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Abstract 

S-system models, characterized by their inherent power-law formalism, offer a powerful framework for 

modeling large-scale biological systems due to their ability to represent complex interactions through simplified 

algebraic structures. While steady-state solutions and their associated sensitivities can be derived analytically 

through algebraic equations, the dynamic response of S-systems to perturbations in both environmental 

conditions (independent variables) and intrinsic parameters (e.g., tissue-specific kinetic properties) remains an 

open research challenge.This study specifically addresses this gap by developing a novel approach to analyze 

the dynamic sensitivity of S-systems, with two primary objectives: Quantify the instantaneous system response 

to perturbations in rate constants and kinetic exponents.Identify critical parameters governing transient 

behaviors. Leveraging the unique mathematical properties of power-law systems, we reformulate the dynamic 

sensitivity as a differential matrix equation featuring a diagonal parametric matrix, which is subsequently 

simplified through rigorous matrix operations.To enhance accessibility for biological researchers, we implement 

the entire analytical framework within Simulink (MATLAB's graphical modeling environment). The Simulink 

creates an intuitive visual interface thatrepresents complex matrix operations as modular blocks, enables real-

time perturbation analysis,  and facilitates parameter importance ranking through interactive visualization. 
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I. INTRODUCTION 
  In this era where cancer instills 

widespread fear, the urgent priority is to mine high-

throughput microarray data for system modeling and 

conduct in-depth dynamic behavior analysis. 

Bartocci and Lió (2016) reviewed computational 

modeling approaches, concluding that ODE-based 

system models effectively capture biological system 

behavior and will gain greater prominence [1]. 

Sriyudthsak et al. surveyed key models and 

applications in biochemical systems [2], while Voit 

provided a comprehensive review of Biochemical 

Systems Theory (BST), covering system model 

design, structure identification, parameter estimation 

(reverse engineering), steady-state 

diagnostics/computation, and BST applications to 

plant/animal systems and human 

physiology/disease – encompassing 752 studies [3]. 

S-systems in Eq. (1) quantify net interaction 

strengths between components.  

𝑥̇𝑖 = 𝑓𝑖 = 𝑣𝑖
+ − 𝑣𝑖

−

= 𝛼𝑖 ∏ 𝑥
𝑗

𝑔𝑖𝑗

𝑛+𝑚

𝑗=1

− 𝛽𝑖 ∏ 𝑥
𝑗

ℎ𝑖𝑗

𝑛+𝑚

𝑗=1

, 𝑖 = 1, … 𝑛 (1) 

where 𝑣𝑖
+, 𝑣𝑖

− denote forward and reverse fluxes; 

𝑔𝑖𝑗and ℎ𝑖𝑗denote the net interactive strength from𝑥𝑗 

on 𝑥𝑖 , 𝛼 and 𝛽𝑖are the rate constants. The 𝑥𝑖 , 𝑖 =
1, … 𝑛are dependent variables and 𝑥𝑛+1, … 𝑥𝑛+𝑚  are 

independent variables, the values of which remains 

constant during a period of an experiment.This 

power-law formalism offers exceptional versatility. 

In medium/large systems, the kinetic 

constants represent net interaction strengths rather 

than actual intensities. Real-valued (non-integer) 

exponents not only indicate relative influence 

strengths between key components but also interpret 

time-delay effects [4-6].S-system 

structure/parameter identification constitutes a 

multi-objectiveconstrained optimization problem. 

While computational intelligence techniques 

dominate this research area, most dry-lab tests only 
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validate small 3–5-dimensional systems with narrow 

search constraints. The complexity of structure 

identification often leads to conflation with simpler 

parameter estimation [7], selective small-system 

comparisons [6], or ambiguous methodologies [7]. 

 

Advances in High-Dimensional Identification 

  Kimura et al. and Prof. Feng-Sheng 

Wang (National Chung Cheng University) 

rigorously addressed 30-dimensional systems but 

were limited by contemporary techniques in 

identifying weak connections Crucially, in 

medium/large systems these kinetic constants 

represent relative strengths rather than absolute 

interaction values, necessitating broader parameter 

bounds beyond 4 reaction orders.During 2010–2018, 

we advanced this field by developing AI techniques 

with expanded bounds[8-12], and creating novel 

computational methods: (a) Self-adaptive multi-

objective optimization via fuzzy inference [8], (b) 

Enhanced algorithms: EEGA (Exploration-

Exploitation GA) [8], sDE (optimized differential 

evolution) [9], hLS (heuristic deviation-based local 

search) [9], (c) Bio-inspired hybrids: CGA 

(Cockroach-competitive GA) [10], SCGA (Seed 

Strategy/Chemotaxis-based GA) [11], (d) 

Cockroach Swarm Evolution (CSE) [12]. These 

successfully achieved structure identification and 

parameter estimation for30-gene S-systems.For 

large-system data mining, feature selection 

identifies 30 core genes, whose time-series data 

reconstructs nonlinear dynamic models of gene 

regulatory interactions. Such models should suffice 

to predict dynamic behaviors in large biological 

systems (e.g., cancer mechanisms). Consequently, 

our recent work shiftsfocus torelative stability (root-

locus-based stability analysis for Michaelis-Menten 

kineticsmodules [13] and Leveraging S-systems' 

power-law structure to simplify steady-state value 

and sensitivity calculations via algebraic solutions 

[14, 15]), and dynamic sensitivity analysis (directly 

analyzing transient behavior sensitivity).   

 

Current Focus: Stability and Sensitivity Analysis 

  Sensitivity analysis systematically 

investigates how systems respond to perturbations in 

inputs or parameters. Time-varying parametric 

sensitivity analysis (dynamic sensitivity) quantifies 

structural uncertainties arising from parameter 

variations, enhancing our understanding of system 

dynamics and enabling identification of bottleneck 

enzymes—critical reaction steps that govern system 

behavior. Chen et al. develop a single-cell-

resolution sensitivity framework linking parameter 

perturbations to phenotypic heterogeneity in cancer 

and identify three dynamical regimes of parameter 

influence [16].Recent advances in dynamic 

sensitivity analysis (Zi, 2021) have enabled the 

decomposition of transient biological behaviors into 

parameter-specific contributions, overcoming 

limitations of traditional steady-state approaches 

[17].Two primary approaches exist: 

1. Global Sensitivity Analysis: Examines system 

responses to simultaneous, large-scale parameter 

variations using methods like variance-based 

analysis, moment-independent techniques, and 

functional principal component analysis (FPCA). 

FPCA has revealed key features in insulin signaling 

pathways [18], while other applications include 

hazard reduction in debris flows [19]. 

2. Local Sensitivity Analysis: Focuses on 

infinitesimal perturbations of individual parameters. 

Hu and Yuan successfully applied this to 

MAPK/PI3K signaling pathways [20], though it 

requires solving coupled sensitivity and system 

ODEs—a challenge addressed by:Wu et al.'s 

modified collocation methods with Lagrange 

polynomials [21], Shiraishi et al.'s Taylor-series-

based SoftCADs software [22, 23],Perumal and 

Gunawan's pathway-specific perturbation analysis 

[24]. 

Normalized dynamic sensitivity (logarithmic gain) 

further refines this analysis, proving effective for 

identifying metabolic bottlenecks in ethanol 

fermentation [25, 26] and aromatic amino acid 

biosynthesis [27]. Building on these advances, our 

study employs block-diagram visualizations of 

coupled system/sensitivity ODEs to compute local 

dynamic parametric sensitivities [28]. 

  Biological systems exhibit complex 

nonlinear dynamics that require sophisticated 

mathematical frameworks for analysis. Among 

these, S-systems (a canonical power-law formalism 

within Biochemical Systems Theory, BST)offer 

unique advantages for modeling biological networks 

through their structured representation of 

interactions as products of power-law functions [3]. 

Complementing Michaelis-Menten kinetics (widely 

used for enzyme-catalyzed reactions), S-systems 

provide a unified framework for modeling metabolic, 

genetic, and signaling pathways with inherent 

scalability and analytical tractability [29]. While 

both frameworks are pillars of computational 

systems biology, extracting insights from their 

dynamic behavior demands rigorous sensitivity 

analysis to quantify how perturbations propagate 

through these networks.Traditional sensitivity 

methods often struggle with the high-dimensional, 

nonlinear, and time-varying nature of biological 

models. Dynamic sensitivity analysis—which 

captures transient responses rather than just steady-

state behavior—is particularly crucial for identifying 

critical parameters governing system robustness, 

bifurcations, and cellular decision-making [30]. 
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However, implementing such analyses for S-

systems presents computational challenges due 

tocomplex coupling between power-law terms,state-

dependent parametric influences and the curse of 

dimensionality in large networks. Thomos (2022) 

demonstrates how traditional steady-state sensitivity 

metrics fail to capture transient pathway activation, 

oscillatory behaviors (e.g., circadian rhythms) and 

bifurcation thresholds in cell fate decisions [31]. 

  Visualization tools like Simulink (a 

MATLAB-based graphical modeling environment) 

offer promising solutions. As demonstrated in our 

prior work on Michaelis-Menten kinetics (Wu et al., 

2022), Simulink enables intuitive block-diagram 

representations of differential equations and their 

sensitivity counterparts. By decomposing large 

systems into modular subsystems, Simulink 

facilitatesreal-time visualization of parameter-state 

interactions,efficient computation of sensitivity 

trajectories and integration of local/global 

sensitivity metrics (e.g., 𝐿1 /𝐿2  norms) for transient 

dynamics [28].While this approach proved effective 

for Michaelis-Menten modules, its extension to S-

systems remains unexplored. This gap is significant 

given S-systems' broader applicability to non-

enzymatic networks (e.g., gene regulation, 

metabolic pathways) and their analytical advantages 

for steady-state and stability analysis [32].Here, we 

bridge this gap by developing a Simulink-based 

framework for dynamic sensitivity analysis of S-

systems. The dynamic sensitivity analysis of S-

systems is reformulated into a differential matrix 

equation incorporating a diagonal parameter matrix. 

Subsequent simplification is achieved via structured 

matrix operations. These processes are implemented 

and visualized using MATLAB's Simulink 

environment, offering a model-based interface 

suitable for systems biology applications.By 

unifying the analytical power of S-systems with 

Simulink’s computational flexibility, this work 

provides a scalable toolkit for probing biological 

robustness, identifying design principles, and 

accelerating rational intervention strategies. 

 

II. METHODS 
Perturbation Theorem for S-system Parametric Sensitivity Analysis  

Given a nonlinear system:𝑋̇(𝑡) = 𝐹(𝑋(𝑡), 𝑡, 𝜽0), 𝑋(𝑡0) = 𝑋0, where state variable𝑋(𝑡) = [𝑥1, … 𝑥𝑛]𝑇,parameter 

vectors 𝜽 = [𝜃1, … 𝜃𝑚]𝑇 ∈ 𝑅𝑚 ,  nominal solution 𝜑0(𝑡) (parametrized by 𝑡0, 𝑋0 and 𝜽0). Under parameter 

perturbation𝜽0 → 𝜽0 + 𝛿𝜽,the perturbed solution𝜑0 + 𝛿𝜑 satisfies [33]: 

𝜑̇0(𝑡) + 𝛿𝜑̇(𝑡)=𝐹(𝜑0 + 𝛿𝜑, 𝑡, 𝜽0 + 𝛿𝜽) 

= 𝐹(𝜑0, 𝑡, 𝜽0) + 𝐷1𝐹|(𝜑0,𝑡,𝜽0) ∙ 𝛿𝜑 + 𝐷3𝐹|(𝜑0,𝑡,𝜽0) ∙ 𝛿𝜽 + 𝐻. 𝑂. 𝑇..   (2) 

Let 𝐷𝑖𝐹|(𝜑0,𝑡,𝜽0), 𝑖 = 1,3denote the partial derivative of 𝐹 with respect to its 𝑖th argument—𝑖 = 1for the state 

variables 𝜑 and 𝑖 = 3 for the parameters 𝜽 . Neglecting higher-order terms in 𝛿𝜑  and 𝛿𝜽 ,the system is 

approximated by 

𝛿𝜑̇(𝑡) = 𝐷1𝐹|(𝜑0,𝑡,𝜽0) ∙ 𝛿𝜑 + 𝐷3𝐹|(𝜑0,𝑡,𝜽0) ∙ 𝛿𝜽.      (3) 

Defining the parametric dynamic sensitivity as𝑆 =
𝛿𝜑

𝛿𝜽
, we obtain the sensitivity equation: 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝐴(𝑡)𝑆(𝑡) + 𝐵(𝑡),             (4) 

wherethe Jacobian matrix𝐴(𝑡) = 𝐷1𝐹|(𝜑0,𝑡,𝜽0) = [
𝜕𝑓𝑖

𝜕𝑥𝑗
]

𝑖=1,…𝑛
𝑗=1,…𝑛

, 𝐵(𝑡) = 𝐷3𝑓|(𝜑0,𝑡,𝜽0), 𝑆(0) = 0. 

S-system Sensitivity Analysis 

For thebiologicalS-system,as shown in Eq. (1), the parametric dynamic sensitivity𝑆(𝑡) = [
𝑢1 0 0
0 ⋱ 0
0 0 𝑢𝑛

]

𝑛×𝑷

,  the 

Jacobian matrix𝐴(𝑡) = [

𝑎1

⋮
𝑎𝑛

], 𝐵(𝑡) = [
𝑏1 0 0
0 ⋱ 0
0 0 𝑏𝑛

]

𝑛×𝑷

 and𝑷 = [𝑝1 ⋯ 𝑝𝑛] where 𝑝𝑖 , 𝑖 = 1 ⋯ 𝑛 denotes the 

number of the parameters related to 𝑥̇𝑖in Eq. (1), 

𝑢𝑖 = [
𝜕𝑥𝑖

𝜕𝛼𝑖

,
𝜕𝑥𝑖

𝜕𝛽𝑖

,
𝜕𝑥𝑖

𝜕𝑔𝑖1

 ⋯ 
𝜕𝑥𝑖

𝜕𝑔𝑖,𝑛+𝑚

,
𝜕𝑥𝑖

𝜕ℎ𝑖1

 ⋯ 
𝜕𝑥𝑖

𝜕ℎ𝑖,𝑛+𝑚

],                                                                

𝑎𝑖 = [𝑎𝑖1 ⋯𝑎𝑖𝑛] = [
𝜕𝑓𝑖

𝜕𝑥1

𝜕𝑓𝑖

𝜕𝑥2
 ⋯ 

𝜕𝑓𝑖

𝜕𝑥𝑛
]=[

1

𝑥1
(𝑔𝑖1𝑣𝑖

+ − ℎ𝑖1𝑣𝑖
−) ⋯ 

1

𝑥𝑛
(𝑔𝑖𝑛𝑣𝑖

+ − ℎ𝑖𝑛𝑣𝑖
−)], 

𝑏𝑖 = [
𝜕𝑓𝑖

𝜕𝛼𝑖

,
𝜕𝑓𝑖

𝜕𝛽𝑖

,
𝜕𝑓𝑖

𝜕𝑔𝑖1

 ⋯ 
𝜕𝑓𝑖

𝜕𝑔𝑖,𝑛+𝑚

,
𝜕𝑓𝑖

𝜕ℎ𝑖1

 ⋯ 
𝜕𝑓𝑖

𝜕ℎ𝑖,𝑛+𝑚

]                                                         

= [
𝑣𝑖

+

𝛼𝑖

 ,
−𝑣𝑖

−

𝛽𝑖

, 𝑣𝑖
+ ln 𝑥1  ⋯ 𝑣𝑖

+ ln 𝑥𝑛+𝑚 , −𝑣𝑖
− ln 𝑥1  ⋯ −𝑣𝑖

− ln 𝑥𝑛+𝑚] .          (5) 
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Through matrix analysis, we know 𝑎𝑖𝑗 ∙ 𝑢𝑗 = 0 for all 𝑖 ≠ 𝑗: 

𝑎𝑖𝑗 ∙ 𝑢𝑗 =
𝜕𝑓𝑖

𝜕𝑥𝑗
∙ [

𝜕𝑥𝑗

𝜕𝛼𝑖
,

𝜕𝑥𝑗

𝜕𝛽𝑖
,

𝜕𝑥𝑗

𝜕𝑔𝑖1
 ⋯ 

𝜕𝑥𝑗

𝜕𝑔𝑖,𝑛+𝑚
,

𝜕𝑥𝑗

𝜕ℎ𝑖1
 ⋯ 

𝜕𝑥𝑗

𝜕ℎ𝑖,𝑛+𝑚
] = [

𝜕𝑓𝑗

𝜕𝛼𝑖
,

𝜕𝑓𝑗

𝜕𝛽𝑖
,

𝜕𝑓𝑗

𝜕𝑔𝑖1
 ⋯ 

𝜕𝑓𝑗

𝜕𝑔𝑖,𝑛+𝑚
,

𝜕𝑓𝑗

𝜕ℎ𝑖1
 ⋯ 

𝜕𝑓𝑗

𝜕ℎ𝑖,𝑛+𝑚
]=0. 

 

The equation in Eq. (5) can be further simplified to a diagonal matrix form in Eq. (6) with 𝑝̅ = max (𝑝𝑖):(For 

generalization we use zero to fill the elements for𝑝𝑖 < 𝑝̅.) 

𝑑𝑆̂(𝑡)
𝑑𝑡

⁄ = 𝐴̂ ∙ 𝑆̂ + 𝐵̂,                     (6) 

Where𝑆̂(𝑡) = [
𝑢1

⋮
𝑢𝑛

]

𝑛×𝑝̅

, 𝐴̂ = [
𝑎11 0 0
0 ⋱ 0
0 0 𝑎𝑛𝑛

]

𝑛×𝑛

with 𝑎𝑖𝑖 =
𝜕𝑓𝑖

𝜕𝑥1𝑖
=

𝑔𝑖𝑖∙𝑣𝑖
+−ℎ𝑖𝑖∙𝑣𝑖

−

𝑥𝑖
, 𝑖 = 1 ⋯ 𝑛 and 𝐵̂ = [

𝑏1

⋮
𝑏𝑛

]

𝑛×𝑝̅

.  

The related scalar parametric dynamic sensitivity for 𝛼𝑖, 𝛽𝑖 , 𝑔𝑖𝑙 , ℎ𝑖𝑚: 

𝑑𝑆𝑖1

𝑑𝑡
= (𝑎𝑖𝑖 ∙ 𝑆𝑖1 + 

𝑣𝑖
+

𝛼𝑖

) ,    𝑓𝑜𝑟 𝛼𝑖 , 

𝑑𝑆𝑖2

𝑑𝑡
= (𝑎𝑖𝑖 ∙ 𝑆𝑖2 +  

−𝑣𝑖
−

𝛽𝑖

) ,    𝑓𝑜𝑟 𝛽𝑖, 

𝑑𝑆𝑖𝑙

𝑑𝑡
=

1

𝑥𝑖

(𝑎𝑛𝑖𝑖 ∙ 𝑆𝑖𝑙 + 𝑣𝑖
+ ∙ ln 𝑥𝑙),    𝑓𝑜𝑟 𝑔𝑖𝑙， 

𝑑𝑆𝑖𝑚

𝑑𝑡
=

1

𝑥𝑖

(𝑎𝑖𝑖 ∙ 𝑆𝑖𝑚 − 𝑣𝑖
− ∙ ln 𝑥𝑚),    𝑓𝑜𝑟 ℎ𝑖𝑚，                  (7) 

Considering that the scales of different components may vary significantly, we further normalize the sensitivity 

using the form𝑆𝑛𝑖𝑗 =
𝜕𝑥𝑖

𝑥𝑖
⁄

𝜕𝜃𝑗
𝜃𝑗

⁄
 and let𝑎𝑛𝑖𝑖 = 𝑔𝑖𝑖 ∙ 𝑣𝑖

+ − ℎ𝑖𝑖 ∙ 𝑣𝑖
−: (for 𝑖 = 1 ⋯ 𝑛) 

𝑑𝑆𝑛𝑖1

𝑑𝑡
=

1

𝑥𝑖

(𝑎𝑛𝑖𝑖 ∙ 𝑆𝑛𝑖1 + 𝑣𝑖
+),    𝑓𝑜𝑟 𝛼𝑖 , 

𝑑𝑆𝑛𝑖2

𝑑𝑡
=

1

𝑥𝑖

(𝑎𝑛𝑖𝑖 ∙ 𝑆𝑛𝑖2 − 𝑣𝑖
−),    𝑓𝑜𝑟 𝛽𝑖 , 

𝑑𝑆𝑛𝑖𝑙

𝑑𝑡
=

1

𝑥𝑖

(𝑎𝑛𝑖𝑖 ∙ 𝑆𝑛𝑖𝑙 + 𝑔𝑖𝑙 ∙ 𝑣𝑖
+ ∙ ln 𝑥𝑙),    𝑓𝑜𝑟 𝑔𝑖𝑙 , 

𝑑𝑆𝑛𝑖𝑚

𝑑𝑡
=

1

𝑥𝑖
(𝑎𝑛𝑖𝑖 ∙ 𝑆𝑛𝑖𝑚 − ℎ𝑖𝑚 ∙ 𝑣𝑖

− ∙ ln 𝑥𝑚),    𝑓𝑜𝑟 ℎ𝑖𝑚 .  (8) 

 

A corresponding block diagram of the S-system is 

then constructed in the Simulink environment to 

provide the dynamic values of the state variables 𝑥𝑖  

as well as their associated forward and reverse 

fluxes𝑣𝑖
+, 𝑣𝑖

− . This setup enables the extraction of 

the normalized dynamic sensitivity 𝑆𝑛𝑖𝑗 =
𝜕𝑥𝑖

𝑥𝑖
⁄

𝜕𝜃𝑗
𝜃𝑗

⁄
. 

Block Diagram-based Visualization 

  Simulink (MathWorks®) is a 

computational modeling environment that 

implements a block diagram paradigm for dynamic 

system analysis [33]. In this framework,biological 

components are abstracted as functional blocks and 

directed signal lines encode dynamic interactions 

(e.g., metabolic fluxes, regulatory signals).Dynamic 

Sensitivity Analysis (native tools for parametric 

sensitivity computation), multi-domain simulation 

(unified modeling of biochemical reaction networks, 

control theoretic constructs and stochastic processes) 

andvisual analytics (real-time visualization of state 

variable trajectories and parameter influence metrics) 

are available.Biological applicationsfor transient 

response analysis in ODE-based biological models, 

bottleneck identification in metabolic pathways and 

optimization of kinetic parameters through 

interactive perturbation are achievable. The 

graphical interface eliminates low-level 

programming requirements while maintaining 

mathematical rigor through automated Jacobian 

computation for sensitivity matrices, adaptive 

solvers for stiff biological systems and exportable 

block libraries for modular network design.  

 

III. RESULTS and DISCUSSION 
S-system models provide a powerful 

framework for analyzing biological networks 

through their canonical power-law formalism (Eq. 

1), where system dynamics emerge from coupled 

synthesis and degradation terms. While analytical 

solutions exist for steady-state sensitivity [14, 15], 

understanding time-varying parameter influences 

remains challenging, particularly for capturing 

transient behaviors during system perturbations. 

This study develops a Simulink-based 

computational platform that: (a) Preserves modular 
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interpretability through block-matrix formulations, 

(b)Visualizes dynamic sensitivity propagation 

through modular block diagrams, (b) Quantifies 

parameter dominance across different time regimes 

(immediate/transient/steady-state), (c) Identifies 

critical parameters controlling system 

reconfiguration. 

By implementing the sensitivity matrix equations 

𝑑𝑆̂(𝑡)
𝑑𝑡

⁄ = 𝐴̂ ∙ 𝑆̂ + 𝐵̂ ) as customizable Simulink 

blocks, we enable interactive exploration of how 

kinetic parameters ( 𝛼𝑖  , 𝛽𝑖 , 𝑔𝑖𝑗 , ℎ𝑖𝑗 ) govern system 

reconfiguration—without requiring analytical 

derivations for each new model.Focusing on 

canonical S-system modules, we demonstrate how 

sensitivity dynamics emerge from the interplay 

between kinetic exponents and rate constants—

revealing design principles applicable to larger 

networks. 

 

◼ Visualize Parametric Dynamic 

Sensitivity  

To demonstrate the proposed approach, we consider 

a small-scale S-system representing a cascade 

pathway (Figure 1) [34].  

 
Figure 1: Three-tier cascade pathway [34] 

 

 For a small-scale system, experimental data 

can be used to directly determine the excitatory and 

inhibitory relationships between its constituents (e.g., 

genes, proteins, or metabolites). Figure 1 illustrates 

a three-step cascade pathway featuring two negative 

feedback loops. The system comprises three 

dependent constituents(𝑥1, 𝑥2, 𝑥3) and one constant 

source𝑥4 , which is an independent constituent.The 

constituent 𝑥1  is produced from 𝑥4 , and this 

production is inhibited by both 𝑥2  and 𝑥3 .The 

generated 𝑥1  then induces the production of 𝑥2 , 

which further promotes the generation of  𝑥3 .All 

constituents undergo self-degradation over 

time.Based on this pathway, the corresponding S-

system is formulated as follows: 

𝑥̇1 = 10𝑥2
-0.1𝑥3

-0.05𝑥4 − 5𝑥1
0.5, 

𝑥̇2 = 2𝑥1
0.5 − 1.44𝑥2

0.5, 
𝑥̇3 = 3𝑥2

0.5 − 7.2𝑥0.5.           (9) 

 

The exponent orders and rate constants are 

adopted from Tsai and Wang’s study [34]. In typical 

conditions, the concentration of the independent 

variable 𝑥4 remains constant. The system possesses 

three dependent variables and one independent 

variable ( 𝑛 = 3, 𝑚 = 1).  There are thirty 

parameters: 𝛼𝑖  , 𝛽𝑖 , 𝑖 = 1, ⋯ 3  and 𝑔𝑖𝑗 , ℎ𝑖𝑗 , 𝑖 =

1, ⋯ 3, 𝑗 = 1, ⋯ 4.  The parametric dynamic 

sensitivity in Eq. (1) is (
𝑑𝑆(𝑡)

𝑑𝑡
= 𝐴(𝑡)𝑆(𝑡) + 𝐵(𝑡) 

with the size of 𝑆(𝑡)3×30 , the Jacobian matrix 

𝐴(𝑡)3×3  and 𝐵(𝑡)3×30 . Through matrix operation, 

The parametric dynamic sensitivity is simplified to a 

diagonal matrix form in Eq. (6) ( 
𝑑𝑆̂(𝑡)

𝑑𝑡
⁄ = 𝐴̂ ∙

𝑆̂ + 𝐵̂) with the size of  𝑆(𝑡)3×6  (𝑝̅ = max(𝑝𝑖) =
max (6,4,4)),  the Jacobian matrix 𝐴(𝑡)3×3  and 

𝐵(𝑡)3×6 . The corresponding non-zero scalar form 

for the cascade system has only fourteen scalar 

equations in Eq. (7).For the state variable 𝑥1only the 

sensitivity of 𝑥1 to the parameters 

𝛼1 , 𝛽1, 𝑔12,  𝑔13, ℎ11 is nonzero. In the case of 

infinitesimal perturbation, we have the following 

dynamic sensitivity equation of the reversible 

system, wherein 𝑆𝑛
1 =

(𝑆𝑛11, 𝑆𝑛12, 𝑆𝑛13, 𝑆𝑛14, 𝑆𝑛15) and 𝑆𝑛1𝑖 , 𝑖 =
1, … 5 denote the normalized sensitivity of 𝑥1to the 

parameters 𝛼1 , 𝛽1, 𝑔12,  𝑔13, ℎ11,respectively: 

𝑑𝑆𝑛11

𝑑𝑡
=

1

𝑥1

(𝑎𝑛11 ∙ 𝑆𝑛11 + 𝑣1
+),    𝑓𝑜𝑟 𝛼1, 

𝑑𝑆𝑛12

𝑑𝑡
=

1

𝑥1

(𝑎𝑛11 ∙ 𝑆𝑛12 − 𝑣1
−),    𝑓𝑜𝑟 𝛽1, 

𝑑𝑆𝑛13

𝑑𝑡
=

1

𝑥1

(𝑎𝑛11 ∙ 𝑆𝑛13 + 𝑔12 ∙ 𝑣1
+ ∙ ln 𝑥2),    𝑓𝑜𝑟 𝑔12, 

𝑑𝑆𝑛14

𝑑𝑡
=

1

𝑥1

(𝑎𝑛11 ∙ 𝑆𝑛14 + 𝑔13 ∙ 𝑣1
+ ∙ ln 𝑥3),    𝑓𝑜𝑟 𝑔13, 

𝑑𝑆𝑛15

𝑑𝑡
=

1

𝑥1
(𝑎𝑛11 ∙ 𝑆𝑛15 − ℎ11 ∙ 𝑣1

− ∙ 𝑙𝑛 𝑥1),    𝑓𝑜𝑟 ℎ11,      (10) 

where 𝑎𝑛11 = 𝑔11 ∙ 𝑣1
+ − ℎ11 ∙ 𝑣1

− .For the state variable 𝑥2 only the sensitivity of 𝑥2 to the parameters 

𝛼2 , 𝛽2, 𝑔21, ℎ22 is nonzero. Let  𝑆𝑛
2 = (𝑆𝑛21, 𝑆𝑛22, 𝑆𝑛23, 𝑆𝑛24)  denotes the normalized sensitivity of 𝑥2  to the 

parameters (𝛼2 , 𝛽2, 𝑔21, ℎ22): 
𝑑𝑆𝑛21

𝑑𝑡
=

1

𝑥2

(𝑎𝑛22 ∙ 𝑆𝑛21 + 𝑣2
+),    𝑓𝑜𝑟 𝛼2, 
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𝑑𝑆𝑛22

𝑑𝑡
=

1

𝑥2

(𝑎𝑛22 ∙ 𝑆𝑛22 − 𝑣2
−),    𝑓𝑜𝑟 𝛽2, 

𝑑𝑆𝑛23

𝑑𝑡
=

1

𝑥2

(𝑎𝑛22 ∙ 𝑆𝑛23 + 𝑔21 ∙ 𝑣2
+ ∙ ln 𝑥1),    𝑓𝑜𝑟 𝑔21, 

𝑑𝑆𝑛24

𝑑𝑡
=

1

𝑥2
(𝑎𝑛22 ∙ 𝑆𝑛24 − ℎ22 ∙ 𝑣2

− ∙ ln 𝑥2),    𝑓𝑜𝑟 ℎ22.      (11) 

where 𝑎𝑛22 = 𝑔22 ∙ 𝑣2
+ − ℎ22 ∙ 𝑣2

− = −ℎ22 ∙ 𝑣2
− . For the state variable 𝑥3 only the sensitivity of 𝑥3 to the 

parameters 𝛼3 , 𝛽3, 𝑔32, ℎ33is nonzero. Let  𝑆𝑛
3 = (𝑆𝑛31, 𝑆𝑛32, 𝑆𝑛33, 𝑆𝑛34) denotes the normalized sensitivity of 𝑥3 

to the parameters (𝛼3 , 𝛽3, 𝑔32, ℎ33): 
𝑑𝑆𝑛31

𝑑𝑡
=

1

𝑥2

(𝑎𝑛33 ∙ 𝑆𝑛31 + 𝑣3
+),    𝑓𝑜𝑟 𝛼3, 

𝑑𝑆𝑛32

𝑑𝑡
=

1

𝑥2

(𝑎𝑛33 ∙ 𝑆𝑛32 − 𝑣3
−),    𝑓𝑜𝑟 𝛽3, 

𝑑𝑆𝑛33

𝑑𝑡
=

1

𝑥2

(𝑎𝑛33 ∙ 𝑆𝑛33 + 𝑔32 ∙ 𝑣3
+ ∙ ln 𝑥2),    𝑓𝑜𝑟 𝑔32, 

𝑑𝑆𝑛34

𝑑𝑡
=

1

𝑥2
(𝑎𝑛33 ∙ 𝑆𝑛34 − ℎ33 ∙ 𝑣3

− ∙ ln 𝑥3),    𝑓𝑜𝑟 ℎ33,      (12) 

where 𝑎𝑛33 = 𝑔33 ∙ 𝑣2
+ − ℎ33 ∙ 𝑣2

− = −ℎ33 ∙ 𝑣2
−.The differential equations in Eqs. (9), (10), (11) and (12) are 

further visualized as four individual subsystems (shown in blocks) in Simulink environment. 

Figure 2 illustrates the normalized sensitivity block diagram for a serial reaction chain (subsystem 

shown)in Simulink environment. The 𝑆𝑛
𝑖 visualized as a single subsystem block performs various perturbation 

response analysis (see the right-upper, right-middle and right-down blocks of Fig. 2). In Fig. 2, the left down 

subsystem (denoted as 𝕊) visualizes the dynamic behavior of the cascadesystem in Eq. (9), the right upper 

subsystem (denoted as 𝑆𝑛
1) describes the dynamic normalized sensitivity of 𝑥1in Eq. (10) and the rightmiddle 

subsystem (𝑆𝑛
2) describes the dynamic normalized sensitivity of 𝑥2in Eq. (11), and the right down subsystem (𝑆𝑛

3) 

describes the dynamic normalized sensitivity of 𝑥3  in Eq. (12). The system𝕊shares (V1+, V1-) denotingthe 

generation flux and consumption flux (𝑣1
+, 𝑣1

−) with 𝑥1  sensitivity subsystem (denoted as 𝑆𝑛
1) , The 

system 𝕊 shares (V2+, V2-) denotingthe generation flux and consumption flux (𝑣2
+, 𝑣2

−) with 𝑥2  sensitivity 

subsystem (denoted as 𝑆𝑛
2  ). The system𝕊shares (V3+, V3-) denotingthe generation flux and consumption 

flux(𝑣3
+, 𝑣3

−) with 𝑥3  sensitivity subsystem (denoted as 𝑆𝑛
2  ). The detailed block diagrams for system 𝕊 and 

sensitivity 𝑆𝑛 
1 , 𝑆𝑛

2 and 𝑆𝑛
3 are shown in Figs. 3, 4, 5 and 6.The sensitivity to rate constants: 𝑆𝑛𝑖1 =

𝜕𝑥𝑖
𝑥𝑖

⁄

𝜕𝛼𝑖
𝛼𝑖

⁄
，

𝑆𝑛𝑖2=
𝜕𝑥𝑖

𝑥𝑖
⁄

𝜕𝛽𝑖
𝛽𝑖

⁄
，𝑖 = 1, … 3. The sensitivity to kinetic exponents: 𝑆𝑛13 =

𝜕𝑥1
𝑥1

⁄

𝜕𝑔12
𝑔12

⁄
, 𝑆𝑛14 =

𝜕𝑥1
𝑥1

⁄

𝜕𝑔13
𝑔13

⁄
, 𝑆𝑛15=

𝜕𝑥1
𝑥1

⁄

𝜕ℎ11
ℎ11

⁄
,

𝑆𝑛23=
𝜕𝑥2

𝑥2
⁄

𝜕𝑔21
𝑔21

⁄
, 𝑆𝑛24=

𝜕𝑥2
𝑥2

⁄

𝜕ℎ22
ℎ22

⁄
, 𝑆𝑛33=

𝜕𝑥3
𝑥3

⁄

𝜕𝑔32
𝑔32

⁄
, 𝑆𝑛34=

𝜕𝑥3
𝑥3

⁄

𝜕ℎ33
ℎ33

⁄
. 
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Figure 2: Visualize dynamic behavior and time-varying sensitivity in Simulink environment. The left down 

block runs the simulation of the reversible system (𝕊). The right upper block 𝑆𝑛
1, the right middle block 𝑆𝑛

2and 

the right down block 𝑆𝑛
3are for normalized dynamic sensitivity of  𝑥1, 𝑥2and 𝑥3, respectively. The (Vi+, Vi-), 

i=1…3, denotethe generation flux and consumption flux(𝑣𝑖
+, 𝑣𝑖

−), 𝑖 = 1 … 3. 
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Figure 3: Detailed block diagram for the cascade system 𝕊. 

 



Shinq-Jen Wu, et.al. International Journal of Engineering Research and Applications 

www.ijera.com 

ISSN: 2248-9622, Vol. 15, Issue 8, August 2025, pp 67-88 

 

A 
www.ijera.com                                  DOI: 10.9790/9622-15086788                                      75 | Page 

                

 

 

 

 
Figure 4: Detailed block diagrams for the dynamic sensitivity of 𝑥1  (right upper block𝑆𝑛

1  in Fig. 2). The 

sensitivity to rate constants is 𝑆𝑛11 =
𝜕𝑥1

𝑥1
⁄

𝜕𝛼1
𝛼1

⁄
, 𝑆𝑛12 =

𝜕𝑥1
𝑥1

⁄

𝜕𝛽1
𝛽1

⁄
. The sensitivity to kinetic exponents is 𝑆𝑛13 =

𝜕𝑥1
𝑥1

⁄

𝜕𝑔12
𝑔12

⁄
𝑆𝑛14 =

𝜕𝑥1
𝑥1

⁄

𝜕𝑔13
𝑔13

⁄
，𝑆𝑛15=

𝜕𝑥1
𝑥1

⁄

𝜕ℎ11
ℎ11

⁄
. 
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Figure 5: Detailed block diagrams for the dynamic sensitivity of 𝑥2 (right middle block𝑆𝑛

2  in Fig. 2).The 

sensitivity to rate constants is𝑆𝑛21=
𝜕𝑥2

𝑥2
⁄

𝜕𝛼2
𝛼2

⁄
, 𝑆𝑛22=

𝜕𝑥2
𝑥2

⁄

𝜕𝛽2
𝛽2

⁄
. The sensitivity to kinetic exponents are𝑆𝑛23=

𝜕𝑥2
𝑥2

⁄

𝜕𝑔21
𝑔21

⁄
，

𝑆𝑛24=
𝜕𝑥2

𝑥2
⁄

𝜕ℎ22
ℎ22

⁄
. 
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Figure 6: Detailed block diagrams for the dynamic sensitivity of 𝑥3 (right down block 𝑆𝑛

3  in Fig. 2).The 

sensitivity to rate constants is𝑆𝑛31=
𝜕𝑥3

𝑥3
⁄

𝜕𝛼3
𝛼3

⁄
, 𝑆𝑛32=

𝜕𝑥3
𝑥3

⁄

𝜕𝛽3
𝛽3

⁄
. The sensitivity to kinetic exponents are𝑆𝑛33=

𝜕𝑥3
𝑥3

⁄

𝜕𝑔32
𝑔32

⁄
，

𝑆𝑛34=
𝜕𝑥3

𝑥3
⁄

𝜕ℎ33
ℎ33

⁄
. 
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Results of Dry Lab Experiments 

The system was simulated under initial conditions (𝑥10, 𝑥20, 𝑥30)= (0.2,0.5,0.1) with the independent variable 

fixed at 𝑥4 = 0.75. As shown in Figure 7, the cascade system reaches steady state at 𝑡𝑠 =10 seconds with 

equilibrium concentrations (𝑥̅1, 𝑥̅2, , 𝑥̅3)= (1.8348, 3.5384, 0.6143). 

Key Observations from Sensitivity Analysis (Figs. 8–10): 

◼ Rate Constant Dominance: (a) All 𝑆𝑛1𝑖 values remain positive, while 𝑆𝑛2𝑖 are negative (𝑖 = 1, … 3), indicating 

opposing directional effects between parameters and state variables. (b) Synthesis rate constants ( 𝛼𝑖 ) 

consistently exhibit stronger influence than degradation rates (𝛽𝑖). 

◼ Time-Dependent Parameter Influence: (a) The influence of kinetic parameterson 𝒙𝟏 (Fig. 8): For 𝑡 >
3sec|𝑆𝑛15| > |𝑆𝑛13| > |𝑆𝑛14| ≈ 0 .At transient phase (𝑡 ≤ 0.52 sec )  hierarchy shifts from |𝑆𝑛13| < |𝑆𝑛14| <
|𝑆𝑛15|(after initial equality for 𝑡 ≤ 0.152 sec ).(b) The influence of kinetic parameterson 𝒙𝟐 (Fig. 9):At early 

phase ( 𝑡 ≤ 0.2 sec)|𝑆𝑛23| > |𝑆𝑛24| .At Mid-phase ( 0.2 < 𝑡 ≤ 4.13  sec) dynamic reversals occur, 

with |𝑆𝑛23| ultimately dominating after 𝑡 = 4.13 sec. (c) The influence of kinetic parameterson 𝒙𝟑 (Fig. 

10):|𝑆𝑛34| > |𝑆𝑛33|for 𝑡 ≤ 2.1 sec, then reverse. The𝑆𝑛33 transitions from negative to positive at 𝑡 = 0.62 sec, 

while𝑆𝑛34remains positive. 

◼ Kinetic vs. Rate Parameters: Rate constants generally outweigh kinetic parameters in influence, except for 

𝑆𝑛34 during 𝑡 ∈ [0, 0.41] sec. 

 

 
Figure 7: (𝒙𝟒=0.75)Simulation results of the system dynamic behavior at initial condition(𝒙𝟏𝟎, 𝒙𝟐𝟎, 𝒙𝟑𝟎) =

(𝟎. 𝟐, 𝟎. 𝟓, 𝟎. 𝟏), 
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Figure 8: ((𝒙𝟏𝟎, 𝒙𝟐𝟎, 𝒙𝟑𝟎,,𝒙𝟒) = (𝟎. 𝟐, 𝟎. 𝟓, 𝟎. 𝟏, 𝟎. 𝟕𝟓)) The dynamic sensitivity of 𝑆𝑛1𝑖 , 𝑖 = 1, … 5denote the 

normalized sensitivity of 𝑥1to the parameters 𝛼1 , 𝛽1, 𝑔12,  𝑔13, ℎ11,respectively. 
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Figure 9: ((𝒙𝟏𝟎, 𝒙𝟐𝟎, 𝒙𝟑𝟎,,𝒙𝟒) = (𝟎. 𝟐, 𝟎. 𝟓, 𝟎. 𝟏, 𝟎. 𝟕𝟓)) The dynamic sensitivity of 𝑆𝑛2𝑖 , 𝑖 = 1, … 4denote the 

normalized sensitivity of 𝑥2to the parameters 𝛼2 , 𝛽2, 𝑔21, ℎ22,respectively. 
 



Shinq-Jen Wu, et.al. International Journal of Engineering Research and Applications 

www.ijera.com 

ISSN: 2248-9622, Vol. 15, Issue 8, August 2025, pp 67-88 

 

A 
www.ijera.com                                  DOI: 10.9790/9622-15086788                                      81 | Page 

                

 

 

 

    

 
Figure 10: ((𝒙𝟏𝟎, 𝒙𝟐𝟎, 𝒙𝟑𝟎,,𝒙𝟒) = (𝟎. 𝟐, 𝟎. 𝟓, 𝟎. 𝟏, 𝟎. 𝟕𝟓)) The dynamic sensitivity of 𝑆𝑛3𝑖 , 𝑖 = 1, … 4denote the 

normalized sensitivity of 𝑥3to the parameters 𝛼3 , 𝛽3, 𝑔32, ℎ33,respectively. 
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◼ Analysis of Transient Perturbation Response Using 𝐋𝟐and𝐋𝟏norm 

Our Simulink-based framework enables time-varying sensitivity analysis across all system states. To quantify 

the global parametric influence during transient periods (t ∈ [0, ts]), we implement two ensemble sensitivity 

metrics through block-diagram operations: 

𝑳𝟐 Norm (Root-Mean-Square Sensitivity): 

‖𝑆𝑛𝑖𝑗‖ =
1

ts
√∫ ⌈𝑆𝑛𝑖𝑗⌉

2ts

0
dt.                  (13) 

𝐋𝟏 Norm (Absolute Integrated Sensitivity): 

ISnij =
1

ts
∫ ⌈𝑆𝑛𝑖𝑗⌉

ts

0
dt.                    (14) 

The implementation for 𝑆𝑛𝑖𝑗 is visualized in Figures 12 and 13 (𝐿2/𝐿1 computation blocks) and Figures 14and 15 

(detailed subsystem architectures for ‖Sn
1‖ and IS𝑛

2). 

 
Figure 11: Visualize ||Sn11||in Eq. (13) (upper figure) and ISn11in Eq. (14) (down figure) in Simulink. 

 

Under initial conditions (x10, x20, x30 )= (0.2,0.5,0.1) and x4 = 0.75 , the system reaches steady state 

(x̅1, x̅2, , x̅3)= (1.8348, 3.5384, 0.6143) at 𝑡𝑠 = 10 sec. The results of the global sensitivy are shown in bar chart 

(Fig. 16).  For 𝑳𝟐norm we observe that:(a) The response of 𝒙𝟏to parameter perturbation is in the order of α1 ≈
 β1 ≫  h11 > g12 >  g13 ( ||Sn11|| = 6.4187 , ||Sn12|| = 6.1047 , ||Sn13|| = 0.6658 , ||Sn14|| =
0.3431, ||Sn15|| = 1.9587) .  (b) The response of 𝒙𝟐 to parameter perturbation is in the order of α2 >
β2 >  ℎ22 > 𝑔21(||Sn21|| = 6.6461, ||Sn22|| = 5.4038, ||Sn23|| = 2.0858, ||Sn14|| = 2.6904). (c)The response 

of 𝒙𝟑to parameter perturbation is in the order of α3  ≈  β3 > g32 >  ℎ33(||Sn31|| = 6.3710, ||Sn12|| = 6.2834, 

||Sn13|| = 3.4729 , ||Sn14|| = 2.75161).  For 𝑳𝟏 norm we observe that: (a) The response of 𝒙𝟏 to parameter 

perturbation is in the order of α1 ≈  β1 ≫  h11 > g12 >  g13 ( ISn11 = 20.2431 , ISn12 = 19.1395 , ISn13 =
1.9869, ISn14 = 0.8890,ISn15 = 6.0289). (b) The response of 𝒙𝟐to parameter perturbation is in the order of 

α2 > β2 >  ℎ22 > 𝑔21(ISn21 = 20.6962, ISn22 = 16.5921, ISn23 = 6.3739,ISn24 = 7.5274). (c) The response 

of 𝒙𝟑to parameter perturbation is in the order of α3  ≈  β3 > g32 >  ℎ33(ISn11 = 20.0972, ISn12 = 19.8271, 

ISn13 = 10.5118,ISn14 = 7.5805). 

Some key findings are observed. (a) Rate constant dominates: Forward rate constants (αi) consistently 

exhibit greater influence than reverse rates (βi) for all states (𝑥1, 𝑥2, 𝑥3). For example, For 𝑥1, α1 ≈  β1 ≫  other 

parameters (𝐿2 : 6.4187 vs 6.1047; 𝐿1 : 20.2431 vs 19.1395). (b)Kinetic parameter hierarchy:No universal 

dominance pattern between synthesis (  g𝑖𝑗 ) and degradation (  h𝑖𝑗 ) parameters. State-dependent variations 

observed  that 𝑥2 shows  ℎ22 > 𝑔21 (𝐿2: 2.6904 > 2.0858) and 𝑥3 exhibits 𝑔32 >  ℎ33(𝐿2: 3.4729 > 2.7516). (c) 

Norm-Specific Insights:𝐿1 emphasizes cumulative effects (higher magnitude). 𝐿2 better captures peak sensitivity 

periods. 

 

IV. CONCLUSION 

This study presents a Simulink-based framework for multiscale sensitivity analysis of S-system biological 

models, combining time-resolved local sensitivity (Figs. 8–10) with global ensemble metrics (𝐿1/𝐿2 norms, Figs. 

16). Key advances and findings include two directions.Unified Local-to-Global Insights: Local dynamics reveal 

phase-dependent parameter dominance. Global measures integrate these effects.𝐿1 norms emphasize cumulative 

influence ( ISn11  = 20.24 for α1 ). 𝐿2  norms identify peak sensitivity periods ( ||Sn21|| = 6.65  at 𝑡 ≈ 1.2 ). 
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Computational Contributions: Simulinkimplementation (Figs. 2-6 and Figs. 12–15) enables real-time tracking of 

sensitivity phase transitionsand automated computation of Jacobians (for local) and integrals (for global). The 

provided Simulink toolkit bridges theoretical analysis with synthetic biology design.In the future, we will use 

this framework to examine sloppiness and explore key design principles. 

 

 
 

Figure 12: (𝑮𝒍𝒐𝒃𝒂𝒍 𝒔𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚) Visualize dynamic behavior and ensemble sensitivity in𝑳𝟐 norm. The left 

down block runs the simulation of the reversible system (𝕊). The right upper block ‖Sn
1‖,the right middle block 

‖Sn
2‖and the right down block ‖Sn

3‖are for normalized dynamic sensitivity of  x1,   x2and x3, respectively. The 

(Vi+, Vi-), i=1…3, denotethe forward and reverse fluxes(vi
+, vi

−), i = 1 … 3. 
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Figure 13: (𝑮𝒍𝒐𝒃𝒂𝒍 𝒔𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚) Visualize dynamic behavior and ensemble sensitivity in𝑳𝟏 norm. The left 

down block runs the simulation of the reversible system (𝕊). The right upper block ISn
1, the right middle block 

ISn
2and the right down block ISn

3are for normalized dynamic sensitivity of  x1,   x2and x3, respectively. The (Vi+, 

Vi-), i=1…3, denotethe forward and reverse fluxes(vi
+, vi

−), i = 1 … 3. 
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Figure 14: (𝑮𝒍𝒐𝒃𝒂𝒍 𝒔𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚) The subsystem‖𝐒𝐧

𝟏‖which shows in the right upper block of Fig. 12 for 

estimating theensemble sensitivity in 𝑳𝟐  norm. The (Vi+, Vi-), i=1…3, denotethe forward and reverse 

fluxes(vi
+, vi

−), i = 1 … 3. 
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Figure 15: (𝑮𝒍𝒐𝒃𝒂𝒍 𝒔𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚) The subsystem I𝐒𝐧
𝟐shown in the right middle block of Fig. 13 for estimating 

theensemble sensitivity in𝑳𝟏 norm. The (Vi+, Vi-), i=1…3, denotethe forward and reverse fluxes(vi
+, vi

−), i =
1 … 3. 
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Figure 16: The global dynamic parametric sensitivity analysis. The upper three figures shows the sensitivity 

results in 𝐿1 norm and the down three figures are the sensitivity in 𝐿2norm 
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