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ABSTRACT
The deep neural network consists of several data processing subsystems, one of the key components being the 
Fully Connected Network (FCNN) model. This FCNN model has several layers of neurons, which are 
implemented using arithmetic units with appropriate numerical representation to optimize for area, output, and 
speed. This study examined the network parameters and removed any redundant weights. The architecture of the 
FCNN was designed to be both piped and parallelised in order to improve the processing of network 
information. The proposed FCNN consists of 16 input layers, 3 hidden layers, and one output layer, each 
containing 4 neurons. This design details the connections between inputs and neurons in hidden layers to process 
raw data. A hardware description language (HDL) model has been developed for this architecture, a refined 
architecture consisting of registers, de-multiplexers, weight registers, multipliers, and adders, and read-only 
memory.
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I. INTRODUCTION
Deep learning systems have become 

ubiquitous across various sectors, powering 
applications like image recognition, speech 
interfaces, and language translation. To support 
these computationally intensive tasks—especially in 
real-time scenarios—DNNs (Deep Neural Networks) 
are now deployed across a range of hardware 
platforms, including CPUs, GPUs, and increasingly, 
FPGAs. The rise of edge computing has further 
emphasized the necessity for fast, efficient on-device 
processing, as relying solely on cloud resources 
often fails to meet stringent latency requirements.

Yet, implementing DNNs on hardware 
platforms is fraught with challenges. The 
convolutional layer in CNNs [1] (Convolutional 
Neural Networks) stands out as particularly 
demanding, requiring significant computational 
resources to maintain accuracy and performance. 
Achieving an optimal balance between 
computational complexity, accuracy, and resource 
consumption remains a persistent concern. These 
challenges are compounded in fully connected 
layers, which require large-scale matrix 
multiplications and substantial parameter 
storage—both of which are especially problematic in 

edge environments with limited memory and power 
budgets.

To address these obstacles, several 
optimization strategies are employed. Techniques 
such as parallelization, batch processing, and 
partitioning are standard approaches to improve 
throughput. More advanced strategies, including 
pruning, quantization, and decomposition, have 
proven effective at reducing computational load 
without sacrificing significant accuracy. Methods 
leveraging the Fast Fourier Transform (FFT) [2] 
enable certain operations to be performed more 
efficiently in the frequency domain, particularly 
beneficial for large-kernel convolutions.

Furthermore, hardware-specific innovations 
have emerged. For example, resource multiplexing 
algorithms help optimize arithmetic complexity and 
utilization of FPGA lookup tables. Multiplier-less 
operations, such as using XOR-based computations, 
can further reduce hardware demands. Identifying 
and eliminating redundant parameters also decreases 
unnecessary computation, streamlining the network.

Implementations on FPGAs illustrate the 
practical impact of these methods. Xiaokang’s 
work[3], for instance, integrates XOR operations, 
pipelined structures, and intermediate storage to 
achieve notable parallelism and minimize data 
access latency, demonstrating successful deployment 
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on an Artix-7 FPGA at 150 MHz. Similarly, 
Binfeng’s[4] CNN accelerator leverages both 
hardware (Zynq FPGA) and software (ARM Cortex-
A9) co-design, operating at 100 MHz with power 
consumption maintained below 1.6 W.

The presented work specifically focuses on 
Designing a two-layer fully connected neural 
network architecture. Optimizing arithmetic 
operations within this architecture. Carefully 
considering trade-offs related to delay. Applying 
parallelism and intermediate storage logic to 
enhance latency and throughput. Notably, a CNN 
model in this context integrates the Advanced 
Encryption Standard (AES) algorithm for data 
encryption, with the CNN generating the encryption 
key. The complexity of this CNN model has been 
optimized through appropriate training methods. The 
increasing complexity of the fully connected layer 
"as the number of hidden layers increases" also 
underscores the continuous challenge of scaling 
these designs[5].

The introduction of the paper should 
explain the nature of the problem, previous work, 
purpose, and the contribution of the paper. The 
contents of each section may be provided to 
understand easily about the paper.

II. LITERATURE SURVEY

Neural network optimization is a critical 
area of research, particularly focused on balancing 
key performance metrics such as latency, area 
utilization, and computational efficiency. This field 
encompasses various techniques aimed at enhancing 
the overall performance of neural networks. The 
literature highlights three primary methods that have 
garnered significant attention: parallel processing, 
redundancy reduction, and pipelining. Parallel 
processing is widely recognized for its substantial 
ability to enhance computational speed and reduce 
latency in neural networks. Research, such as that by 
Zhang et al., [6], has demonstrated that employing 
parallel architectures can significantly improve the 
processing time of deep learning models, especially 
in applications that demand real-time data analysis. 
While parallel processing effectively reduces 
latency, it often introduces a trade-off, leading to 
increased area requirements. This necessitates a 
careful design balance between speed and hardware 
resource consumption. Redundancy reduction 
addresses the critical issue of redundant weight 
vectors within neural network computations. Studies 
by Chen et al[7]. have delved into methods for 
estimating these redundancies in weight matrices. 
They proposed algorithms specifically designed to 
minimize the number of multiplication operations 
required during the inference phase of neural 
network execution. This approach is highly 

beneficial as it not only reduces computational 
overhead but also improves the overall efficiency of 
the neural network, making it particularly suitable 
for deployment in resource-constrained 
environments.

Pipelining, a well-established technique in 
digital circuit design, has been effectively adapted 
for neural network architectures to boost 
performance. Kumar and Singh [8] highlighted the 
benefits of pipelining in increasing the processing 
speed and throughput of neural networks. However, 
they also emphasized that while pipelining 
significantly improves throughput, it comes with a 
trade-off in terms of latency. Therefore, careful 
design of pipelined architectures is crucial to 
efficiently handle data flow while maintaining 
acceptable latency levels for real-time applications. 
Fully Connected Neural Networks (FCNNs), which 
remain a foundational architecture in deep learning, 
have been a subject of significant optimization 
efforts. Recent advancements have focused on 
optimizing FCNNs for specific applications. For 
instance, Lee et al.[9] proposed a two-layer FCNN 
architecture that ingeniously incorporates both 
redundancy reduction and pipelining techniques. 
Their work showcased significant improvements in 
arithmetic operation efficiency, demonstrating the 
considerable potential for optimizing FCNNs to 
meet stringent delay requirements. The broader 
research, as indicated by Patel et al. [10], 
underscores the necessity of a holistic approach to 
neural network optimization. This framework 
emphasizes that architectural decisions must be 
informed by the specific requirements of the 
application domain. This integrated strategy, 
leveraging parallel processing, redundancy 
reduction, and pipelining, aims to achieve an optimal 
balance between arithmetic operation efficiency and 
delay requirements in neural

III. FCNN

Referencing Figure 1, it depicts the 
architecture of a standard fully connected neural 
network, including an input layer, one or more 
hidden layers, and an output layer. The dimensions 
of the input and output layers are determined by the 
features present in the dataset and the specific nature 
of the desired output. Selecting the number of 
hidden layers, however, presents a nuanced 
challenge. There is no universally optimal choice; 
too few hidden layers may prevent the network from 
capturing underlying patterns, while too many can 
lead to overfitting and unnecessary complexity. 
Striking the right balance between model capacity 
and generalization is essential. For guidance, a 
straightforward mathematical formula is sometimes 
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employed to estimate the appropriate number of 
hidden layers:

n=(m+k)+ln = \sqrt{(m + k)} + ln=(m+k)+l

where mmm is the number of input nodes, k is 
the number of output nodes, and l is a constant 
ranging from 1 to 10. In a fully connected network, 
N is the total number of neurons:

N=m+n+kN = m + n + kN=m+n+k

The total number of weights D required for the 
fully connected neural network with NN nodes is 
given by:

D=mn+nk+n+kD = mn + nk + n + 
kD=mn+nk+n+k

A fully connected (FC) layer in a neural 
network architecture consists of an input layer, one 
or more hidden layers, and an output layer. The 
primary function of FC layers is to extract 
meaningful features from the output of preceding 
convolutional layers and map these features into a 
recognizable data space for classification or 
regression tasks.

The computational complexity of an FC 
layer is heavily influenced by the size and number of 
weight vectors involved. When the individual 
weights are of small magnitude (for example, less 
than 0.1), the resulting multiplication operations 
produce relatively small values, which can simplify 
the computational process and potentially lead to 
hardware-level optimizations. By strategically 
analyzing the magnitude of these weights, it is 
possible to optimize multiplication operations and 
reduce overall computational load.

Fig 1. Fully Connected NN model

Nevertheless, as the number of weight 
vectors increases, the required number of arithmetic 
operations, memory storage elements, and overall 
resource utilization also rise correspondingly. 
Implementing a serial architecture for the FC layer 
can help conserve resources by allowing arithmetic 
units to be reused across multiple operations, albeit 

at the cost of increased computation time or latency. 
To address the trade-off between speed (delay) and 
hardware efficiency (area utilization), hybrid 
methods are often employed, aiming to strike a 
balance that meets both performance and resource 
constraints.

Figure 2 illustrates the configuration of 4 
neurons, each handling 16 inputs and producing a 
single output, denoted as Y. Each neuron is equipped 
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with 16 multipliers, one for each input. The resulting 
products, along with a bias term, are processed by an 
adder array comprising 16 adders, which sums a 
total of 17 values. Each neuron is also associated 
with an activation function, which, in this 
implementation, is realized using a ROM-based 
structure.

For a HL containing four neurons and 16 
inputs, the system requires a total of 64 multipliers, 
64 adders, and four activation functions. The input 
data (X), as depicted in Figure 1, are represented in 
N-bit 2’s complement format, with the most 
significant bit (MSB) indicating the sign and the 
remaining N-1 bits encoding the magnitude. The 
network weights, following training, also use N-bit 
2’s complement representation. Each multiplication 
operation produces a (2N-1)-bit result and requires 
(2N-1) clock cycles to complete. The multiplier 
outputs are accumulated in the adder array, where 
each adder processes two (2N-1)-bit inputs, yielding 
a 2N-bit result.

.

Fig 2: Arithmetic blocks of Fully connected NN hidden layer architecture with
The adder array itself is structured into four 

stages: the first stage contains eight adders, followed 
by four in the second stage, two in the third, and one 
in the fourth. The final stage adder incorporates the 
bias term, resulting in an (8-4-2-1-1) structure. Each 
successive stage increases the output bit width: 2N 
bits after the first stage, 2N+1 after the second, 
2N+2 after the third, 2N+3 after the fourth, and 
finally 2N+4 bits after bias addition. As a result, 
with N-bit inputs, the intermediate output requires 
2N+4 bits for representation. For N=8, this 
corresponds to a 60% increase in bit width across the 
six data path stages (one multiplier stage and five 
addition stages).

The activation function employed is the 
hyperbolic tangent sigmoid (tansig), implemented 
via ROM. The tansig function output ranges from -1 
to +1. For digital implementation, this range is 
divided into 512 samples, each scaled by 256 and 
rounded to the nearest integer. Thus, the tansig 
output for all 512 possible input values is stored as 
N-bit 2’s complement values in ROM.

IV. PROPOSED MODEL

FFNN (Feed-Forward Neural Network) 
architecture is engineered with a clear focus on 
optimizing arithmetic resource utilization. This 
design is organized as a series of interconnected 
stages: beginning with input registers, followed by 
two levels of de-multiplexers, weight registers, 

multipliers, an adder array, a bias adder unit, a 
ROM/LUT stage, and culminating in the output 
register.

The process initiates with a bank of 16 
input registers, each with a data width of N-bits. 



Cioloca Mihaela, al. Int. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 15, Issue 8, August 2025, pp 26-32

www.ijera.com                                  DOI: 10.9790/9622-15082632                                      26 | Page

Data is loaded sequentially, from the topmost to the 
bottom register. The output from each register 
directly interfaces with its respective de-multiplexer 
in the subsequent stage. A control signal, denoted 
‘C’, determines the routing of input data—either 
directly to the multiplier inputs or to the next register 
in the sequence. During the data loading phase, ‘C’ 
is asserted (‘1’), enabling all 16 input values to be 
written into the register array over 16 clock cycles. 
Once loading is complete, ‘C’ is de-asserted (‘0’), 
and the register contents are made available to the 
multipliers for computation. Each neuron within the 
architecture requires 16 weights; thus, for a system 
comprising four neurons, a total of 64 weights are 
necessary. These are stored within a register array of 
64-depth. The loading of weights into the weight 
registers is managed via the control signal ‘D’ for 
the third-stage de-multiplexer. Setting ‘D’ to ‘0’ for 
16 clock cycles facilitates the transfer of 16 weights 
into the weight registers corresponding to each 
neuron. Post-loading, the weights are routed to the 
multiplier inputs, and ‘D’ is set accordingly to 
maintain this connection. On the 17th clock cycle, 
the 16 multipliers are activated to perform the 
necessary multiplication operations.

The resulting products from the multipliers 
are then accumulated using an adder array. Although 
one might expect to require 15 adders to sum 16 
products, the architectural design efficiently 
achieves this operation with just 7 adders, indicating 
a resource-conscious approach to arithmetic unit 
allocation
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Fig 3. Pipelined architecture of single neuron of hidden unit

V.

The presented design offers a notably 
efficient FPGA-based implementation of a 
Feedforward Neural Network (FFNN), with 
substantial reductions in hardware resource 
consumption while preserving computational 
performance. Traditional approaches typically utilize 
16 parallel multipliers within the hidden layer, 
resulting in significant area overhead. In contrast, the 
proposed architecture leverages a pipelined structure 
with only 8 multipliers, coordinated through two-
stage Serial-In Serial-Out (SISO) registers. These 
registers are supplied weights from a 64-depth 
bottom SISO, facilitating alternate weight loading 
and minimizing the number of concurrently active 
multipliers. The multiplication process unfolds over 
two clock cycles, yielding eight partial products per 
cycle, which are subsequently stored in registers V1 
through V16. The summation of these products is 
accomplished by a seven-stage pipelined adder array 
consisting of multiplexers, adders, demultiplexers, 
and registers. Bias values are managed via a 
dedicated FIFO register and integrated during the 
final computation stage. Overall, this configuration 
incurs a latency of 2N + 23 clock cycles, where N 
denotes the number of inputs. Notably, the design 
achieves a 75% area reduction, with only a 24% 
increase in computation delay relative to 
conventional implementations.

A similar optimization strategy is employed 
in the output layer. Each neuron utilizes a compact, 
pipelined configuration, comprising input and weight 
registers, arrays of multipliers and adders, a bias 
FIFO, ROM-based activation function, and output 
memory. To further enhance throughput, the design 
incorporates two parallel pipelined units, each 
responsible for producing eight outputs—enabling 
the simultaneous computation of 16 neuron outputs. 
This parallelization yields an 87.5% reduction in 
area and results in a 33% increase in computation 
delay compared to standard designs. The output 
layer’s latency is measured at 2N + 8 clock cycles.

Overall, the proposed architecture 
effectively balances hardware efficiency and 
processing speed by employing pipelined 
computation, optimized arithmetic units, and 
synchronized memory management. These 
characteristics make it a compelling solution for 
real-time artificial neural network applications on 
FPGA platforms. 

VI. RESULTS AND CONCLUSION:

(a)

(b)

Fig 4.RTL schematic of a) hidden layer and  b) output 
layer

The RTL schematic for both the hidden and output 
layers primarily consists of multipliers and adders, 
organized to process data efficiently. In the output 
stage, Look-Up Tables (LUTs) are utilized, aligning 
with established design practices. As previously 
discussed, the output layer is structured around a 
data path unit featuring multipliers and adders, all of 
which are configured for 10-bit operations. The 
hidden layer outputs 10-bit values, and the output 
layer is correspondingly designed to handle this 10-
bit data width. This ensures that both the multipliers 
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and adders within the data path unit consistently 
support 10-bit processing throughout the 
architecture.

Table 1:  conventional FCN Vs modified FCN 

Parameters

Conventional FCN Modified FCN

Hidden 
unit

Output 
unit

Hidden 
unit

Output 
unit

Latency n+22 2n+23 n+8 2n+8

Multipliers 64 64 8 4

Adders 64 64 8 6

Delay t t t+24% t+34%

Area 100% 100% 25% 12.5%

VII. CONCLUSION

This work introduces a modified Fully Connected 
Network (FCN) architecture, specifically tailored for 
improvements in area efficiency, power 
consumption, and processing speed. The design 
incorporates intermediate memory elements and 
implements pipelining strategies to optimize 
throughput and reduce latency. Integrated data flow 
control logic ensures the synchronization of data and 
weights, which contributes to further latency 
minimization. The parallelized structure of the 
architecture achieves a careful balance between 
resource utilization and computational speed. 
Overall, this approach is highly suitable for high-
speed convolutional neural network (CNN) 
applications and can effectively function as a 
hardware accelerator for both deep neural network 
(DNN) and CNN workloads
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