
Abdelkarim J. Ibreik.et.al., International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 4, April 2025, pp 64-74

www.ijera.com DOI: 10.9790/9622-15046474 64 | Page

Using ESP32 microcontroller in the field of Training and

Industrial control process

Abdelkarim J. Ibreik * and Saad S. Alahmad **
* Eng. Abdelkarim J. Ibreik, Electrical Power Department, Public Authority for Applied Education and

Training ** Eng. Saad S. Alahmad, Electrical Power Department, Public Authority for Applied Education and

Training.

Abstract

The importance of applying new training techniques in the field of industrial process control and instrumentation

motivates trainers to find different training approaches to simplify technical concepts and attend better graduation

outcomes. For these reasons, multi practical applications related to different industrial process control systems

were created to enrich knowledge and improve the quality of graduated students. Therefore, a proper controller

using standard input range of analogue inputs/outputs and digital inputs/outputs were used to monitor different

kinds of smart sensors and control actuators. The simplicity of implementations will encourage trainees to apply

more experiments and gain more experience.

This paper focused on how to use the ESP32 microcontroller with OLED in the application of industrial process

using simple connections for smart sensors such as motion, fire detector and level process sensors.

The challenge was divided into two parts, firstly software, how to write the codes, gathering the libraries and

programing software to monitor more than one process in a small controller with small OLED screen.

Secondly, how to create a simple shield board to fix your components and devices on it.

 This board should be self-tested with built is DI (Digital Input), DO (Digital Output), AI (Analog Input), AO

(Analog Output) to test the program before connecting any sensor.

Keywords: Industrial Control, Training Process, Control systems, microcontrollers, Sensors, Actuators, Kuwait

Public Authority for Applied Education and Training.

--- ----------

Date of Submission: 08-04-2025 Date of acceptance: 19-04-2025

--- ----------

I. Introduction
Smart Control systems are witnessing a

remarkable development with the advancement of

modern technology, as it has become necessary to use

smart technologies to improve the performance of

process control and meet the development of

industrial growth. [4]

The spread of microcontrollers, which are

used by hobbies to create simple applications and

projects guide us to start thinking about how to use and

get benefit from these controllers in the field of

training in industrial control systems and building

automation systems. Besides that, the availability of

standard smart sensors with different functions makes

the development of small control systems fast and

easy.

The design in divided into 4 section, firstly

gathering the required hardware components,

secondly programming the software into

microcontroller using ESP32 WROOM with OLED

and Arduino IDE platform, thirdly connecting the

smart sensors into the shield which designed for this

purpose and finally compile and run the software to

execute different scenarios, moreover meeting the

required purpose of this research and verify that this

small OLED can monitor and control the LEVEL

Process along with different process at the same time.

An alarms and output control can be managed

automatically to control the process variable.

The importance of downloading proper

libraries which are needed for programming purposes

to identify and connect the output devices OLED ,

LCD and different applications.

The pin configuration of ESP32 is important

for connections. to decide how to make your

connections for input output ports , the same is shown

in the Figure no.1

 Fig.1:Photo of ESP32 with OLED and pin coding

RESEARCH ARTICLE OPEN ACCESS

Abdelkarim J. Ibreik.et.al., International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 4, April 2025, pp 64-74

www.ijera.com DOI: 10.9790/9622-15046474 65 | Page

There are different functions between the

GPIO pins which enable you to choose and connect

your analogue and digital inputs and outputs of your

experiment. See figure No.2

By Recognize the function of each pin and the

guiding libraries, The trainees will be able to

understand the techniques of creating simple control

circuits using small controllers with the shield

designed for this purpose.

the main purpose of using ESP32 controller is

summarized by:

1- Differentiate between different kinds of

controller input output pins functions for

future connection of processes.

2- Hands-on close loop control system with

basic connections.

3- First step toward Understanding the process

control, operation and connection of large-

scale control systems used t in the field of

instrumentation.

4- The ability to recognize and solve the

troubles by simple way of tracking the faults.

Fig.2: ESP32 pin configuration

II. Literature Review

Any control system consists of three major

components which are input, output and process,

whereas the output is considered the most important

part in the control systems to complete the control

system.

Four major items need to be fulfilled to

complete the control process:

1- Setpoint value: where the operator set the

desired value of the process to maintain. For

example, adjusting the required room

temperature to 20 degrees centigrade.

2- Measuring process values continuously.

3- Comparing both Setpoint value with the

Measured value to get the Process Error.

4- Execute the proper command output to

correct the error.

2.1 Control Systems

Measuring process output is considered one

of the most important parts for the success of any

control system, therefore, precise sensors with

accurate readings is preferable. Accuracy, operation

range of sensors along with installation media play an

important role in deciding the correct type of sensor

you need to use.

Some measurements you need to monitor

their results only for information and take necessary

action such as weather forecast, measuring speed of

winds, pressure, humidity and temperature.

other measurements you need to use in

controlling your process, for example the

cooling/heating system in our houses. In this type of

system, we use a close loop control system with

negative feedback of the measured variable. In

general, the result of the process is going to be

compared with the setpoint as explained before.

 Control systems can be classified into two

types: open loop and close loop control systems, each

kind having its own application and features. Some

applications are used for monitoring purposes only, by

updating the status of process variables by continues

measurement such as monitoring Room Temperature

while heater is ON. Other applications use measures to

control the Room Temperature not to go beyond the

limits and keep warm weather in winter.

The thermostat was used for sensation

purposes and controlling the process, while no adays

microcontrollers are used along with electronic

semiconductors sensors to accurate results.

2.1.1 Open-Loop Control Systems

The open loop control system block diagram

shows that the output-controlled variable has a

measurable results, not used as feedback to close the

loop, where it was applicable for controlling the

process see Figure. No.3

Fig.3: A block diagram of control system

This kind of control is considered simple and

easy for some applications where we don’t need much

to worry about the deviation in the output-controlled

variable with desired value in the output. Normally

this kind of control needs great attention from

operators and in some cases considered dangerous,

moreover waste energy without getting benefit from

process.

In the other hand, the close loop control

system takes the measurable results as an indication

for the success of process completion. Using

continuous monitoring for the output variable and

Abdelkarim J. Ibreik.et.al., International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 4, April 2025, pp 64-74

www.ijera.com DOI: 10.9790/9622-15046474 66 | Page

comparing this information with a reference value (set

point) for figure out the error of the process. See figure

no. 4.

Fig.4: close loop control system

2.1.2 Closed-Loop Control Systems

In the closed loop systems, the measured

variable will be transmitted to the process controller to

calculate resultant error, a correction for the output

will be taken as an order or command for actuators to

complete the control action, for example controlling

the servo-valves or solenoid valves. See figure no.4

2.1.3 Feedback Control theory

In general, the control law of Feedback is defined by

the relationship between the actual measured value

and desired value of a process parameter. See figure

no.5

Fig. 5: General Feedback Diagram

2.1.4 Transfer Functions
A transfer function (TF): is considered as a

mathematical relationship between the input and

output of a control system component, expressed as

Transfer Function describe the condition of

the system in time-dependent and steady state and both

have different characteristics, while TF at steady state

is called Gain expressed as

There are two periods in control systems, the

first one is called Transient period where Process

variable still not reach the constant value, such as a

motor example a huge current needs to start up

(Transient period) after certain period move to regular

steady current (Steady-State period).

The potentiometer is a simple example for the

TF and is used in different applications such as level

the potentiometer of 10K ohms used with constant DC

supply of 3.3 V regulated by the microcontroller board

for this purpose. Accordingly, the percentage of the

level will be converted into voltage and this value will

be converted into digital number ADC . finally, we

figure out how may volt need for each 1% of level.

The output can be calculated directly from TF, for

example at 100%

Output= TF x Input= 0.0333V/1% x100% =3.3 V.

In this case of study, the sensor output

(transmitter) will use the range 0-3.3V and not 4-

20mA (0.4V to 2.0V) as used in actual industrial

standard range, while the input of the level varies from

0-100%

2.1.5 Analog and digital Pinout

Microprocessors have different types of pins

function; these pins can be used either for inputs or

outputs. Or can be used for analogue or digitals

signals.

Figure no. 6 shows the importance of using

both types of conversion in control systems.

Fig.6: Using ADC and DAC with digital controller

2.2 Introduction to ESP32

ESP32 is a system on a chip that integrates the

following features:

1. Wi-Fi (2.4 GHz band)

2. Bluetooth.

3. Dual high performance Xtensa® 32-bit LX6

CPU cores.

4. Ultra Low Power co-processor.

5. Multiple peripherals

The ESP32 peripherals include:

I. 18 Analog-to-Digital Converter (ADC)

channels

II. 3 SPI interfaces

III. 3 UART interfaces

IV. 2 I2C interfaces

V. 16 PWM output channels

VI. 2 Digital-to-Analog Converters (DAC)

VII. 2 I2S interfaces

VIII. 10 Capacitive sensing GPIOs

https://randomnerdtutorials.com/esp32-adc-analog-read-arduino-ide/
https://randomnerdtutorials.com/esp32-adc-analog-read-arduino-ide/
https://randomnerdtutorials.com/esp32-spi-communication-arduino/
https://randomnerdtutorials.com/esp32-uart-communication-serial-arduino/
https://randomnerdtutorials.com/esp32-i2c-communication-arduino-ide/
https://randomnerdtutorials.com/esp32-pwm-arduino-ide/
https://randomnerdtutorials.com/esp32-touch-pins-arduino-ide/

Abdelkarim J. Ibreik.et.al., International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 4, April 2025, pp 64-74

www.ijera.com DOI: 10.9790/9622-15046474 67 | Page

The ADC (analogue to digital converter) and DAC

(digital to analogue converter) features are assigned

to specific static pins. However, you can decide

which pins are UART, I2C, SPI, PWM, etc – you just

need to assign them in the code. This is possible due

to the ESP32 chip’s multiplexing feature.[5]

The detailed pin configuration of the ESP32 is

explained in figure no.7

Fig.7: pin configuration of ESP32

2.2.1 Definitions Terminologies used in ESP32

ESP32: is a series of low-cost, low-power system-on-

chip microcontrollers with integrated Wi-Fi

and dual-mode Bluetooth capabilities.

Developed by Espressif Systems.

RTC : Real Time clock

GPIO: General-purpose Input/Output

RTC-GPIO: Real Time clock-GPIO

HSPI CLOCK: Clock signal in High-Speed Serial

Peripheral Interface (HSPI)

communication.

ADC: Analog to Digital Converter

DAC: Digital to Analog Converter

UART: universal asynchronous receiver / transmitter.

See figure no.8

Fig.8 : UART connection diagram

UART TX: UART Transmitter

UART RX: UART Receiver

I2C: I²C means Inter Integrated Circuit (it's

pronounced I-squared-C), and it is a synchronous,

multi-master, multi-slave, half-duplex communication

protocol. I2C uses two bidirectional open-drain lines:

serial data line (SDA) and serial clock line (SCL),

pulled up by resistors. You can connect: multiple

slaves to one master: for example, your ESP32 reads

from a BME280 sensor using I2C and writes the

sensor readings in an I2C . Typically, an I2C slave

device has a 7-bit address or 10-bit address. ESP32

supports both I2C Standard-mode (Sm) and Fast-mode

(Fm) which can go up to 100 kHz and 400 kHz

respectively

SPI: commonly used in computers and embedded

systems to facilitate short-distance communication

between a microcontroller and one or more peripheral

integrated circuits (ICs) see figure no. 9

Fig.9: connection diagram between SPI controller

and peripherals

PWM: Pulse Width Modulation, A method of

encoding information based on variations of the

duration of carrier pulses. Also called pulse duration

modulation (PDM).

2.3 Signaling and signal conditioning

The signaling depend on the sensor transmitter or

actuator type, Some of them use I2C protocol others

use SPI. Whereas some inputs used Analogue values

in the range from 0V -3.3V or Digital values.

 In some cases, we need to use signal amplifier or

converter such as

1- Current to pressure converters (I/P)

2- Pressure to current converters (P/I)

3- Current to voltage converter (I/V)

2.4 Input devices (Sensors and Transmitters)

The sensing device converts a physical quantity (e.g

level, flow rate, pressure, etc.) into electrical voltage

and current signal.

There are a lot of sensor types that you can use for your

research or project of Arduino / esp32 controllers. To

get the required measurements from Sensors we must

verify the following:

1- The connection of the PINs were done in the

correct location for the signal output and the

power supply.

2- Install the necessary library for that sensor in

software

Abdelkarim J. Ibreik.et.al., International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 4, April 2025, pp 64-74

www.ijera.com DOI: 10.9790/9622-15046474 68 | Page

3- Define pin connected to that sensor which will be

used as input signal

4- Display results on the screen the way you find

suitable for your case and write the proper

commands.

If we take a simple sensor with simple Winston

bridge such as the float sensor with variable

resistor

The sensing device will convert the physical

movement of level into electrical signal. and by

increasing the level of liquid, the electrical current

will be directly proportional to the rotation of

potentiometer (fixed in the pulley), and the pulley.

see illustrated diagram in. Figure no.10

Fig.10: Potentiometer sensor assembly

2.6 Controller
The controller is a microprocess based device that

handles reading the data from input devices and

release commands to control the process, the most

important part of using the controller is how to

translate your thoughts into command lines, write in c-

language and compile to load it to the controller

You need to use IDE arduino-1.5.8 platform.[6]

III. The Methodology

Introduction

Before starting to implement this case of

study, we gather the devices and components that we

want to use in this experiment. Such as buying ESP32

controller and resistors, variable resistors, connection

wires, LEDs, buzzer and breadboard.

The computer was prepared to upload the

designed software to the controller by installing the ide

Arduino. The research execution was done different

steps to complete the research requirement.

The procedure of execution

The research has dual aims

1- Execution of practical monitoring and control

of process using ESP32 with OLED

2- Training students in how to use simple

components in industrial process control.

 Steps of execution are summarized by the

following steps:

A- Hardware Design and Installation of

hardware

B- Software Design and Testing the program

C- Finally running the control system

A- Hardware Design

Identify the pin configuration of ESP32 to start

your plan. See Figure. No.

Fig. : ESP32 pin configuration

Decide which pin you will connect your sensor

output or component to the controller.

Lower side connections D34=S.P. (AI), D32=

PVar(AI), D26= LEDBoard Process AO2,

D14=PUTTON_PIN1(DI), D12= LED1(DO),

D13=BZR(DO)

See figure no. 11 for the connection diagram for

the project

Fig. 11: connection diagram with esp32

In this figure the process value taken from LDR which

give an analogue output

B- Software Design

1- Design the dialogue and scenario of handling

the process monitoring and control.

2- Design the timing of displaying the process

screen page

3- Displayed Process data on the OLED screen

Process Data

P.V.= 24%

S.P.= 50 %

Error= -26%

Abdelkarim J. Ibreik.et.al., International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 4, April 2025, pp 64-74

www.ijera.com DOI: 10.9790/9622-15046474 69 | Page

“ display.clearDisplay();

display.setCursor(0,0); display.display();

display.println(" Process Data");

display.print("P.V.= ");

display.print(POT_OUT); display.println("

%"); display.display(); display.print("S.P.=

"); display.print(SP); display.println(" %");

display.display(); float POT_Diff =

POT_OUT - SP ; display.print("Diff.= ");

display.print(POT_Diff); display.println("

%"); display.display();

delay(3000);

”

4- Display Process Status on the OLED screen

(High Warning)

“ if (POT_OUT >SP) {

digitalWrite(PIN_LED2,HIGH);

// turn LED on:

display.println("Process Status");

display.println(" PV --> High");

display.clearDisplay();

display.setCursor(0,0); “

5- Display Process Status on the OLED screen

(Low Warning)

if (POT_OUT <SP) {

digitalWrite(PIN_LED2,HIGH); // turn

LED on:

display.println("Process Status");

display.println(" PV --> Low");

display.clearDisplay();

display.setCursor(0,0);

6- Design the SCREEN output streaming for the

process value on the OLED SCREEN

See figure no.12

Fig.12: Real Time Streaming

“ // start Process Trends view

display.clearDisplay(); display.display();

display.setCursor(0,0); display.println("Push button

for 3 sec"); display.print (" Process Trends ");

display.display(); delay(3000);

display.clearDisplay();

display.display();display.setCursor(0, 0); buttonState

= digitalRead(BUTTON_E); while(buttonState ==

HIGH){ int Zi = 123;

// if (buttonState == HIGH) {

digitalWrite(PIN_LED1, HIGH);

display.clearDisplay(); display.display();

display.setCursor(0,0); display.print("Process Trends-

");display.print(SP); display.drawRect(3, 9,123, 23 ,

WHITE); // Draw Rectangle

int SP_G=SP/100*21; display.drawLine (3 ,30-

SP_G , 123, 30-SP_G , WHITE); for (int b = 0; b <

Zi; ++b) { int POT_Val = analogRead(PIN_VAR);

float POT_OUT = (POT_Val * (ADC_VREF_mV /

ADC_RESOLUTION) / 33); float R2 = POT_OUT

; Serial.println(R2); float R3=R2/100*21;

display.drawLine (3 ,15 , 4, 15 , WHITE);

display.drawLine (3 ,20 , 5, 20 , WHITE);

display.drawLine (3 ,25 , 4, 25 , WHITE); // full

scale 100 you can see % bars 25,50 ,75

 // display.drawLine (3 + b , 30 , 3 + b, 30-R3 ,

WHITE); // full scale 100 you can see bars

display.drawLine (3 + b , 30-R3 , 3 + b, 30-R3 ,

WHITE); // full scale 100 you can see bars

display.display(); delay(100);

 } buttonState = digitalRead(BUTTON_E);

Process status

P.V High

Process status

P.V Low

Abdelkarim J. Ibreik.et.al., International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 4, April 2025, pp 64-74

www.ijera.com DOI: 10.9790/9622-15046474 70 | Page

 }”

7- Running ide Arduino software in your

computer. And connect esp32 controller to

USB port, define the controller to ide

software and select the connected port.

8- Program your software and select the right

libraries for the simplicity of your

programming. Writing the software in c

language need experience and skills, in

addition to that a knowledge in defining each

type of numbers, variable, text is essential for

format the output shape.

For programming purposes, You need to

follow the steps of writing the algorithm of

the program and do some calculations. Refer

to site [6.]

There is main statements that have to be there

in your programming:

1- void setup: need to define the pins as an

input or output.

2- Void loop: need to create a loop of

operation that repeated continuously.

9- Load your software after compiling to the

controller and run the software to check if

there is an error. Appendix[1]

10- Placing your component in breadboard,

making the connections and wiring and run

the controller to test your software in a simple

method.

11- Finally creating your own printed circuit

board, fixing your components as a final

stage of project.

 In this research we connect the Var. Resistor as

an input for the process variable to check that the

results is accurate.

It is an attractive project that makes your setup for

Setpoints easy, through Var. Resistor, without the

need to rewrite the value of S.P. and upload the

software.

IV. Discussions
4.1 Experiments and Technical works

This paper concentrates on how the trainer gain

experience and improve his skills in his career, in the

instrumentation field, by involving in the projects of

Arduino or other controller. And this will benefit in

many ways:

1- Understanding the control theories

2- Compare different sensors and actuators

signals of measurements and control

respectively.

3- Using the controller for Smart building or

industrial control.

4- Motivate the trainees for deep study and

understanding for solving hardware and

software problems.

4.2 Experiment Results

As unexpected results might you get from the output

device. These results make your work more difficult

and additional efforts need to be exerted to solve the

problems whether it was from the hardware or

software. Fulfilling the planned scenarios and

expected results will force you to have more

concentration in the execution. In this research, the

output results of the process appear at the oled screen,

and the alarms appear at LED lights with sound alarm

by Buzzer. Moreover, controlling the devices and

actuators are executed by electronic switch or Relays.

The control system response was tested for the

purpose of applying the necessary adjustments and

calibration before running, and to confirm satisfaction

of the output results. This work takes time to get final

and fine adjustment. Once work is completed and

running, the operation of controller and applying the

process will be easy.

 The output of the process changed as the input of the

sensor changed. The open loop control system and

close loop control system can be applied in this project

by simple program modifications.

The input value changes between 0 Vand 3.3 V, and

the same converted into 4049 bits (Digital numbers).

For example, the detected high intensity of light by

LDR board produce 3.3 V. and converted by ADC to

bits and displayed in Percentage 100%.

The controller was tested under different setting values

and conditions. The output results were read from

OLED Screen , recorded in the table and note the

sound alarm (Buzzer) and Light alarm

It is to be noted that the digital output of the alarms can

be occupied to control the actuators or relays to have

close loop control system. Refer to Table no.1: Open

Loop Control - System Response and Results

V. Results of Discussion
Base on the steps of execution and the results

which discussed in previous sections, we notice that

the analogue input of any kind of process (Variable

resistor used for Level measurement / Fire detection /

Proximity / speed …etc.) can be adapted to the

microcontroller of ESP32 by only changing the name

of process. The execution of the process was

simplified as much as possible to reach the target of

applying industrial process by using small controllers.

Following such experiments will guide the fresh

trainees to create their own projects and have a better

career in their future and improve the skills of tracing

the hardware and software Faults and errors.

Abdelkarim J. Ibreik.et.al., International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 4, April 2025, pp 64-74

www.ijera.com DOI: 10.9790/9622-15046474 71 | Page

VI. Conclusion

 This paper shows that a practical part in

experiments is considered a vital part for

understanding the control theories which been given in

lectures, realizing that there is no experiment free of

faults and troubles and needs to be rectified and tuned

contentiously.

 The need to apply pre-defined steps for

software programming is important for starting the

work, but it is not enough to complete your work.

Simplifying work and dividing into parts make the

execution uncomplicated and basic. The research

thesis should be able to explain the combined work

between theories and experimental results and record

the behavior of the system under different

circumstances and conditions.

This research gives good knowledge about

actual control systems and advice technical staff to put

their hands on the practical work to fulfill their

industrial projects, furthermore also applying more

advanced projects using Bluetooth and Wi-Fi and

sharing their knowledge and experiences with others.

References

Books and reference manuals

[1.] PROCON Level, Flow & Temperature

Process Control Trainers Reference Manual

38-001-3, Feedback Instrument Limited,

http:www.fbk.com

[2.] PROCON Process Control Trainers Level,

Flow & Temperature 38-901-M, Feedback

Instrument Limited, http:www.fbk.com

[3.] Feedback equipment, Instrumentation

Laboratory, Paaet, Higher Institute of Energy.

Researches

[4.] Fhaid Fahad Alrashidi., International Journal

of Engineering Research and Applications

www.ijera.com ISSN: 2248-9622, Vol. 15,

Issue 4, April 2025, pp 10-28

Internet

[5.] ESP32 Pinout Reference: Which GPIO pins

should you use? | Random Nerd Tutorials

[6.] Getting Started with Arduino | Arduino

Documentation

Abdelkarim J. Ibreik.et.al., International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 4, April 2025, pp 64-74

www.ijera.com DOI: 10.9790/9622-15046474 72 | Page

Appendix

Table 1: Open Loop Control - System Response and Results

Results of different Setpoints and output readings
Process tank used for Level measurement and control

Sound Alarm

Buzzer

Red light

Alarm

LED

Output Results

OLED Screen

Process

Value

measuremen

t

Setpoin

t

Case

no.

ON OFF

20% 50% 1

OFF OFF

50% 50% 2

ON ON

70 50% 3

ON OFF

20% 30% 4

ON ON

50% 30% 5

ON ON

70 30% 6

Appendix no.1

Programming statements used in this research

 // \\ Industrial Process Control //

 // continuous reading from process sensor (potentiometer)

// use potentiometer with variable resistor (POT.) for setting the value of S.P. = set point set

 float SP2 = analogRead(SP1);

 float SP= SP2/4095*100;

 //float SP = analogRead(SP1)/4096*100;

 display.setTextSize(0);

 display.setCursor(0, 0);

 display.println(" Process Measure");

Abdelkarim J. Ibreik.et.al., International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 4, April 2025, pp 64-74

www.ijera.com DOI: 10.9790/9622-15046474 73 | Page

// Draw Rectangle

 display.drawRect(3, 9, 103, 15 , WHITE);

display.drawLine (3 +25,9 , 3 +25, 10, WHITE); display.drawLine (3 + 50,9 , 3 + 50, 11 ,

WHITE);

 display.drawLine (3 +75,9 , 3 +75, 10, WHITE);

 display.drawLine (3 +25,22 , 3 +25, 22, WHITE); display.drawLine (3 + 50,22 , 3 + 50, 21,

WHITE);

 display.drawLine (3 +75,22 , 3 +75, 22, WHITE);

 display.display();

 delay(1);

 display.println(" ");

 display.print(" ");

 int y = 100;

 int POT_Val = analogRead(PIN_VAR);

 float POT_OUT = (POT_Val * (ADC_VREF_mV / ADC_RESOLUTION) / 33);

// View the output by external 5LED Moniter

 analogWrite(DAC_CH2, POT_OUT);

 for (int r = 0; r <= y; ++r) {

 if (r <= POT_OUT) {

 display.drawLine (3 + r, 9 , 3 + r, 22, WHITE);

 display.display();

 delay(0);

 } else {

 }

 }

 display.println(""); display.print(" "); display.print(POT_OUT); display.println("

%");display.display();

 delay(5000);

 display.clearDisplay(); display.setCursor(0,0); display.display();

 display.println(" Process Data");

 display.print("P.V.= "); display.print(POT_OUT); display.println(" %");

 display.display();

 display.print("S.P.= "); display.print(SP); display.println(" %");

 display.display();

 float POT_Diff = POT_OUT - SP ;

 display.print("Diff.= "); display.print(POT_Diff); display.println(" %");

 display.display();

 delay(3000);

 if (POT_OUT <SP) {

 // turn LED on:

 digitalWrite(PIN_LED2,HIGH);

 Serial.println("PV --> Low"); lcd.println("PV->Low");

 display.clearDisplay();

 display.setCursor(0,0);

 display.println("Process Status"); display.println(" PV --> Low");

 display.display();

 delay(2000); // display.clearDisplay(); display.setCursor(0,0);

 }

Abdelkarim J. Ibreik.et.al., International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 4, April 2025, pp 64-74

www.ijera.com DOI: 10.9790/9622-15046474 74 | Page

 if (POT_OUT >SP) {

 // turn LED on:

 digitalWrite(PIN_LED2,HIGH);

 Serial.println("PV --> High"); lcd.println("PV->High");

 display.clearDisplay();

 display.setCursor(0,0);

 display.println("Process Status"); display.println(" PV --> High");

 display.display();

 delay(2000); // display.clearDisplay(); display.setCursor(0,0);

 }

 digitalWrite(PIN_LED2,LOW);

 // start Process Real time Streaming

 display.clearDisplay(); display.display(); display.setCursor(0,0);

 display.println("Push button for 3 sec");

 display.print (" Process Trends ");

 display.display();

 delay(3000);

 display.clearDisplay(); display.display();display.setCursor(0, 0);

 buttonState = digitalRead(BUTTON_E);

 while(buttonState == HIGH){

 int Zi = 123;

 // if (buttonState == HIGH) {

 digitalWrite(PIN_LED1, HIGH);

 display.clearDisplay(); display.display(); display.setCursor(0,0);

 display.print("Process Trends-");display.print(SP);

 display.drawRect(3, 9,123, 23 , WHITE); // Draw Rectangle

 int SP_G=SP/100*21;

 display.drawLine (3 ,30-SP_G , 123, 30-SP_G , WHITE);

 for (int b = 0; b < Zi; ++b) {

 int POT_Val = analogRead(PIN_VAR);

 float POT_OUT = (POT_Val * (ADC_VREF_mV / ADC_RESOLUTION) / 33);

 float R2 = POT_OUT ;

 Serial.println(R2);

 float R3=R2/100*21;

display.drawLine (3 ,15 , 4, 15 , WHITE);display.drawLine (3 ,20 , 5, 20 ,

WHITE);display.drawLine (3 ,25 , 4, 25 , WHITE); // full scale 100 you can see % bars

25,50 ,75

 // display.drawLine (3 + b , 30 , 3 + b, 30-R3 , WHITE); // full scale 100 you can see bars

 display.drawLine (3 + b , 30-R3 , 3 + b, 30-R3 , WHITE); // full scale 100 you can see bars

 display.display();

 delay(100);

 }

 // }else{}

 buttonState = digitalRead(BUTTON_E);

 }

 delay(1000);

 display.clearDisplay(); display.setCursor(0, 0); display.display();

