
Cioloca Mihaela, al. Int. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 15, Issue 8, August 2025, pp 26-32

www.ijera.com DOI: 10.9790/9622-15082632 26 | Page

Design & Synthesis of an Efficient Fully Connected NN Model in
DNN

P. Dileep Kumar Reddy*, Dr. Kota Venkata Ramanaiah**
Department of Electronics and Communication Engineering, Y.S.R Engineering College of Yogi vemana
University, proddatur-516360
** Department of Electronics and Communication Engineering, Y.S.R Engineering College of Yogi vemana
University, proddatur-516360

ABSTRACT
The deep neural network consists of several data processing subsystems, one of the key components being the
Fully Connected Network (FCNN) model. This FCNN model has several layers of neurons, which are
implemented using arithmetic units with appropriate numerical representation to optimize for area, output, and
speed. This study examined the network parameters and removed any redundant weights. The architecture of the
FCNN was designed to be both piped and parallelised in order to improve the processing of network
information. The proposed FCNN consists of 16 input layers, 3 hidden layers, and one output layer, each
containing 4 neurons. This design details the connections between inputs and neurons in hidden layers to process
raw data. A hardware description language (HDL) model has been developed for this architecture, a refined
architecture consisting of registers, de-multiplexers, weight registers, multipliers, and adders, and read-only
memory.
Keywords – CNN, Neuron, Mux, ALU, Pipelined

Date of Submission: 01-08-2025 Date of acceptance: 11-08-2025

I. INTRODUCTION
Deep learning systems have become

ubiquitous across various sectors, powering
applications like image recognition, speech
interfaces, and language translation. To support
these computationally intensive tasks—especially in
real-time scenarios—DNNs (Deep Neural Networks)
are now deployed across a range of hardware
platforms, including CPUs, GPUs, and increasingly,
FPGAs. The rise of edge computing has further
emphasized the necessity for fast, efficient on-device
processing, as relying solely on cloud resources
often fails to meet stringent latency requirements.

Yet, implementing DNNs on hardware
platforms is fraught with challenges. The
convolutional layer in CNNs [1] (Convolutional
Neural Networks) stands out as particularly
demanding, requiring significant computational
resources to maintain accuracy and performance.
Achieving an optimal balance between
computational complexity, accuracy, and resource
consumption remains a persistent concern. These
challenges are compounded in fully connected
layers, which require large-scale matrix
multiplications and substantial parameter
storage—both of which are especially problematic in

edge environments with limited memory and power
budgets.

To address these obstacles, several
optimization strategies are employed. Techniques
such as parallelization, batch processing, and
partitioning are standard approaches to improve
throughput. More advanced strategies, including
pruning, quantization, and decomposition, have
proven effective at reducing computational load
without sacrificing significant accuracy. Methods
leveraging the Fast Fourier Transform (FFT) [2]
enable certain operations to be performed more
efficiently in the frequency domain, particularly
beneficial for large-kernel convolutions.

Furthermore, hardware-specific innovations
have emerged. For example, resource multiplexing
algorithms help optimize arithmetic complexity and
utilization of FPGA lookup tables. Multiplier-less
operations, such as using XOR-based computations,
can further reduce hardware demands. Identifying
and eliminating redundant parameters also decreases
unnecessary computation, streamlining the network.

Implementations on FPGAs illustrate the
practical impact of these methods. Xiaokang’s
work[3], for instance, integrates XOR operations,
pipelined structures, and intermediate storage to
achieve notable parallelism and minimize data
access latency, demonstrating successful deployment

RESEARCH ARTICLE OPEN ACCESS

Cioloca Mihaela, al. Int. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 15, Issue 8, August 2025, pp 26-32

www.ijera.com DOI: 10.9790/9622-15082632 26 | Page

on an Artix-7 FPGA at 150 MHz. Similarly,
Binfeng’s[4] CNN accelerator leverages both
hardware (Zynq FPGA) and software (ARM Cortex-
A9) co-design, operating at 100 MHz with power
consumption maintained below 1.6 W.

The presented work specifically focuses on
Designing a two-layer fully connected neural
network architecture. Optimizing arithmetic
operations within this architecture. Carefully
considering trade-offs related to delay. Applying
parallelism and intermediate storage logic to
enhance latency and throughput. Notably, a CNN
model in this context integrates the Advanced
Encryption Standard (AES) algorithm for data
encryption, with the CNN generating the encryption
key. The complexity of this CNN model has been
optimized through appropriate training methods. The
increasing complexity of the fully connected layer
"as the number of hidden layers increases" also
underscores the continuous challenge of scaling
these designs[5].

The introduction of the paper should
explain the nature of the problem, previous work,
purpose, and the contribution of the paper. The
contents of each section may be provided to
understand easily about the paper.

II. LITERATURE SURVEY

Neural network optimization is a critical
area of research, particularly focused on balancing
key performance metrics such as latency, area
utilization, and computational efficiency. This field
encompasses various techniques aimed at enhancing
the overall performance of neural networks. The
literature highlights three primary methods that have
garnered significant attention: parallel processing,
redundancy reduction, and pipelining. Parallel
processing is widely recognized for its substantial
ability to enhance computational speed and reduce
latency in neural networks. Research, such as that by
Zhang et al., [6], has demonstrated that employing
parallel architectures can significantly improve the
processing time of deep learning models, especially
in applications that demand real-time data analysis.
While parallel processing effectively reduces
latency, it often introduces a trade-off, leading to
increased area requirements. This necessitates a
careful design balance between speed and hardware
resource consumption. Redundancy reduction
addresses the critical issue of redundant weight
vectors within neural network computations. Studies
by Chen et al[7]. have delved into methods for
estimating these redundancies in weight matrices.
They proposed algorithms specifically designed to
minimize the number of multiplication operations
required during the inference phase of neural
network execution. This approach is highly

beneficial as it not only reduces computational
overhead but also improves the overall efficiency of
the neural network, making it particularly suitable
for deployment in resource-constrained
environments.

Pipelining, a well-established technique in
digital circuit design, has been effectively adapted
for neural network architectures to boost
performance. Kumar and Singh [8] highlighted the
benefits of pipelining in increasing the processing
speed and throughput of neural networks. However,
they also emphasized that while pipelining
significantly improves throughput, it comes with a
trade-off in terms of latency. Therefore, careful
design of pipelined architectures is crucial to
efficiently handle data flow while maintaining
acceptable latency levels for real-time applications.
Fully Connected Neural Networks (FCNNs), which
remain a foundational architecture in deep learning,
have been a subject of significant optimization
efforts. Recent advancements have focused on
optimizing FCNNs for specific applications. For
instance, Lee et al.[9] proposed a two-layer FCNN
architecture that ingeniously incorporates both
redundancy reduction and pipelining techniques.
Their work showcased significant improvements in
arithmetic operation efficiency, demonstrating the
considerable potential for optimizing FCNNs to
meet stringent delay requirements. The broader
research, as indicated by Patel et al. [10],
underscores the necessity of a holistic approach to
neural network optimization. This framework
emphasizes that architectural decisions must be
informed by the specific requirements of the
application domain. This integrated strategy,
leveraging parallel processing, redundancy
reduction, and pipelining, aims to achieve an optimal
balance between arithmetic operation efficiency and
delay requirements in neural

III. FCNN

Referencing Figure 1, it depicts the
architecture of a standard fully connected neural
network, including an input layer, one or more
hidden layers, and an output layer. The dimensions
of the input and output layers are determined by the
features present in the dataset and the specific nature
of the desired output. Selecting the number of
hidden layers, however, presents a nuanced
challenge. There is no universally optimal choice;
too few hidden layers may prevent the network from
capturing underlying patterns, while too many can
lead to overfitting and unnecessary complexity.
Striking the right balance between model capacity
and generalization is essential. For guidance, a
straightforward mathematical formula is sometimes

Cioloca Mihaela, al. Int. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 15, Issue 8, August 2025, pp 26-32

www.ijera.com DOI: 10.9790/9622-15082632 26 | Page

employed to estimate the appropriate number of
hidden layers:

n=(m+k)+ln = \sqrt{(m + k)} + ln=(m+k)+l

where mmm is the number of input nodes, k is
the number of output nodes, and l is a constant
ranging from 1 to 10. In a fully connected network,
N is the total number of neurons:

N=m+n+kN = m + n + kN=m+n+k

The total number of weights D required for the
fully connected neural network with NN nodes is
given by:

D=mn+nk+n+kD = mn + nk + n +
kD=mn+nk+n+k

A fully connected (FC) layer in a neural
network architecture consists of an input layer, one
or more hidden layers, and an output layer. The
primary function of FC layers is to extract
meaningful features from the output of preceding
convolutional layers and map these features into a
recognizable data space for classification or
regression tasks.

The computational complexity of an FC
layer is heavily influenced by the size and number of
weight vectors involved. When the individual
weights are of small magnitude (for example, less
than 0.1), the resulting multiplication operations
produce relatively small values, which can simplify
the computational process and potentially lead to
hardware-level optimizations. By strategically
analyzing the magnitude of these weights, it is
possible to optimize multiplication operations and
reduce overall computational load.

Fig 1. Fully Connected NN model

Nevertheless, as the number of weight
vectors increases, the required number of arithmetic
operations, memory storage elements, and overall
resource utilization also rise correspondingly.
Implementing a serial architecture for the FC layer
can help conserve resources by allowing arithmetic
units to be reused across multiple operations, albeit

at the cost of increased computation time or latency.
To address the trade-off between speed (delay) and
hardware efficiency (area utilization), hybrid
methods are often employed, aiming to strike a
balance that meets both performance and resource
constraints.

Figure 2 illustrates the configuration of 4
neurons, each handling 16 inputs and producing a
single output, denoted as Y. Each neuron is equipped

Cioloca Mihaela, al. Int. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 15, Issue 8, August 2025, pp 26-32

www.ijera.com DOI: 10.9790/9622-15082632 26 | Page

with 16 multipliers, one for each input. The resulting
products, along with a bias term, are processed by an
adder array comprising 16 adders, which sums a
total of 17 values. Each neuron is also associated
with an activation function, which, in this
implementation, is realized using a ROM-based
structure.

For a HL containing four neurons and 16
inputs, the system requires a total of 64 multipliers,
64 adders, and four activation functions. The input
data (X), as depicted in Figure 1, are represented in
N-bit 2’s complement format, with the most
significant bit (MSB) indicating the sign and the
remaining N-1 bits encoding the magnitude. The
network weights, following training, also use N-bit
2’s complement representation. Each multiplication
operation produces a (2N-1)-bit result and requires
(2N-1) clock cycles to complete. The multiplier
outputs are accumulated in the adder array, where
each adder processes two (2N-1)-bit inputs, yielding
a 2N-bit result.

.

Fig 2: Arithmetic blocks of Fully connected NN hidden layer architecture with
The adder array itself is structured into four

stages: the first stage contains eight adders, followed
by four in the second stage, two in the third, and one
in the fourth. The final stage adder incorporates the
bias term, resulting in an (8-4-2-1-1) structure. Each
successive stage increases the output bit width: 2N
bits after the first stage, 2N+1 after the second,
2N+2 after the third, 2N+3 after the fourth, and
finally 2N+4 bits after bias addition. As a result,
with N-bit inputs, the intermediate output requires
2N+4 bits for representation. For N=8, this
corresponds to a 60% increase in bit width across the
six data path stages (one multiplier stage and five
addition stages).

The activation function employed is the
hyperbolic tangent sigmoid (tansig), implemented
via ROM. The tansig function output ranges from -1
to +1. For digital implementation, this range is
divided into 512 samples, each scaled by 256 and
rounded to the nearest integer. Thus, the tansig
output for all 512 possible input values is stored as
N-bit 2’s complement values in ROM.

IV. PROPOSED MODEL

FFNN (Feed-Forward Neural Network)
architecture is engineered with a clear focus on
optimizing arithmetic resource utilization. This
design is organized as a series of interconnected
stages: beginning with input registers, followed by
two levels of de-multiplexers, weight registers,

multipliers, an adder array, a bias adder unit, a
ROM/LUT stage, and culminating in the output
register.

The process initiates with a bank of 16
input registers, each with a data width of N-bits.

Cioloca Mihaela, al. Int. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 15, Issue 8, August 2025, pp 26-32

www.ijera.com DOI: 10.9790/9622-15082632 26 | Page

Data is loaded sequentially, from the topmost to the
bottom register. The output from each register
directly interfaces with its respective de-multiplexer
in the subsequent stage. A control signal, denoted
‘C’, determines the routing of input data—either
directly to the multiplier inputs or to the next register
in the sequence. During the data loading phase, ‘C’
is asserted (‘1’), enabling all 16 input values to be
written into the register array over 16 clock cycles.
Once loading is complete, ‘C’ is de-asserted (‘0’),
and the register contents are made available to the
multipliers for computation. Each neuron within the
architecture requires 16 weights; thus, for a system
comprising four neurons, a total of 64 weights are
necessary. These are stored within a register array of
64-depth. The loading of weights into the weight
registers is managed via the control signal ‘D’ for
the third-stage de-multiplexer. Setting ‘D’ to ‘0’ for
16 clock cycles facilitates the transfer of 16 weights
into the weight registers corresponding to each
neuron. Post-loading, the weights are routed to the
multiplier inputs, and ‘D’ is set accordingly to
maintain this connection. On the 17th clock cycle,
the 16 multipliers are activated to perform the
necessary multiplication operations.

The resulting products from the multipliers
are then accumulated using an adder array. Although
one might expect to require 15 adders to sum 16
products, the architectural design efficiently
achieves this operation with just 7 adders, indicating
a resource-conscious approach to arithmetic unit
allocation

Cioloca Mihaela, al. Int. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 15, Issue 8, August 2025, pp 26-32

www.ijera.com DOI: 10.9790/9622-15082632 26 | Page

Fig 3. Pipelined architecture of single neuron of hidden unit

V.

The presented design offers a notably
efficient FPGA-based implementation of a
Feedforward Neural Network (FFNN), with
substantial reductions in hardware resource
consumption while preserving computational
performance. Traditional approaches typically utilize
16 parallel multipliers within the hidden layer,
resulting in significant area overhead. In contrast, the
proposed architecture leverages a pipelined structure
with only 8 multipliers, coordinated through two-
stage Serial-In Serial-Out (SISO) registers. These
registers are supplied weights from a 64-depth
bottom SISO, facilitating alternate weight loading
and minimizing the number of concurrently active
multipliers. The multiplication process unfolds over
two clock cycles, yielding eight partial products per
cycle, which are subsequently stored in registers V1
through V16. The summation of these products is
accomplished by a seven-stage pipelined adder array
consisting of multiplexers, adders, demultiplexers,
and registers. Bias values are managed via a
dedicated FIFO register and integrated during the
final computation stage. Overall, this configuration
incurs a latency of 2N + 23 clock cycles, where N
denotes the number of inputs. Notably, the design
achieves a 75% area reduction, with only a 24%
increase in computation delay relative to
conventional implementations.

A similar optimization strategy is employed
in the output layer. Each neuron utilizes a compact,
pipelined configuration, comprising input and weight
registers, arrays of multipliers and adders, a bias
FIFO, ROM-based activation function, and output
memory. To further enhance throughput, the design
incorporates two parallel pipelined units, each
responsible for producing eight outputs—enabling
the simultaneous computation of 16 neuron outputs.
This parallelization yields an 87.5% reduction in
area and results in a 33% increase in computation
delay compared to standard designs. The output
layer’s latency is measured at 2N + 8 clock cycles.

Overall, the proposed architecture
effectively balances hardware efficiency and
processing speed by employing pipelined
computation, optimized arithmetic units, and
synchronized memory management. These
characteristics make it a compelling solution for
real-time artificial neural network applications on
FPGA platforms.

VI. RESULTS AND CONCLUSION:

(a)

(b)

Fig 4.RTL schematic of a) hidden layer and b) output
layer

The RTL schematic for both the hidden and output
layers primarily consists of multipliers and adders,
organized to process data efficiently. In the output
stage, Look-Up Tables (LUTs) are utilized, aligning
with established design practices. As previously
discussed, the output layer is structured around a
data path unit featuring multipliers and adders, all of
which are configured for 10-bit operations. The
hidden layer outputs 10-bit values, and the output
layer is correspondingly designed to handle this 10-
bit data width. This ensures that both the multipliers

Cioloca Mihaela, al. Int. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 15, Issue 8, August 2025, pp 26-32

www.ijera.com DOI: 10.9790/9622-15082632 26 | Page

and adders within the data path unit consistently
support 10-bit processing throughout the
architecture.

Table 1: conventional FCN Vs modified FCN

Parameters

Conventional FCN Modified FCN

Hidden
unit

Output
unit

Hidden
unit

Output
unit

Latency n+22 2n+23 n+8 2n+8

Multipliers 64 64 8 4

Adders 64 64 8 6

Delay t t t+24% t+34%

Area 100% 100% 25% 12.5%

VII. CONCLUSION

This work introduces a modified Fully Connected
Network (FCN) architecture, specifically tailored for
improvements in area efficiency, power
consumption, and processing speed. The design
incorporates intermediate memory elements and
implements pipelining strategies to optimize
throughput and reduce latency. Integrated data flow
control logic ensures the synchronization of data and
weights, which contributes to further latency
minimization. The parallelized structure of the
architecture achieves a careful balance between
resource utilization and computational speed.
Overall, this approach is highly suitable for high-
speed convolutional neural network (CNN)
applications and can effectively function as a
hardware accelerator for both deep neural network
(DNN) and CNN workloads

REFERENCES

[1]. Wu B, Wu X, Li P, Gao Y, Si J, Al-Dhahir N.
Efficient FPGA Implementation of
Convolutional Neural Networks and Long
Short-Term Memory for Radar Emitter Signal
Recognition. Sensors (Basel). 2024 Jan
30;24(3):889. doi: 10.3390/s24030889. PMID:
38339606; PMCID: PMC10857097

[2]. Hichen Wang, Hengyi Li, Xuebin Yue, Lin
Meng,,”Briefly Analysis about CNN
Accelerator based on FPGA”,Procedia
Computer Science,Volume 202,2022,Pages
277-282,ISSN 1877-0509,
https://doi.org/10.1016/j.procs.2022.04.036..

[3]. Master Thesis "ZynqNet: An FPGA-
Accelerated Embedded GitHub,
shttps://github.com/dgschwend/zynqnet

[4]. Aabha Jain, Neha Sharma,”Accelerated AI
Inference at CNN-Based Machine Vision in
ASICs: A Design Approach”,
Published in ECS Transactions 24 April 2022 .
https://www.semanticscholar.org/paper/183fc8
eba11c4a30f902aa34d2d8ad108bd3bb14

[5]. Marco Rios, Flavio Ponzina, Alexandre
Levisse, Giovanni Ansaloni, David
Atienza,”Bit-Line Computing for CNN
Accelerators Co-Design in Edge AI
Inference”12th sep,2022,
https://arxiv.org/pdf/2209.06108

[6]. Zhang, Y., Wang, X., & Li, J. (2020). "Parallel
Processing Techniques for Deep Learning: A
Survey." Journal of Parallel and Distributed
Computing, 139, 1-15.

[7]. Chen, L., Zhang, H., & Liu, S. (2019).
"Reducing Redundancy in Neural Networks: A
Weight Vector Approach." IEEE Transactions
on Neural Networks and Learning Systems,
30(5), 1450-1462.

[8]. Kumar, R., & Singh, A. (2021). "Pipelining
Techniques for Accelerating Neural Network
Inference." ACM Transactions on Architecture
and Code Optimization, 18(3), 1-25.

[9]. Lee, J., Kim, T., & Park, H. (2022).
"Optimizing Fully Connected Neural
Networks with Redundancy Reduction and
Pipelining." Neural Processing Letters, 54(2),
1235-1250.

[10]. Patel, V., Gupta, R., & Sharma, N. (2023).
"Evaluating Trade-offs in Neural Network
Architectures: A Comprehensive Framework."
Journal of Machine Learning Research, 24(1),
1-30.

https://www.semanticscholar.org/author/Aabha-Jain/9427777
https://www.semanticscholar.org/author/Neha-Sharma/2087731692
https://www.semanticscholar.org/venue?name=ECS%20Transactions
https://arxiv.org/pdf/2209.06108

