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ABSTRACT

The present paper deals with the determination of quasi static thermal stresses in a limiting thick circular plate
with internal heat generation subjected to arbitrary heat flux on upper and lower surface and the fixed circular
edge is thermally insulated. Initially the plate is at zero temperature. Here we modify Kulkarni [1]and compute
the effects of internal heat generation and heat supply in terms of stresses along radial direction. The governing
heat conduction equation has been solved by the method of integral transform technique. The results are
obtained in a series form in terms of Bessel’s functions. The results for temperature change, displacement and
stresses have been computed numerically and illustrated graphically.
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I. INTRODUCTION

Progress in the field of air-craft and
machine structures, mainly with gas and steam
turbines and the emergence of new topics in
chemical engineering have given rise to numerous
problems in which thermal stresses play an
important role and frequently even a primary role.
Nowacki [2] has determined the temperature
distribution on the upper face, with zero temperature
on the lower face and the circular edge thermally
insulated. C. M.Bhongade and M.H. Durge [3]
studied an inverse steady state thermal stresses in a
limiting thick circular plate with internal heat
generation.

Most recently C. M. Bhongade and M.H.
Durge [4] considered thick circular plate and discuss
the effect of Michell function on steady state
behavior of thick circular plate, now here we
consider a thick circular plate with internal heat
generation subjected to arbitrary heat flux on upper
and lower surface and the fixed circular edge is
thermally insulated. Initially the plate is at zero
temperature. Here we modify Kulkarni [1] and
compute the effects of internal heat generation and
heat supply on the limiting thick circular plate in
terms of stresses along radial direction. The
governing heat conduction equation has been solved
by the method of integral transform technique. The
results are obtained in a series form in terms of
Bessel’s functions. The results for temperature
change, displacement and stresses have been
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computed numerically and illustrated graphically. A
mathematical model has been constructed with the
help of numerical illustration by considering steel
(0.5% carbon) limiting thick circular plate. No one
previously studied such type of problem. This is
new contribution to the field.

The direct problem is very important in
view of its relevance to various industrial mechanics
subjected to heating such as the main shaft of lathe,
turbines and the role of rolling mill, base of furnace
of boiler of a thermal power plant and gas power
plant.

II. FORMULATION OF THE PROBLEM

Consider a limiting thick circular plate of
radius a and thickness 24 defined by 0 <r <
a,—h <z <h. Initially the plate is at zero
temperature. Let the plate be subjected to a arbitrary
heat flux =f(r,t) prescribed over the upper
surface (z = h) and the lower surface (z = —h).
The fixed circular edge (r =a) is thermally
insulated. Assume a limiting thick circular plate
with internal heat generation is free from traction.
Under these prescribed conditions, the quasi static
transient thermal stresses are required to be
determined.

The  differential  equation  governing the
displacement potential function ¢(r, z, t) is given in
[5] as
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where K is the restraint coefficient and temperature
change 7=T-—T; T; is initial temperature.
Displacement function ¢ is known as Goodier’s
thermoelastic displacement potential.

The temperature of the plate at time ¢ satisfying the
heat conduction equation as follows,
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2
with the boundary conditions

T=4xf(r,t)atz=+1h, 0<r<a
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q(r,z,t) = §(r —ry)sin(Bpz) (1 —e™), 0 <
n<a
Q)

and the initial condition

T=0at t=0
(6)

where « is the thermal diffusivity of the material of
the plate, £ is the thermal conductivity of the
material of the plate, g is the internal heat generation
and §(r)is well known dirac delta function of
argument 7.

The Michell’s function M must satisfy

V2V2M =0
(7
where
2_ 0% (10 0%
vi= ar? +r or  9z2
(3)

The components of the stresses are represented by
the thermoelastic displacement potential ¢ and
Michell’s function M as
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(12)

where G and v are the shear modulus and Poisson’s
ratio respectively.

For traction free surface stress functions

Oy =0, =0atz=nh

(13)

Equations (1) to (13) constitute mathematical
formulation of the problem.

II1. SOLUTION

To obtain the expression for temperature T (7, z, f),
we introduce the finite Hankel transform over the
variable r and its inverse transform defined by [6]
as

T(Bpm, 2, t) = foar Ko(Bp,7) T(r,z,t) dr

(14)
T(r,z,t) = Ym=1Ko(Bm7) T(Bm, 2, t)
(15)
where Ky (B, 7) = g Z’E‘g—zg
(16)
B1,B, ..... are roots of transcendental equation
J1(Bma) = 0
7
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where [, (x) is Bessel function of the first kind of and applying Laplace transform and its inverse by
order n. residue method successively to the Eq. (2), one

] ) ) obtains the expression for temperature as
On applying the finite Hankel transform defined in

the Eq. (14), its inverse transform defined in (15)

- o V2 Jo(Bm™)
T(r,zt) = Xm=1 Xn=1 JZ(BZM

X {(ﬂ) [sin[ g (z+h)] + sin| % (z—- h)]] g(t)

2(-1)" h?
+ [Za;mz + 1—260:;,“2 + ZaB:;Z(:z:;;—n] “DmSi‘;{(ﬁmz) } (18]
where
_ Y270Jo(BmTo)
™ a Jo(Bma)
g = fje* oo e

2
e u e—zaﬁm u

aDmym . 1
x [ k sin(Bmh) <2aﬁm2 + 1-2aBm> + 2B (2afm?-1) F B, w)l du

Since initial temperature T; = 0,7 =T — T;
=T (219)
Michell’s function M

Now let’s assume that Michell’s function M, which satisfy Eq.(7) is given by

— ﬁ © o Jo(BmT)
M= (2K) Ser B 205 £ (1, 0)

(20)

where B,,,, and C,,, are arbitrary functions, which can be determined by using condition (13).

Goodiers Thermoelastic Displacement Potential ¢ (7, z, t)

Assuming the displacement function ¢ (r, z, t) which satisfies Eq. (1) as

a Jo(fma) Th?

e v VZJoBmr) [( —nma 1
¢(r: z, t) =K Zm:l Zn:l {(2(_1)n hZ) (ﬁm2+n2n2>

X [sin[ % (z + h)] + sin| % (z - h)]]g(t)

_ (. aDm 1 et e~2aBm’t ,
( 2kBm? ) [mﬁmz + 1-2aBm? + 2aBm? (2afm?—1) sin(Bmz)
(21)

Now using Egs. (18), (20) and (21) in Egs. (9), (10), (11) and (12), one obtains the expressions for stresses
respectively as
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X [217 sinh(B,,z) — B,z cosh (,Bmz)] (25)

In order to satisfy condition Eq. (13), solving Egs. (22) and (25) for B,,,, and C,,, one obtains

{[ 2 Sin(Byh) sinh (Bh) | [ﬂm’—“*m)) ~Jo (ﬁma)]

4h?

1 ot e—20Bm>t
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Bm+ 4h2

-1 D J1'(Bma) 1 -t —2aBm>t
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where

R = J,'(Bm@) B F (B, t) sinh (Bnh) [2v sinh(Bnh) — Bmh cosh (Byh)]

20 B Jo(Bma ) cosh(Bnh) + J1' (Bma) F (B, t)]

+ sinh (B, h) [ X (B cOSh(Bmh) + B? h sinh(B,h))

IV. SPECIAL CASE AND NUMERICAL Thermal conductivity k= 53.6 W/m K,
CALCULATIONS Poisson ratio 9 = 0.35,
. Young’s modulus E = 130 G pa,
Setting Lame constant y = 26.67,

Coefficient of linear thermal expansion

_ -t
fr,t) = 6(r—m)(1—e™) a =13 x 10_61/1{
a=2m, h= Roots of Transcendental Equation

0.2000000000000000000001m, r, = 1m,t = The p; = 1.9159, B, = 3.5078, B3 =
2 sec. 5.0867, B, = 6.6618, s = 8.2353, B, =

9.8079 are the roots of transcendental equation
where 6(r) is well known diract delta function of J1(Bma) = 0. The numerical calculation and the
argument r. graph has been carried out with the help of

mathematical software Mat lab.
Material Properties

The numerical calculation has been carried out fpr V. DISCUSSION

steel (0.5% carbon) limiting thick circular plate with

the material properties defined as In this paper a limiting thick circular plate
Thermal diffusivity o = 14.74x 107 m2s71, with internal heat generation is considered and
Specific heat ¢, = 465 J/kg, determined the expressions for temperature,

displacement and stresses. We compute the effects
of internal heat generation and heat supply in terms
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of stresses along radial direction by substituting g = by considering steel (0.5% carbon) limiting thick
0 in Egs. (18), (21), (22), (23), (24), (25), (26) and circular plate with the material properties specified
(27). We compare the results for ¢ = 0 and q # 0. above.
As a special case mathematical model is constructed
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Fig. 1 Temperature t for (¢=0). Fig. 2 Temperature T for (g#0).
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Fig. 3 The displacement ¢ for (¢= 0). Fig. 4 The displacement ¢ for (g+0).
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Radial stress vs rfor ¢=0
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Fig. 5 Radial stresses L for (g=0).
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Fig. 7 Angular stresses G—Iie for (¢=0).

SmazzK vs 1 for g=0
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Fig. 9 Axial stresses ~2% for (q = 0).
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Fig. 6 Radial stresses L for (g+0).
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Fig. 8 Angular stresses G—I(ie for (g=#0).
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Fig. 10 Axial stresses ~2 for (g #0).
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Fig. 11 Stress function % for (¢g= 0).

From fig. 1 and 2, it is observed that due to internal
heat generation in limiting thick circular plate
temperature increases along radial direction. Heat
supply shows a negligible effect at the point of heat
supply along radial direction.

From fig. 3 and 4, it is observed that the internal
heat generation and heat supply shows a negligible
effect on displacement in limiting thick circular
plate at the point of heat supply along radial
direction.

From fig. 5 and 6, it is observed that the internal
heat generation and heat supply develops tensile
radial stress X towards the lateral surface of

limiting thick circular plate along radial direction.

From fig. 7 and 8, it is observed that the internal
heat generation and heat supply develops tensile
angular stress 222 towards the lateral surface of

limiting thick circular plate along radial direction.

From fig. 9 and 10, it is observed that the internal

heat generation and heat supply develops tensile
axial stress % towards the lateral surface of limiting

thick circular plate along radial direction.

From fig. 11 and 12, it is observed that the internal
heat generation and heat supply develops

infinitesimal stress % towards the lateral surface of

limiting thick circular plate along radial direction.
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Sigmarz/K values

Sigmarz/K vs r

[-values

Fig. 12 Stress function G—Ir: for (g# 0).

VI. CONCLUSION

We can conclude that due to internal heat generation
in limiting thick circular plate temperature increases
along radial direction. Heat supply shows a
negligible effect on temperature, displacement at the
point of heat supply in limiting thick circular plate
along radial direction. The internal heat generation

T

and heat supply develops tensile radial stress GK ,

O . G
angular stress %, the axial stress % and the stress

Orz

towards the lateral surface of limiting thick

circular plate along radial direction.

The results obtained here are useful in engineering
problems particularly in the determination of state of
stress in a limiting thick circular plate and base of
furnace of boiler of a thermal power plant and gas
power plant.
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