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ABSTRACT 
We rework Descartes' solution to Pappus' problem about products of distances to concurrent lines. Also, we 

imagine these lines as those that delimit a Mesoamerican pyramid and are projected onto a vertical plane. We 

seek a geometric interpretation for Cartesian parameters and discriminant. We consider an abundance concept 

versus scarcity. We recall the concept of conservation to find the shape of the potential energy of a moving 

object on a conic in polar coordinates. We compare Cartesian parameters with Newtonian ones. We define 

relative Cartesian potential energy ( 𝑈𝑟𝑒𝑙,𝐷 = −√𝛿𝜙2 ∙
1

𝑟
). We imagine annual evolution curves under the concept 

of contrasting abundance versus scarcity. We take the case of Xochicalco and its pyramid, The Feathered 

Serpent, to interpret the evolution of the predominant behavior of its successive agricultural cycles as an inverse 

problem in time and imagine the nonexistent annual records as present in the various construction stages of the 

pyramids. 

Keywords: Cartesian potential energy, Cartesian discriminant, abundance, income, conics, Pappus, pyramids, 

Xochicalco, agricultural cycle. 
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I. INTRODUCTION 
We speak of “hyperbole”, alluding to its 

dual meaning: on the one hand, to indicate 

abundance or excess, as opposed to elliptical, which 

refers to scarcity or lack. And it’s Cartesian because 

Descartes had already proposed a solution by 

introducing, starting from a point, three additional 

auxiliary lines, with a relationship of proportionality 

between similar triangles. Thus, we have an 

abundance of lines, seven, and triangles; however, 

although we observe an absence of curvature, its 

composition gives rise to the curvature of a conic, 

which contains the point of origin of the three 

auxiliary lines. 

 

Our method is based on the Principle of Duality, 

which is extracted and highlighted as a cornerstone 

of the culture and mythology of the Mesoamerican 

Indigenous Peoples and its hypothetical relationship 

with the “Arhuaca culture” (that lives in the “Sierra 

Nevada of Santa Marta”, the highest coastal 

mountain in the world, located in northern 

Colombia). As can be seen, for example, in the case 

of the “God Quetzalcoatl” (central figure or deity in 

Mesoamerican mythology) and his representation as 

a feathered serpent, “who knows the hidden secrets 

of the subsoil and the air”. Or in “Mictlán, where 

death and life are combined”; (Mictlán, final destiny 

of souls in the Mexican mythology). This principle 

later reaches us under the signature of the 

philosopher Hegel, as "Being and Nothingness"; and 

in Lefebvre H. " Unity Law of the Contradictories" 

([1]). 

 

We start from the figure of a Mesoamerican 

pyramid. We project it onto a vertical plane, 

highlighting the three concurrent lines that delimit it 

and are cut by a fourth line, corresponding to the 

roof of the pyramid, which we orient from the north 

- blue - Tlaloc to the south - red - Huitzilopochtli 

(Tlaloc and Huitzilopochtli as Mexican deities). 

Then, the three auxiliary lines mentioned above are 

constructed, emerging from a point and mediated by 

the proportion between similar triangles, where said 

point will be immersed in a conic curve. The base 

document can be found in the section or chapter 

entitled: René Descartes (1596-1650), of reference 

([2]). 

 

This geometric and philosophical approach allows us 

to establish a bridge between the worldview of the 

Mesoamerican Indigenous Peoples and the 

foundations of modern rational thought. The 

pyramid, as an architectural and conceptual symbol, 

not only represents a physical structure, but also a 

metaphor for the duality and interconnection 

between the earthly and the divine. By projecting the 

pyramid onto a vertical plane, the concurrent lines 
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and the fourth line representing the roof symbolize 

the intersection between the material and spiritual 

worlds, a concept deeply rooted in Mesoamerican 

cosmogony ([3]). 

 

The construction of the three auxiliary lines, 

emerging from a common point and mediated by the 

proportion of similar triangles, reflects the harmony 

and balance present in nature and in dualistic 

thought. This point of convergence, immersed in a 

conic curve, suggests a connection with the 

mathematical principles René Descartes developed 

in his analytic geometry, where geometric figures 

and algebraic equations intertwine to accurately 

describe the universe. 

 

The reference to Descartes in the background paper 

([2]) is not accidental. Descartes, considered the 

father of modern philosophy, sought to unify 

knowledge through reason and mathematics, 

something that resonates with the quest of 

Indigenous Peoples to understand the universe 

through duality and proportion. Thus, the Duality 

Principle is not only manifested in Mesoamerican 

culture, but also finds echoes in Western thought, 

from Hegel to Lefebvre, who explored dialectics and 

the unity of opposites. 

 

In this sense, our method not only seeks to rescue 

and reinterpret ancestral knowledge, but also to 

integrate it with the conceptual tools of modernity. 

In doing so, we propose a holistic vision that 

reconciles the wisdom of Indigenous Peoples with 

contemporary philosophical and scientific currents, 

opening new perspectives for understanding the 

complexity of the world and our relationship with it. 

 

1.1 Quadratic form 
From qualitative relationships we will 

move on to quantitative ones. Pappus's problem 

could be stated as follows: Given several fixed 

straight lines, we want to find the geometric locus of 

the points whose product of the distances from some 

of the lines results in the product of the distances to 

the remaining straight lines, ([4]). In the case of four 

concurrent lines, we call this statement “the 

Cartesian hypothesis”. 

 

With the projection of the edges of a pyramid, three 

lines that are cut by a fourth are produced, horizontal 

secant corresponding to the roof of the pyramid. The 

projection of the fourth edge overlaps that of the 

intermediate edge, or is hidden by the body of the 

pyramid. This gives rise to three points on the roof 

line, which we mark as {𝐸, 𝐴, 𝐺} and also two 

longitudinal parameters: 𝑘 = 𝑑(𝐴, 𝐸), and 𝑙 =
𝑑(𝐴, 𝐺), are originated (Figure 1, Chichén Itzá 

Projected Pyramid; ‘legendary Mayan city in 

Mexico’), ([2], [4]). At the base of the projected 

edges, the three points {𝐹, 𝐷, 𝐻} are indicated. And 

from a hypothetical point {𝐶}, three more lines are 

drawn: {𝐶, 𝐹}, {𝐶, 𝐷}, {𝐶, 𝐻}, to those three points at 

the base mentioned above, and a 4th {𝐶, 𝐵}, with {𝐵} 

now located on the straight line of the roof. Three 

more higher points are obtained {𝑇, 𝑅, 𝑆}, with 𝑇 in 

{𝐺, 𝐻}⋂{𝐶, 𝐵}, 𝑅 in {𝐷, 𝐴} ⋂{𝐶, 𝐵}, and 𝑆 in 

{𝐹, 𝐸}⋂ {𝐶, 𝐵}, which could be reduced to a single 

point, however this hypothesis is not necessary. In 

summary, seven additional points are obtained: 
{𝐹, 𝐷, 𝐻, 𝐵, 𝑇, 𝑅, 𝑆} and two longitudinal variables: 

𝑥 = 𝑑(𝐵, 𝐴) and 𝑦 = 𝑑(𝐶, 𝐵). 

Next, we consider the triangles: {𝐶, 𝐷, 𝐹} 

with inscribed subtriangle {𝐶, 𝐵′(𝐵), 𝐻′(𝐻)}, where 

𝐶𝐵′ is a rotation of 𝐶𝐵 and 𝐶𝐻′ another rotation of 

𝐶𝐻; the {𝐶, 𝑇, 𝐻} with subtriangle {𝐵, 𝑇, 𝐺}, angles 2̂ 

in 𝑇, (2̂1) in 𝐺, 2̂2 in 𝐻; the {𝐶, 𝐷, 𝑅} with sub 

{𝐵, 𝐴, 𝑅}, angles 3̂ in 𝑅, (3̂1) in 𝐴, (3̂2) in 𝐷 and 

the {𝐶, 𝐹, 𝑆}, with subtriangle {𝐵, 𝐸, 𝑆}, angles 4̂ in 

𝑆, (4̂1) in 𝐸, and (4̂2) in 𝐹. We start then with eight 

triangles, in groups of two, the upper angles are 

denoted by 𝑖 ∈ {2,3,4}, the lateral angles by 𝑗 ∈
{1,2}, the first one on the right, the last two on the 

left. In particular, we highlight the angle 𝛽 of 

inclination between 𝐶𝐵 and the horizontal roof 𝐵𝐴. 

 

Denoting 𝐷𝑖 = {𝐵, 𝐻, 𝐷, 𝐹} by applying the law of 

sines, the four segments from 𝐶 are expressed as 

linear combinations of the parameters and linear 

variables: 𝐶𝐷𝑖 =
sin 𝑖

sin 𝑖2
∙ 𝑦 +

sin 𝑖1

sin 𝑖2
∙ 𝑙𝑖 , 𝑙𝑖 =

{𝑙 − 𝑥, 𝑘 − 𝑥, 𝑥}, under the Cartesian hypothesis, 

 
𝐶𝐷1

𝐶𝐷2
=

𝐶𝐷3

𝐶𝐷4
                           (1) 

 

what unfolds in: 

 

𝑦
sin 2̂

sin 2̂2
𝑦+

sin 2̂1

sin 2̂2
(𝑙−𝑥)

=
sin 3̂

sin 3̂2
𝑦+

sin 3̂1

sin 3̂2
𝑥

sin 4̂

sin 4̂2
𝑦+

sin 4̂1

sin 4̂2
(𝑘−𝑥)

          (2)                         

 

and translates into the quadratic equation: 

 

(
sin 4̂

sin 4̂2
−

sin 2̂

sin 2̂2
∙

sin 3̂

sin 3̂2
) 𝑦2 = (

sin 2̂

sin 2̂2
∙

sin 3̂1

sin 3̂2
−

sin 2̂1

sin 2̂2
∙

sin 3̂

sin 3̂2
+

sin 4̂1

sin 4̂2
) 𝑥𝑦 + (−

sin 2̂1

sin 2̂2
∙ 𝑙 ∙

sin 3̂

sin 3̂2
−

sin 4̂1

sin 4̂2
∙

𝑘) 𝑦 + (
sin 2̂1

sin 2̂2
∙ 𝑙 ∙

sin 3̂1

sin 3̂2
) 𝑥 + (−

sin 2̂1

sin 2̂2
∙

sin 3̂1

sin 3̂2
) 𝑥2         

(3) 

 

or, in the usual notation, 𝐴𝑥2 + 𝐵𝑥𝑦 + 𝐶𝑦2 + 𝐷𝑥 +
𝐸𝑦 = 0, being: 
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𝐴 =
sin 2̂1

sin 2̂2
∙

sin 3̂1

sin 3̂2
                         (4) 

 

𝐵 = − (
sin 2̂

sin 2̂2
∙

sin 3̂1

sin 3̂2
−

sin 2̂1

sin 2̂2
∙

sin 3̂

sin 3̂2
+

sin 4̂1

sin 4̂2
) 

 

𝐶 = (
sin 4̂

sin 4̂2
−

sin 2̂

sin 2̂2
∙

sin 3̂

sin 3̂2
) 

 

𝐷 = − (
sin 2̂1

sin 2̂2
∙ 𝑙 ∙

sin 3̂1

sin 3̂2
) 

 

𝐸 = − (−
sin 2̂1

sin 2̂2
∙ 𝑙 ∙

sin 3̂

sin 3̂2
−

sin 4̂1

sin 4̂2
∙ 𝑘) 

 

Conversely, from the general quadratic equation, we 

can reconstruct the segments 𝐶𝐷𝑖 and reproduce the 

proportionality between the four original segments 

of the hypothesis. In conclusion, the quadratic 

equation and the Cartesian hypothesis correspond to 

each other. 

 

If we move point 𝐶 to another location, changes 

must be made to the positions of other points such as 

𝐷𝑖 , {𝐵, 𝐷, 𝐹, 𝐻}, thereby altering the lengths 𝐶𝐵, but 

maintaining the product or proportionality of the 

Cartesian hypothesis. If we observe the successive 

movements of point 𝐶, counterclockwise, we can see 

the successive positions of point 𝐵, first to the right 

until it connects with vertex 𝑉′ (right), then point 𝐵 

returns to the left, passes through its original 

position, until it connects with the other vertex 𝑉 

(left). Therefore, the major axis is observed anti-

projected on the fixed horizontal line that contains 

𝐵, although we can also anti-project it from the 

minor axis. Similarly, point 𝐷 moves until it 

connects with vertex 𝑂, (lower), then returns until it 

connects with vertex 𝑂′ (upper), so we describe it as 

the anti-projection of the minor axis and also, we 

could relate it to the major axis. Then we observe 𝐻 

and the original line is described as anti-projection 

of the minor axis, or with the major. Finally, we 

observe 𝐹, we see its line as an antiprojection of the 

minor axis and alternately, with the major. In 

conclusion, for each of the four given fixed lines, 

these can be decomposed into two classes, with one 

version that links them to the major axis and the 

other version in the class related to the minor axis. 

 

1.2 Cartesian parameters 
The general form of the quadratic contains 

five coefficients, 𝐴𝑥2 + 𝐵𝑥𝑦 + 𝐶𝑦2 + 𝐷𝑥 + 𝐸𝑦 =
0, but to place ourselves in the context of Descartes, 

𝐶 = 1, we take them in reference to the third of 

them (𝐶), so the result are four coefficients, 𝑦2 +

(𝐵𝑥 + 𝐸)𝑦 + 𝐴𝑥2 + 𝐷𝑥 = 0. The discriminant is 

introduced: |𝛿| = 𝐵2 − 4𝐴𝐶, or 𝐴 =
1

4
𝐵2 −

1

4
|𝛿|, 

([5], [6]); so, the characteristic of abundance will be 

incorporated into the coefficient 𝐴. By the formula 

of the roots, the relation is represented by: 𝑦 =

−
1

2
(𝐵𝑥 + 𝐸) ± ((

1

2
(𝐵𝑥 + 𝐸))

2

− 𝐴𝑥2 − 𝐷𝑥)

1/2

, 

then as squares, for 𝛿 ≠ 0, the relation becomes: 

(𝑦 +
1

2
(𝐵𝑥 + 𝐸))

2

−
1

4
|𝛿| (𝑥 +

2

|𝛿|
(

1

2
𝐵𝐸 − 𝐷))

2

=

𝜙1
2, denoting 𝜙1

2 =
1

4
𝐸2 −

1

|𝛿|
(

1

2
𝐵𝐸 − 𝐷)

2

, or in 

standard form, with 𝜙1 ≠ 0,  

 

(𝑦+
1

2
(𝐵𝑥+𝐸))

2

𝜙1
2 −

(𝑥+
2

|𝛿|
(

1

2
𝐵𝐸−𝐷))

2

4

|𝛿|
𝜙1

2
= 1           (5) 

 

This covers at least two classes: with |𝛿| = +𝛿 > 0, 

hyperbolas are obtained; and with  |𝛿| = −𝛿, 𝛿 < 0, 

ellipses result, and we denote 𝜙𝑖
2 =

1

4
𝐸2 +

1

|𝛿|
(

1

2
𝐵𝐸 − 𝐷)

2

. 

Now we incorporate the aspect of orthogonality. We 

had already highlighted the angle 𝛽 of inclination 

between the line 𝐶𝐵 and the horizontal roof 𝐵𝐴, 

which corresponds to the angle between the axis 

containing the variable 𝑥 and that of 𝑦, which are not 

orthogonal. In the notation chosen by Descartes, the 

coefficients of the quadratic are expressed as: 
𝐵

𝐶
=

−2
𝑛

𝑧
,  

𝐸

𝐶
= −2𝑚, −

𝐷

𝐶
= +2𝑚

𝑛

𝑧
+ 𝑂, (

𝑛

𝑧
)

2

−
𝐴

𝐶
=

𝑝

𝑚
, 

being cos𝛽 =
𝑛

𝑧
𝑥

𝑥
=

𝑛

𝑧
. So, the quadratic equation 

takes the form: ((
𝑛

𝑧
)

2

−
𝑝

𝑚
) 𝑥2 − 2

𝑛

𝑧
𝑥𝑦 + 𝑦2 +

(−2𝑚
𝑛

𝑧
− 𝑂) 𝑥 − 2𝑚𝑦 = 0, or in terms of the angle 

𝛽: 
 

(cos2𝛽 −
𝑝

𝑚
) 𝑥2 − 2cos𝛽𝑥𝑦 + 𝑦2 + (−2𝑚cos𝛽 −

𝑂)𝑥 − 2𝑚𝑦 = 0            (6) 

 

The discriminant is: 
1

4
|𝛿| =

1

4
((−2cos𝛽)2 −

4 (cos2𝛽 −
𝑝

𝑚
) 1) =

𝑝

𝑚
 . The sign of the discriminant 

is specified by the sign in front of 
𝑝

𝑚
, so we can 

incorporate both signs using the absolute value: |𝛿| 

Now the sign of 
1

4
(𝐵2 − 4𝐴𝐶) is that of: 

𝑝

𝑚
> 0 and 

corresponds to hyperbolas, or −
𝑝

𝑚
< 0, and we 

would have ellipses or antibolas. We will call the 

relation 
1

4
|𝛿| =

𝑝

𝑚
 the Cartesian discriminant. 
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For the variables 𝑥, 𝑦 to be in the usual Cartesian 

form, the angle must be 𝛽 =
𝜋

2
, the orthogonality, 

then 𝐵 = 0, and the standard form remains: 

 

(𝑦+
1

2
𝐸)

2

𝜙1
2 −

(𝑥−
2

|𝛿|
𝐷)

2

4

|𝛿|
𝜙1

2
= 1                    (7) 

 

We now seek a geometric interpretation for the 

Cartesian parameters. The first coordinate of the 

center, point 𝑀, is 𝑥𝑀 = −
2

𝛿
𝐷, but −

𝐷

𝐶
= +2𝑚

𝑛

𝑧
+

𝑂 = 2𝑚𝑐𝑜𝑠𝛽 + 𝑂, which is reduced to 𝐷 = −𝑂, 

and with 
𝛿

4
=

𝑝

𝑚
> 0, the positive Cartesian 

discriminant, results 𝑥𝑀 =
1

2

𝑚

𝑝
𝑂.  The second 

coordinate of the center 𝑦𝑀 =
1

2
𝐸, but 𝐸 =

−2𝑚, 𝑦𝑀 = −𝑚, so the coordinates of the center, 

point 𝑀, are: (𝑥𝑀 , 𝑦𝑀) = (
1

2

𝑚

𝑝
𝑂, −𝑚). We note that 

the semi-axis 𝑎 must be in accordance with the + 

sign, in this case with the 𝑦 axis. The semi-axis (𝑎) 

associated with 𝑦 is 𝜙1
2 =

1

4
𝐸2 −

1

|𝛿|
(

1

2
𝐵𝐸 − 𝐷)

2

=

𝑚2 − 𝑂2 𝑚

4𝑝
, which happens for 𝛿 > 0. For 

eccentricity: 𝜀 =
𝑐

𝑎
= (

𝑏2

𝑎2 + 1)

1

2
= (1 +

𝑚

𝑝
)

1

2
, or 

𝜀2 − 1 =
𝑚

𝑝
, so the term 

𝑚

𝑝
 is the supplement, with 

respect to 1, of the square of the eccentricity. 

Finally, in standard form it becomes, with 

 

𝛿𝑐 =
𝑝

𝑚
 , and 𝜀 = (1 + 𝛿𝑐

−1)1/2 > 1: 

 

(𝑦+𝑚)2

𝑎2 −
(𝑥−

1

2

𝑚

𝑝
𝑂)

2

𝑏2 = 1  ,  𝑎 = 𝜙1   , 

𝑏 = √
𝑚

𝑝
𝜙1  ,  𝜀 = (1 +

𝑚

𝑝
)

1/2

              (8) 

 

The foci and vertices are located on an axis parallel 

to the 𝑦 axis, the vertices 
(𝑦+𝑚)2

𝑎2 = 1, 𝑦 = −𝑚 ± 𝜙1. 

The center at (𝑥𝑀 , 𝑦𝑀) = (
1

2

𝑚

𝑝
𝑂, −𝑚). The directrix 

at: 𝑦̅ =
𝑎

𝜀
=

𝜙1

(1+
𝑚

𝑝
)

1/2. For the straight side: 𝑞1 =
𝑏2

𝑎
=

𝑚

𝑝
𝜙1

2

𝜙1
=

𝑚

𝑝
𝜙1. The eccentricity 𝜀 could also be 

understood as the proportional mean between 1 and 

1 +
𝑚

𝑝
,

1+
𝑚

𝑝

𝜀
=

𝜀

1
. The eccentricity 𝜀 can be 

represented by the height of a right triangle inscribed 

in a circle with diameter 2 +
𝑚

𝑝
 and equal to its 

hypotenuse. 
 

In the other class, with |𝛿| = −𝛿, 𝛿 < 0 ellipses or 

antibolas are obtained, then, from the expression 

(𝑦+
1

2
𝐸)

2

𝜙2
2 −

(𝑥−
2

|𝛿|
𝐷)

2

4

|𝛿|
𝜙2

2
= 1, it is obtained 

(𝑦+
1

2
𝐸)

2

𝜙2
2 −

(𝑥−
2

−𝛿
𝐷)

2

4

−𝛿
𝜙2

2
= 1,  

(𝑦+
1

2
𝐸)

2

𝜙2
2 +

(𝑥+
2

𝛿
𝐷)

2

4

𝛿
𝜙2

2
= 1                    (9) 

 

with 𝜙2
2 =

1

4
𝐸2 +

1

𝛿
(

1

2
𝐵𝐸 − 𝐷)

2

= 𝑚2 +
𝑚

4𝑝
𝑂2, and 

remains: 
(𝑥+

𝑚

2𝑝
𝑂)

2

𝑚

𝑝
𝜙2

2 +
(𝑦−𝑚)2

𝜙2
2 = 1. For eccentricity, 

𝜀 =
𝑐

𝑎
= (1 − (

𝑏

𝑎
)

2

)
1/2

= (1 −
𝑝

𝑚
)

1/2

, so 
𝑝

𝑚
 is the 

complement, with respect to 1, of the eccentricity. 

Eccentricity could also be seen as a proportional 

average between 1 and 1 −
𝑝

𝑚
,

1

𝜀
=

𝜀

1−
𝑝

𝑚

, and 𝜀 =

(1 − 𝛿𝑐)1/2 < 1,  

 

(𝑥 +
𝑚

2𝑝
𝑂)

2

𝑎2
+

(𝑦 − 𝑚)2

𝑏2
= 1 , 𝑎 = √

𝑚

𝑝
𝜙2   ,   

  𝑏 = 𝜙2   ,      𝜀 = (1 −
𝑝

𝑚
)

1/2

      (10) 

 

 

Starting from the relationship: |𝛿| = 𝐵2 − 4𝐴𝐶, that 

is: 
1

4
|𝛿| =

𝑝

𝑚
 , the Cartesian discriminant; we can 

interpret 𝑚 as a reference value, so 𝑝 represents 
1

4
|𝛿|. For the center of the hyperbole (

𝑥𝑀

𝑚
,

𝑦𝑀

𝑚
) =

(𝑂
1

2𝑝
, −1). The semi-axis 𝑎: (

𝜙2

𝑚
)

2

= 1 −
1

4

𝑂2

𝑝𝑚
. The 

eccentricity 𝜀 = (1 +
1

𝑝/𝑚
)

1/2

> 1. The straight 

side: 𝑞2 =
𝜙2

2

√
𝑚

𝑝
𝜙2

= (
𝑝

𝑚
)

1/2

𝜙2. 

 

It is interesting to consider the arithmetic 

combinations of the two types of eccentricities. On 

the one hand, if 𝜀1 ∙ 𝜀2 = 1 we have: (1 + 𝛿𝑐
−1)(1 −

𝛿𝑐) = 𝛿𝑐
−1 − 𝛿𝑐 = 1, which leads to: 𝛿𝑐

−1 =
1+√5

2
=

1.61803 … , 𝛿𝑐 =
−1+√5

2
= 0.61803 … , which is 

known as the golden number. However, in the case 

of addition, it would be: 𝜀1 + 𝜀2 = 1; but this 

relationship is not possible, because 𝜀1 > 1 and 𝜀2 >
0. 
  

1.2.1 Polar conic 
 The conic ellipse in the Cartesian variables 

(𝑥, 𝑦), (orthogonal, 𝛽 =
𝜋

2
) is now needed in its 
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representation in polar coordinates (orthogonal). The 

ellipse has its focus (left) at the origin 𝐿 and the 

major axis of the ellipse on the horizontal axis of 𝑥. 

We move on to the polar expression of the 

horizontal projection: 𝑟 cos 𝜃 = 𝑥; and of the 

vertical: 𝑟 sin 𝜃 = 𝑦, ([7]). The horizontal center is: 

𝑐 + 𝑟 cos 𝜃 = 𝑥 + 𝑐 and the vertical is 𝑦 = 0. The 

antibola is: 
(𝑟 cos 𝜃+𝑐)2

𝑎2 +
(𝑟 sin 𝜃)2

𝑏2 = 1, , with 𝜀 =
𝑐

𝑎
 

and 𝑞 =
𝑏2

𝑎
 , the straight side; we obtain (

𝑞

𝑟
−

𝜀 cos 𝜃)
2

= +1 or: 
𝑞

𝑟
= +1 + 𝜀 cos 𝜃                  (11) 

 

It is verified that 𝑟(𝜋/2) = 𝑞 =
𝑏2

𝑎
, is the straight 

side (on the line 𝐶𝐵). The vertex 𝑉 in: 𝑟(0) =
𝑞

1+𝜀
 

and the other, 𝑉′ in: 𝑟(𝜋) =
𝑞

1−𝜀
. The major axis 

2𝑎 = 𝑟(0) + 𝑟(𝜋) =
𝑞

1+𝜀
+

𝑞

1−𝜀
= 𝑞 (

2

1−𝜀2), (on the 

straight line 𝑉𝐿𝑀𝑉′) or 𝑎 =
𝑞

1−𝜀2. he location of a 

focus is: 𝑐 = 𝜀𝑎 = 𝑞
𝜀

1−𝜀2. The minor semi-axis: 𝑏 =

𝑞
1

(1−𝜀2)1/2 , (above 𝑂𝑀𝑂′). In the case of 

hyperbolas, however, 
𝑞

𝑟
= −1 + 𝜀 cos 𝜃 and both 

classes are included under the option: 
𝑞

𝑟
= ±1 +

𝜀 cos 𝜃. 

 

1.3 Abundance 
We consider a special case of the general 

quadratic and its possible Cartesian interpretation. 

The forms 𝑦2 = 2𝑘𝑥 + |𝛾|𝑥2 or +|𝛾|𝑥2 − 𝑦2 +
2𝑘𝑥 = 0 contain abundance or excess, or scarcity or 

defect, depending on the sign of 𝛾. In the general 

quadratic 𝐴𝑥2 + 𝐵𝑥𝑦 + 𝐶𝑦2 + 𝐷𝑥 + 𝐸𝑦 = 0 and 

with the discriminant 𝛿 = 𝐵2 − 4𝐴𝐶, it is observed 

that the coefficients must be: (𝐴, 𝐵, 𝐶, 𝐷, 𝐸) =
(|𝛾|, 0, −1, 2𝑘, 0); then 𝛿 = 4|𝛾|; therefore, the 

abundance parameter is: |𝛾| =
1

4
𝛿, a quarter of the 

discriminant. 

 

On the other hand, in the Cartesian form (cos2𝛽 −
𝑝

𝑚
) 𝑥2 − 2cos𝛽𝑥𝑦 + 𝑦2 + (−2𝑚cos𝛽 − 𝑂)𝑥 −

2𝑚𝑦 = 0, with 𝛽 = 𝜋/2 and with a change of signs 

so that 𝐶 = −1, and +
|𝑝|

𝑚
𝑥2 − 𝑂𝑥 − 𝑦2 − 2𝑚𝑦 =

0, with the discriminant 𝛿 = 𝐵2 − 4𝐴𝐶 = 4
|𝑝|

𝑚
, or 

𝛿

4
=

|𝑝|

𝑚
; thus, the Cartesian discriminant 

𝛿

4
=

𝑝

𝑚
 

measures abundance and  +
𝛿

4
= −

𝑝

𝑚
 measures 

scarcity, or  
𝛿

4
= 0, its absence; or in a single 

expression: |𝛾| =
1

4
𝛿 =

|𝑝|

𝑚
. 

 

In the case of absence of abundance: 
|𝑝|

𝑚
𝑥2 − 𝑂𝑥 −

𝑦2 − 2𝑚𝑦 = 0, or (𝑦 + 𝑚)2 = +𝑚2 + 𝑂𝑥, then 
𝑘

2
=

𝑂

4
 is the parameter and the vertex: (ℎ1, ℎ2) =

(−
𝑚2

𝑂
, −𝑚). The directrix is in 𝑥̅ = (𝑥 − ℎ1) =

(𝑥 +
𝑚2

𝑂
) = −

𝑘

2
= −

𝑂

4
 or 𝑥𝑑 = −

𝑂

4
−

𝑚2

𝑂
. 

 

However, in standard form, 
(𝑦+

1

2
(𝐵𝑥+𝐸))

2

𝜙2 −

(𝑥+
2

|𝛿|
(

1

2
𝐵𝐸−𝐷))

2

4

|𝛿|
𝜙2

= 1, with 𝜙𝑖
2 =

1

4
𝐸2 +

1

|𝛿|
(

1

2
𝐵𝐸 −

𝐷)
2

=
𝑘2

|𝛾|
; it is obtained 

𝑦2

𝑘2

|𝛾|

−
(𝑥−

𝑘
|𝛾|

)
2

𝑘2

|𝛾|2

= 1, or 𝑎 =

𝑘

|𝛾|1/2, 𝑏 =
𝑘

|𝛾|
, the straight side: 𝑞 =

𝑏2

𝑎
=

𝑘

|𝛾|3/2 and 

𝜀2 = 1 +
𝑞

𝑎
= 1 +

1

|𝛾|
. And we observe the two 

classes: if |𝛾| = +𝛾 =
𝑝

𝑚
 they are hyperbolas 

(𝜀 > 1). If |𝛾| = −𝛾 = +
𝑝

𝑚
, they are ellipses 

(𝜀 < 1). 

 

For the economic interpretation, the category 

“Income” (or ground rent), could be represented by 

𝑝 > 0 as excess over average profit 𝑚, ([8]), ([9]). 

Thus, in the context of abundance, the quotient of 

the two Cartesian parameters of the Cartesian 

discriminant gives rise to two classes according to 

predominance: of abundance or of scarcity. This 

quotient can represent a surplus of income with 

respect to average profit, such that in the first case, 

the positive one, it leads to an open annual 

evolution, the hyperbolas; in contrast to the second, 

the negative one, with a closed annual evolution, the 

ellipses. 

 

1.4 Conservation 
We consider a linear and Euclidean space 

𝑌. We define the bilinear form through a scalar 

product: 𝑎(𝑢, 𝑣) = 〈𝑢, 𝑣〉 and the norm is given by: 

‖𝑢‖𝑎 = √𝑎(𝑢, 𝑢). We think about a differentiable 

vector field 𝑋𝑘 𝛿

𝛿𝑥𝑘, in the space 𝑌. The “Lie” 

derivative with respect to the vector field is 

represented by 𝐿𝑋. Based on the bilinear form 𝑎, we 

define the Lagrangian functional 𝐿, 
 

𝐿(𝑢) = 𝑎((𝐼 − 𝐿𝑋)𝑢, 𝑢) = 𝑎(𝑢 − 𝐿𝑋𝑢, 𝑢)    (12) 

 

Then, 𝐿(𝑢) = 𝑎 (𝑢 − 𝑋𝑘 𝜕

𝜕𝑥𝑘 𝑢, 𝑢) = 〈𝑢, 𝑢〉𝑎 −

〈𝑋𝑘 𝜕

𝜕𝑥𝑘 𝑢, 𝑢〉𝑎  ([10]). 
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The differential of the Lagrangian function, as the 

differential of a product, is 𝑑𝐿 = 〈𝑑𝑢, 𝑢〉𝑎 +

〈𝑢, 𝑑𝑢〉𝑎 − 〈𝑋𝑘 𝜕

𝜕𝑥𝑘 𝑑𝑢, 𝑢〉𝑎 − 〈𝑋𝑘 𝜕

𝜕𝑥𝑘 𝑢, 𝑑𝑢〉𝑎, so 

𝑑𝐿 =  −
𝜕

𝜕𝑥𝑘
〈𝑋𝑘𝑑𝑢, 𝑢〉𝑎  +  〈𝑑𝑢, 𝑢 + 𝑋𝑘 𝜕

𝜕𝑥𝑘 𝑢〉𝑎  +

〈𝑢 − 𝑋𝑘 𝜕

𝜕𝑥𝑘 𝑢, 𝑑𝑢〉𝑎. The unconditional extreme 

condition produces: 〈𝑑𝑢, 𝑋𝑘∗ 𝜕

𝜕𝑥𝑘 𝑢 − 𝑢〉𝑎 +

〈𝑋𝑘 𝜕

𝜕𝑥𝑘 𝑢 + 𝑢, 𝑑𝑢〉𝑎 = 0, then 𝑋𝑘 𝜕

𝜕𝑥𝑘 𝑢 + 𝑢 = 0, 

and 𝑋𝑘∗ = −𝑋𝑘. Therefore, 
𝜕

𝜕𝑥𝑘
〈𝑋𝑘𝑢, 𝑢〉𝑎 =

〈𝑋𝑘 𝜕

𝜕𝑥𝑘 𝑢, 𝑢〉𝑎 + 〈𝑋𝑘𝑢,
𝜕

𝜕𝑥𝑘 𝑢〉𝑎 = 〈𝑋𝑘 𝜕

𝜕𝑥𝑘 𝑢 + 𝑢, 𝑢 −

𝑋𝑘 𝜕

𝜕𝑥𝑘 𝑢〉𝑎; but since the first factor is zero, the 

divergence also turns out to be zero, 

 
𝜕

𝜕𝑥𝑘
〈𝑋𝑘𝑢, 𝑢〉𝑎 = 0                   (13) 

 

 

The coordinates are listed from 𝑘 = 0 to 𝑘 = 𝑛 − 1. 

We associate proportionally 𝑥𝑘|𝑘=0over time and 

with 𝐽0 = 〈𝑋0𝑢, 𝑢〉𝑎,  𝐽𝑘 = 〈𝑋𝑘𝑢, 𝑢〉𝑎, 𝑘 ≥ 1, we 

obtain the well-known continuity equation for the 𝐽 

field: 

div𝐽 = −
𝜕

𝜕𝑡
𝐽0                    (14) 

A convex functional has the characteristic that any 

of its chords (or subtense) is above the graph of the 

functional. Thus, height differences can be defined 

on its graphs, and for each chord, we can assign the 

maximum height difference (or supremum). The 

Lagrange functional (𝐿) is convex with respect to 

the generalized velocity variable (𝑞∙𝑘). Therefore, 

we consider the corresponding generalized moment 
(𝑝𝑘) as the slope of a chord passing through the 

origin, which intersects the graph of the functional at 

two points, which determine an interval on the 

coordinate axis of the generalized velocities [𝑞̇1
𝑘, 𝑞̇2

𝑘]. 
Thus, the supremum of the height differences 

between the chord and the functional is reached, 

making it possible to define the image of the new 

functional, now dependent on the slope of the chord, 

or the corresponding generalized moment. This is 

known as the Hamilton functional (𝐻), 

 

𝐿̂ = 𝐻(𝑞, 𝑝, 𝑡) = 𝑝𝑘𝑞̇𝑘 − 𝐿            (15) 

 

This transformation of the functional 𝐿 dependent on 

(𝑞̇𝑘), into the functional 𝐻 dependent on (𝑝𝑘), is 

called the Legendre transform (𝐿̂ = 𝐻). The 

unconditional end condition yields: 
𝜕

𝜕𝑞̇𝑘
(𝑝𝑘𝑞̇𝑘 − 𝐿), 

or 𝑝𝑘 =
𝜕

𝜕𝑞̇𝑘 𝐿, which coincides with the definition of 

momentum in Lagrange's equations (
𝜕

𝜕𝑞̇𝑘 𝐿 = +𝑝𝑘). 

On the other hand, if there is 
𝜕

𝜕𝑝𝑘
𝑞̇𝑘,

𝜕

𝜕𝑝𝑘
𝐻 =

(
𝜕

𝜕𝑝𝑘
𝑝𝑘) 𝑞̇𝑘 + 𝑝𝑘

𝜕

𝜕𝑝𝑘
𝑞̇𝑘 −

𝜕

𝜕𝑝𝑘
𝐿, 𝑞∙𝑘 +

𝜕

𝜕𝑞̇𝑘 𝐿
𝜕

𝜕𝑝𝑘
𝑞̇𝑘 −

𝜕

𝜕𝑝𝑘
𝐿, 𝑞̇𝑘 +

𝜕

𝜕𝑝𝑘
𝐿 −

𝜕

𝜕𝑝𝑘
𝐿 = 𝑞̇𝑘 =

𝜕

𝜕𝑝𝑘
𝐻, and is 

known as a Hamilton equation: 𝑞̇𝑘 =
𝜕

𝜕𝑝𝑘
𝐻. 

Lagrange's equation (Law of Force) 
𝜕

𝜕𝑞𝑘 𝐿 =

𝑝̇𝑘 ,
𝜕

𝜕𝑞𝑘
(𝑝𝑘𝑞̇𝑘 − 𝐻)   =   0 −

𝜕

𝜕𝑞𝑘 𝐻, 𝑝̇𝑘   =   −
𝜕

𝜕𝑞𝑘 𝐻, 

Hamilton's second equation (or Law of Force). It 

also gives rise to two vector fields:  

𝐽𝐿 = (
𝜕

𝜕𝑞𝑘 𝐿,
𝜕

𝜕𝑞̇𝑘 𝐿) (

𝜕

𝜕𝑞𝑘

𝜕

𝜕𝑞̇𝑘

), and 𝐽𝐻 =

(
𝜕

𝜕𝑝𝑘 𝐻, − 
𝜕

𝜕𝑞𝑘 𝐻) (

𝜕

𝜕𝑞𝑘

𝜕

𝜕𝑝𝑘

) , ([11]). The continuity 

equation is div 𝐽𝐿 = −
𝜕

𝜕𝑡
𝐽𝐿

0 and div 𝐽𝐻 = −
𝜕

𝜕𝑡
𝐽𝐻

0 . 

 

 

However, with a change of sign in 𝐻, we 

have 𝐽−𝐻 → (
0 −𝐼
𝐼 0

) (

𝜕

𝜕𝑞𝑘

𝜕

𝜕𝑝𝑘

) 𝐻 = (−
𝜕

𝜕𝑝𝑘
, +

𝜕

𝜕𝑞𝑘) 𝐻, 

where slope switching is achieved by applying the 

matrix 𝐽2 → (
0 −𝐼
𝐼 0

). Similarly, from the 

components of the differential of any differentiable 

function, one can define an open field of an 

appropriate manifold. If 𝑑𝑓 = (
𝜕

𝜕𝑞𝑘 𝑓,
𝜕

𝜕𝑝𝑘
𝑓) (

𝑑𝑞𝑘

𝑑𝑝𝑘
), 

the field is:  

  𝑌𝑑𝑓 = (−
𝜕

𝜕𝑝𝑘
𝑓, +

𝜕

𝜕𝑞𝑘 𝑓) (

𝜕

𝜕𝑞𝑘

𝜕

𝜕𝑝𝑘

)           (16) 

 

Then we define the Poisson bracket of a pair of such 

functions, by: 

{𝑓, 𝑔} = 𝑌𝑑𝑓𝑔 = (−
𝜕

𝜕𝑝𝑘
𝑓, +

𝜕

𝜕𝑞𝑘 𝑓) (

𝜕

𝜕𝑞𝑘

𝜕

𝜕𝑝𝑘

) 𝑔   (17) 

 

and where the asymmetry of the bracket under the 

exchange of functions is observed: 𝑌𝑑𝑓𝑔 = −𝑌𝑑𝑔𝑓. 

But also, in its evolution along an integral curve of 

the field 𝑋−𝑑𝐻, we know that the rate of change of 

the function 𝑓 is the Poisson bracket {𝑓, 𝐻} 

evaluated at the initial point of the curve. Therefore, 

if the bracket is zero, the function 𝑓 remains 

constant on the curve, and vice versa. In particular, 

𝐻 also remains constant because it commutes with 

itself: {𝑓, 𝐻}|𝑓=𝐻 = 0 ([12]). 
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More classically, if 𝐿 does not explicitly depend on 

𝑡, 
𝑑

𝑑𝑡
𝐿 =

𝜕

𝜕𝑞𝑘 𝐿 ∙ 𝑞̇𝑘 +
𝜕

𝜕𝑞̇𝑘 𝐿 ∙
𝑑

𝑑𝑡
𝑞̇𝑘, the 2nd 

component is modified by the definition 
𝑑

𝑑𝑡
(

𝜕

𝜕𝑞̇𝑘 𝐿) =
𝑑

𝑑𝑡
𝑝𝑘; while the first, by law forces 

𝜕

𝜕𝑞𝑘 𝐿 = 𝑝̇𝑘, that is: 
𝜕

𝜕𝑞𝑘 𝐿 = 𝑝̇𝑘 =
𝑑

𝑑𝑡
𝑝𝑘 =

𝑑

𝑑𝑡
(

𝜕

𝜕𝑞̇𝑘 𝐿), 

thus the temporal change of 𝐿 is rewritten as: 
𝑑

𝑑𝑡
𝐿 =

𝑑

𝑑𝑡
(

𝜕

𝜕𝑞̇𝑘 𝐿) ∙ 𝑞̇𝑘 +
𝜕

𝜕𝑞̇𝑘 𝐿 ∙
𝑑

𝑑𝑡
𝑞̇𝑘 =

𝑑

𝑑𝑡
((

𝜕

𝜕𝑞̇𝑘 𝐿) 𝑞̇𝑘); or 

𝑑

𝑑𝑡
((

𝜕

𝜕𝑞̇𝑘 𝐿) 𝑞̇𝑘 − 𝐿) = 0; and by definition 

𝑑

𝑑𝑡
(𝑝𝑘𝑞̇𝑘 − 𝐿) = 0,

𝑑

𝑑𝑡
(𝐻) = 0, then div 𝐽𝐻 = 0 and 

the 𝐽𝐻 field is conservative. 

 

1.5 Materiality 
To add materiality to the geometry, we 

consider a moving object along an ellipse, in the 

spatial curvature or in the field created by another 

body located at a focus of the ellipse. We observe 

two physical variables, the first linked to angular 

momentum and the second to energy. The angular 

momentum 𝐿 = 𝑟 × 𝑀𝑣⃗, in polar coordinates 

relative to a focus of the ellipse, 𝐿 = 𝑟𝑟̂ × 𝑀(𝑣𝑟 𝑟̂ +

𝑣𝜃𝜃̂) = 𝑟𝑀𝑣𝜃𝑟̂ × 𝜃̂ = 𝑟𝑀𝑣𝜃𝑧̂. 

 

The ellipse in its polar form is 
𝑞

𝑟
= +1 + 𝜀 cos 𝜃, 

with the two parameters: 𝑞 the straight side and 𝜀 the 

eccentricity. And, the two semiaxes are recovered by 

means of the two relations: 𝑞 =
𝑏2

𝑎
 and 𝜀 =

(1 − (
𝑏

𝑎
)

2

)
1/2

. On the other hand, the velocity can 

be obtained by: 
𝑑

𝑑𝜃
(

𝑞

𝑟
) = −

𝑞

𝑟2

𝑑𝑟

𝑑𝜃
= −𝜀 sin 𝜃, 

𝑑𝑟

𝑑𝜃
=

𝑟2𝜀

𝑞
sin 𝜃,

𝑑𝑟

𝑑𝑡
=

𝑑𝑟

𝑑𝜃

𝑑𝜃

𝑑𝑡
=

𝑟2𝜀

𝑞
sin 𝜃

𝑑𝜃

𝑑𝑡
, then (

𝑑𝑟

𝑑𝑡
)

2

=

(
𝑟2𝜀

𝑞
sin 𝜃)

2

(
𝑑𝜃

𝑑𝑡
)

2

. Thus, the square of the velocity 

is (
𝑑𝑟

𝑑𝑡
)

2

+ 𝑟2 (
𝑑𝜃

𝑑𝑡
)

2

=
𝑟4

𝑞2 (
𝑞2

𝑟2 + 𝜀2sin2𝜃) (
𝑑𝜃

𝑑𝑡
)

2

, 

([7]). 

 

According to the conservation of energy, if 𝐻 =
𝐻𝑐 + 𝑈, as the sum of the kinetic and potential 

energies, and with 𝐻 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, then the kinetic 

energy is the complement of the potential energy: 

𝐻𝑐 = 𝐻 − 𝑈. For the kinetic energy of the moving 

object: 
𝐻𝑐
1

2
𝑀

= ((𝑞𝜀 sin 𝜃)2 𝑟4

𝑞4 + 𝑟2) (
𝑑𝜃

𝑑𝑡
)

2

. As we will 

see in the following paragraph, we have an 

expression for the angular velocity: 
1

2
𝑟(𝜃)2 𝑑𝜃

𝑑𝑡
=

𝐴𝑒

𝑇
, 

in terms of the area and period of the ellipse; thus, 

the square of the angular velocity is: (
𝑑𝜃

𝑑𝑡
)

2

=

1

𝑟4 (
2𝐴𝑐

𝑇
)

2

. Therefore, 
𝐻𝑐

1

2
𝑀(

2𝐴𝑐
𝑇

)
2 =

1

𝑞2 (
𝑞2

𝑟2 + 𝜀2sin2𝜃). 

We seek to substitute this expression, which contains 

the angular position 
1

𝑞2 (
𝑞2

𝑟2 + 𝜀2sin2𝜃) =
1

𝑞2
(𝜀2 − 1) +

2

𝑞

1

𝑟
=

𝐻

1

2
𝑀(

2𝐴𝑒
𝑇

)
2 +

2

𝑞

1

𝑟
 . Thus, the energy 

linked to positions, or potential energy, is: 𝑈 =

−
𝑀

𝑞
(

2𝐴𝑐

𝑇
)

2

∙
1

𝑟
   , so: 

 

𝑈(𝑟) = −𝑘𝑈 ∙
1

𝑟
     ,    𝑘𝑈 =

𝑀

𝑞
(

2𝐴𝑐

𝑇
)

2

> 0       (18) 

 

On the other hand, since the potential energy 

depends only on the radial distance, it is a central 

field and therefore the angular momentum 𝐿 is also 

constant, then 
𝑑

𝑑𝑡
(𝑟𝑀𝑣𝜃) = 0. The area swept out by 

the radius vector is 
𝑑𝐴

𝑑𝑡
=

1

2
𝑟 ∙ 𝑟

𝑑𝜃

𝑑𝑡
, as the area of an 

elementary triangle; then the conservation of angular 

momentum is reinterpreted in terms of the area 

swept out by the radius vector: 
𝑑

𝑑𝑡
(𝑟𝑀𝑣𝜃) =

𝑑

𝑑𝑡
(𝑀 ∙ 𝑟 ∙ 𝑟

𝑑𝜃

𝑑𝑡
) = 2𝑀 ∙

𝑑

𝑑𝑡
(

𝑑𝐴

𝑑𝑡
) = 0, therefore, 

𝑑𝐴

𝑑𝑡
=

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑘𝑎 and the conservation of areolar 

velocity results, known as Kepler's second law, 

under the statement: “the vector radius sweeps out 

equal areas in equal times”. 

 

Or, 
𝑑𝐴

𝑑𝑡
=

1

2
𝑟2 𝑑𝜃

𝑑𝑡
= 𝑘𝐴, 𝐴(𝑡) = 𝑘𝐴𝑡; but the area of 

the entire ellipse is: 𝐴𝑐 = 𝜋𝑎𝑏 = 𝑘𝐴𝑇, where 𝑎 and 

𝑏 are the semiaxes, while 𝑇 is the period, then the 

areolar velocity constant is: 𝑘𝐴 =
𝐴𝑐

𝑇
; and they are 

summarized as: 

 

𝐴(𝑡) = 𝐴𝑐
𝑡

𝑇
 , 𝐴𝑐 = 𝜋𝑎𝑏                  (19) 

 

Let's introduce a relative potential energy. From 𝐿 =

𝑟𝑀𝑣𝜃𝑧̂, ‖𝐿‖ = ‖𝑟𝑀𝑣𝜃 𝑧̂‖,
𝐿

𝑀
= 𝑟𝑣𝜃 = 𝑟 ∙ 𝑟

𝑑𝜃

𝑑𝑡
=

2 (
1

2
𝑟2 𝑑𝜃

𝑑𝑡
) = 2

𝐴𝑐

𝑇
, then 𝐴𝑐 =

1

2

𝐿

𝑀
𝑇, and 𝑘𝑢 =

𝑀

𝑞
(

2𝐴𝑐

𝑇
)

2

=
1

𝑞

𝐿2

𝑀
, or 𝑞 =

1

𝑘𝑈

𝐿2

𝑀
. We consider a 

reference kinetic energy: 𝐾𝑟 =
1

2
𝑀(𝑘𝑈/𝐿)2, 𝐾𝑟𝑞 =

1

2
𝑘𝑈 and define 𝑈𝑟𝑒𝑙,𝑁 =

𝑈(𝑟)

𝐾𝑟
. 

 

𝑈𝑟𝑒𝑙,𝑁 =
𝑈(𝑟)

𝐾𝑟

= −2𝑞 ∙
1

𝑟
 ,    𝑘𝑈 = 2𝐾𝑟 ∙ 𝑞 > 0,   

𝑞 =
1

𝑘𝑈

𝐿2

𝑀
                  (20) 

  

Now, we will make a comparison. For the antibola 

or ellipse we had, in the context of Descartes, that 
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2𝑎 =
𝛼

𝑧
(√

𝑚

𝑝
)

2

(4𝑚𝑝 + 𝑂2)1/2 = sin 𝛽 (
𝑚

𝑝
) (4𝑚𝑝 +

𝑂2)1/2 without orthogonality, but with it: 2𝑎 =

sin 𝛽 (
𝑚

𝑝
) (4𝑚𝑝 + 𝑂2)1/2|

𝛽=
𝜋

2

, 𝑎 =
1

2
(

𝑚

𝑝
) (4𝑚𝑝 +

𝑂2)1/2 ; and with 𝜙2 =
1

2
(

𝑚

𝑝
)

1/2
(4𝑝𝑚 + 𝑂2)1/2, we 

have: 𝑎𝐷 = √
𝑚

𝑝
𝜙2. Therefore, this Cartesian semi-

axis corresponds to the Newtonian value: 𝑞
𝐾𝑟

|𝐸|
, 

 

𝑎𝐷 = √
𝑚

𝑝
𝜙2 → 𝑎𝑁 = 𝑞

𝐾𝑟

|𝐸|
=

𝑘𝑈

|𝐸|
            (21) 

 

Likewise, 2𝑏 = 𝑐𝑠𝑐𝛽(4𝑚𝑝 + 𝑂2)1/2 in general, but 

in the orthogonal case: 2𝑏 = 𝑐𝑠𝑐𝛽(4𝑚𝑝 +

𝑂2)1/2|
𝛽=

𝜋

2

= (4𝑚𝑝 + 𝑂2)1/2 = 2𝜙2; so there is 

correspondence with: 2𝑞 (
𝐾𝑟

|𝐸|
)

1/2

= 2 (
𝐿2

𝑀
∙

1

2|𝐸|
)

1/2

, 𝑞 =
𝐿2

𝑀
∙

1

𝑘𝑈
, in the Newtonian context, then: 

 

𝑏𝐷 = 𝜙2 → 𝑏𝑁 = 𝑞 (
𝐾𝑟

|𝐸|
)

1/2

= (
𝐿2

𝑀
∙

1

2|𝐸|
)

1/2

       (22) 

 

For eccentricity, (1 − 𝜀2)1/2 =
𝑐𝑠𝑐𝛽(4𝑚𝑝+𝑂2)

1/2

sin 𝛽(
𝑚

𝑝
)(4𝑚𝑝+𝑂2)1/2

=

(
𝑝

𝑚
) 𝑐𝑠𝑐2𝛽, in general; or in the orthogonal case: 𝜀 =

(1 − (𝑐𝑠𝑐2𝛽
𝑝

𝑚
)

2

)
1/2

|
𝛽=

𝜋

2

, then 𝜀 = (1 − (
𝑝

𝑚
)

2

)
1/2

. 

Thus, the relationship is established with 𝜀 =

(1 − (
|𝐸|

𝐾𝑟
))

1/2

, or (
𝑝

𝑚
)

2

→ (
|𝐸|

𝐾𝑟
), or 

𝑝

𝑚
→ (

|𝐸|

𝐾𝑟
)

1/2

. 

And as 
𝑏

𝑎
= (1 − 𝜀2)1/2, we affirm that (1 − 𝜀2)1/2 

it also measures abundance or excess, as a 

complement to eccentricity. Eccentricity could be 

seen as a proportional average between 1 and 1 −
𝑝

𝑚
,

1

𝜀
=

𝜀

1−
𝑝

𝑚

, and 
1

𝜀
=

𝜀

1−(
𝑏

𝑎
)

2. 

 

In particular, for the square of the period we have 

the well-known Kepler 3rd: 

 

𝑇2 = 𝜋2 2𝑀
1

2
𝑞𝐾𝑟

(
1

2
𝑞

𝐾𝑟

|𝐸|
) 𝑎2 = 4𝜋2 𝑀

𝑞𝐾𝑟
𝑎3       (23) 

 

In summary, the parameters introduced by Descartes 

lead us to 
𝑝

𝑚
, which can be understood as a plus 

value over a mean value and provides the 

discriminant (
𝛿

4
≠ 0), whose sign indicates two 

classes: + for hyperbolas and − for antibolas or 

ellipses; 
𝑝

𝑚
 and its inverse (

𝑝

𝑚
)

−1

, contribute 

respectively, with the supplement and the 

complement, with respect to 1 for eccentricities. The 

parameter 𝑂, together with (
𝑝

𝑚
)

−1

, allow us to locate 

the coordinates of the center: (𝑥𝑀, 𝑦𝑀) =

(
1

2

𝑚

𝑝
𝑂, −𝑚). For the hyperbola, in the right triangle 

(𝑀𝑂𝐿′) between the origin, the vertex, and the point 

on the slope asymptote 
𝑏

𝑎
= √

𝑚

𝑝
 and length 𝑐 =

(1 +
𝑚

𝑝
)

1/2

𝑎, with 𝜙1
2 = 𝑚2 −

𝑚

4𝑝
𝑂2, 𝑎 = 𝜙1, 𝑏 =

√
𝑚

𝑝
𝜙1, 𝑞1 =

𝑚

𝑝
𝜙1. For the ellipse, 𝜙2

2 = 𝑚2 +

𝑚

4𝑝
𝑂2, with 𝑎 = √

𝑚

𝑝
𝜙2, 𝑏 = 𝜙2 , 𝜀 =

𝑐

𝑎
(1 −

𝑝

𝑚
)

1/2

<

1, and 𝑞2 = √
𝑝

𝑚
𝜙2 =

1

2
√𝛿𝜙2. The Cartesian 

relative potential energy, 𝑈𝑟𝑒𝑙,𝐷 = −2𝑞2𝐷 ∙
1

𝑟
=

−2√
𝑝

𝑚
𝜙2 ∙

1

𝑟
= −√𝛿𝜙2 ∙

1

𝑟
. 

 

In the context of abundance, the quotient of the two 

Cartesian parameters that determine the discriminant 

gives rise to two classes according to predominance: 

abundance or scarcity. This quotient makes it 

possible to represent a surplus in the income relative 

to average profit, so that in the first case, the positive 

one, it leads to an open annual evolution; in contrast 

to the second, the negative one, with a closed annual 

evolution, the ellipse. And within the second, since 

we have established the period (annual), the semi-

major axis is fixed; only the semi-minor axis can 

vary, giving rise to variations in the focal length. 

Thus, for lower values of the semi-minor axis, we 

have more elongated or flattened ellipses, 

symbolizing greater scarcity, while more rounded 

ellipses symbolize greater relative abundance. 

Therefore, a progressive evolution from flatter 

ellipses to more rounded ones is desirable, even 

reaching their breaking point and initiating 

hyperbolic-type stages; something that should 

happen early within the three decades of a working 

generation. 

 

II. CONCLUSION 
Descartes' parameters extend to the 

conservation of energy, which reflects the 

permanence of the laws of motion after time 

translations, as a very important type of symmetries 

of the equations that formulate them ([13]). 

 

We can define a Cartesian, relative, potential energy, 

where the energy constant is determined by the 

Cartesian parameters. It also corresponds to a central 
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field, which guarantees the conservation of angular 

momentum. 

 

The quotient of the two Cartesian parameters (
𝑝

𝑚
), 

which determine the Cartesian discriminant, can 

represent a surplus in income relative to average 

profit, such that in the first case, the positive one, it 

leads to an open annual evolution, the hyperbola; in 

contrast to the second, the negative one, with a 

closed annual evolution, the ellipse. 

 

The principle of duality contained in mythology and 

engraved in its pyramids also transcends in the 

location of two foci, where the supplements or 

complements of the unit of its eccentricities are 

located, which arise from the quotient of the two 

Cartesian parameters mentioned, and corresponds to 

the root of total energy dimensionless by the relative 

kinetic energy, (
𝑝

𝑚
→ (

|𝐸|

𝐾𝑟
)

1/2

). 

 

In particular, the Cartesian discriminant coincides 

with the “golden number” when the product of the 

eccentricities of the two classes is unity. 

 

For each of the 4 given fixed lines, these can be 

broken down into two classes, with one version 

linked to the major axis and the other version, the 

one related to the minor axis. 

Regarding the pyramids, agricultural cycles are 

necessarily annual; however, and of course, we do 

not have the annual records that would allow us to 

place successive cycles in one of the only two 

classes: elliptical or hyperbolic. But in general, due 

to problems of drought or other interethnic conflicts, 

we could imagine that they favor the presence of 

elliptical cycles, with their characteristics of scarcity. 

However, in the accumulated repetition, we can 

assume the predominance of one class over the 

other. If the predominance had been of the elliptical 

cycles, it would have been manifested through 

migration. On the other hand, if the predominance 

had fallen on the hyperbolic cycles, these would 

leave traces of abundance and permanence in the 

site. The pyramids are precisely the trace of 

permanence and the predominance of hyperbolic 

annual cycles. The construction periods of the 

pyramids were on the order of a few centuries, so we 

can imagine the nonexistent annual records as 

present in the various construction sections of the 

pyramids. For example, the pyramid of Xochicalco, 

dedicated to the “God Quetzalcoatl” (“the Feathered 

Serpent”), was built over approximately two 

centuries and has since been observed annually as 

what is now known as the spring equinox, marking 

the beginning of each annual agricultural cycle. The 

pyramid of Teopanzolco, built just over three 

centuries ago, saw its construction interrupted by the 

unexpected and abrupt arrival of the conquest. 

 

 

  

 

 

 
Figure 1: Projected Pyramid 
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