.01 87.56 

Recall (%) 89.45 86.28 88.90 

F1-score (%) 89.18 86.64 88.22 

With hyperparameter 

optimization 

 (Grid search) 

Accuracy (%) 93.85 90.42 91.87 

Precision (%) 93.67 91.13 90.73 

Recall (%) 93.91 90.35 91.91 

F1-score (%) 93.79 91.24 90.82 
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Table 5 demonstrates the performance analysis 

of the suggested YPALDC model on SN-AM, 

MiMM_SBILab, and C-NMC datasets with and 

without hyperparameter modification. Without 

tuning, the YPALDC model demonstrates strong 

baseline performance; however, after applying grid 

search for hyperparameter optimization, noticeable 

improvements are observed in all key metrics. The 

model's decision bounds are fine-tuned by 

optimization on the SN-AM dataset, leading to 

improved reliability on structured clinical data. For 

the MiMM_SBILab and C-NMC datasets, which 

include more challenging and diverse image 

conditions, tuning significantly enhances the model’s 

generalization. Overall, this proves that optimizing 

YPALDC's hyperparameters is crucial for improving 

its performance on different types of medical datasets. 

 

V. CONCLUSION 

This study proposes the YPALDC technique to 

demonstrate effective classification and detection of 

leukemia using modified YOLOv8 architecture 

combined with a new PLFOECAM. The advanced 

preprocessing techniques was applied to enhance the 

image quality. DWSCNN improves the feature 

extraction while reducing complexity. RCBAM 

enhances attention to clinically relevant regions in 

blood smear images. PLFOECAM replaces gradient-

based CAMs with stable, entropy-driven attention 

maps for better interpretability. Overall, the model 

achieves robust performance, real-time detection and 

transparent decision-making in leukemia 

classification. Finally, the experimental results prove 

that the proposed model perform achieves 93.85%, 

90.42% and 91.87% on SN-AM dataset, 

MiMM_SBILab Dataset, C-NMC dataset 

outperforming other standard models. 
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