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Abstract:

Solar photovoltaic (PV) systems operating under Partial Shading Conditions (PSC) exhibit multiple local maxima
on the power—voltage curve, causing conventional maximum power point tracking (MPPT) methods to suffer
from slow convergence or steady-state oscillations. In this paper, a reliable and dynamic MPPT—inverter control
architecture is proposed via reinforcement learning (RL) to have both partial shading conditions -robust operation
under severe disturbances and maximum power generation. The architecture embeds an RL-trained MPPT agent
with cumulated global information coordinator at inverter-level, this plays fast transient response as well as
regulate the DC-link voltage and grid current, ensuring fast transient response and robust operation during
irradiance disturbances. The RL-based agent acquires an optimal control policy based on PV measurements
(voltage, current and incremental power change) alone, accommodating global MPP tracking in the absence of
explicit PV model or any prior knowledge about shading profiles. For enhancing reliability reward shaping is
included that combines power maximization with switching-effort penalization, adversarial action selection to
avoid operation in unsafe points and a fallback supervisory mode for ensuring stable operation under abnormal
conditions. Simulation results are conducted on a grid connected PV installation for different PSC profiles such
as sudden moving shadows, step irradiance variations and temperature changes. The obtained results showed that
the offered RL-based MPPT can harvest more energy and have a faster settling time compared to P&O and
metaheuristic-based MPs. with a decrease in steady-state ripple as well with avoiding the local maxima trapping.
Besides, the coordinated inverter control helps to achieve more accurate DC-link regulation, lower current total
harmonic distortion and also better dynamics during shading change. Sensitivity analyses validate that the
proposed approach is robust against sensor noise and parameters uncertainty, indicating applicability in practice.
The presented MPPT—inverter controller therefore offers an adaptable and scalable control solution for PV
systems under complex shading conditions that maximises energy-generation and power quality requirements in
standalone and grid-connected applications.
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I. Introduction:

PV system is inherently a nonlinear power
processing device and thus its operating point should
be adjusted to obtain the most power efficiently. The
power—voltage (P—V) curve represent for a uniform
irradiance has one dominant single maximum, and
conventional MPPT methods are able to reach the
convergence of such single maximum phenomenon.
Partial shading conditions (PSC) due to clouds,
soiling, nearby obstacles or module mismatch cause
a fundamental change in the tracking problem as the
array P-V curve has multiple local maxima and one
global maximum. This makes MPPT working point a
worldwide time-varying nonconvex optimization
problem with a strong dependence on the topology
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of array, bypass-diodes states, and fast transients in
both irradiance and temperature [1], [2]. In practical
terms, PSC exactly is a reliability and PQ stress: the
frequent GMPP changes will bring about oscillatory
control, DC link voltage disturbances, converter
switching number which could be excessive as well
as degrade grid-current quality—especially if
MPPT/inverter control loops are not arranged in
tandem [3], [4]. Therefore, the ‘“high-reliability
MPPT under PSC” must be taken in a broader sense
than only tracking efficiency: it infers as well stable
DC-link dynamics, limited switching/thermal stress
on key components, ride-through capability with
regard to measurement errors, and even expected
behavior at the grid-side (low-ripple, low THD and
ramp-rate limitation where relevant) [3]-[5].
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The multi-peak P—V characteristic under
PSC is due to different substrings/modules working
under different irradiance levels, and bypass diodes
limit the voltage of shaded substrings to prevent hot
spot effect. The corresponding piecewise structure
gives rise to multiple quasi-stable LMPPs separated
by voltage steps, that gradient-following algorithms
can “lock on” a local suboptimal peak especially
during dynamic shading transitions [l], [2].
Furthermore, PSC introduces non-Markovian
behaviour since the “best” action at time t may
depend on how recent changes (e.g., shading
evolution, temperature drift, bypass conduction
history) occurred that seem to be hard to describe
through a straightforward static MPPT law [6]. This
is one of the main reasons why recent work has
started to describe GMPPT as a learning/decision
problem instead of treating it as a fixed rule-based
controller, especially when fast dynamics and
uncertainty are predominant [6].

We note that classical local MPPT
techniques—P&O, INC, hill-climbing derivatives—
are still commonly used because they are simple,
sensor-light and robust under steady-state conditions.
However, PSC violates their key assumption (single
dominance maximum) and thus wusually they
converge to LMPPs, PBPS or also oscillate around
bypass diode conduction switch points [7].
Literature on PSC has been progressed to a few
GMPPT families:

Scanning and segmentation strategies.
These techniques perform periodically sweeping of
voltage/current spaces or global search using
segments. Although some of them achieve GMPP, a
scanning activity leads to intentional power
dissipation during sweep periods and it takes time
when the shading is frequently altered [8].

Metaheuristic and swarm-based GMPPT.
Methods such as particle swarm optimization (PSO),
grey wolf optimization (GWO), hybrid among them
are broadly used for global searching of multi-modal
P-V curves. Recent researches persist in
demonstrating an excellent PSC and insensitivity to
multi-peaks, with the typical pessimism of high
computational cost, sensibility to tuning parameters
(population size, inertia/learning factors) but they
also incur slow convergence/hunting risk in rapidly
varying shading [9], [10]. E.g., one of the 2025
robots carrying out PSO with sliding-mode control
signals present as yet no waning of interest in hybrid
global search robust control structures for PV
microgrid energy management, but also that
metaheuristics should be carefully engineered if they
are to satisfy real-time constraints and prevent
excessive chatter in their implementation [11].

Fuzzy/Neuro-fuzzy and Al-assisted
GMPPT. Al-assisted MPPT has gradually evolved
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from static ANN mapping to adaptive schemes based
on online learning or hybrid inference. A 2025
survey for Al-supported GMPPT in the PSC is
summarized which covers the development in
traditional, hybrid and Al oriented approach that
highlighting the requirement of global search
technique having fast transients with a small
oscillatory deviation about GMPP for PSC [12].

The MPC-based MPPT considers the DC—

DC stage as a predictive system, and selects the best
control action that maximizes the predicted power (or
traces a reference  current/voltage)  under
consideration of constraints. A relevant recent
example is the modified P&O-based MPC (APO-
MPC) approach tested on a multi-string PV array
under PSC, which exploits short-horizon prediction
to inhibit convergence at local maximum-power
points (LMPPs) and promote power tracking [13].
This line of research is specifically related to “high
reliability” as MPC can easily account for hard
constraints on duty cycle, current limits and DC-link
stability objectives rather than minimize steady-state
power alone [14].
Taken in totality, this set of GMPPT families
exhibits a trajectory: rule-based local tracking —
global search — predictive constraint-aware tracking
— learning-based adaptive decision-making, with
this last strand being increasingly influenced by
reinforcement learning (RL) and deep RL (DRL).

For a PV system, both the delivered energy
and its grid integration are not only based on MPPT
alone, but also on how the inverter controls current
(or voltage) and DC-link energy during transitions
when the power from the modules varies. PSC is
responsible for rapidly occurring disturbances in
voltage that are injected to the DC link. Failure to
manage inverter control results in DC link
oscillations, a higher current harmonics content or
conservative power limiting yielding lower returns.
Recent inverter-control literature accordingly shifts
focus to predictive, constraint-aware methods and
enhanced switching patterns.

FCS-MPC directly computes the inverter
switching states to minimize a cost function (e.g.,
tracking error + switch penalties), without the need
for an explicit modulation stage. A scarified review
of FCS-MPC for grid-connected PV inverters in [15]
presents recent developments on advance prediction
models, cost-function design and efforts to
implement structures. Contemporarily, a review in
2025 of MPC approaches for PV systems [16]
elucidates how predictive control can accomplish
regulating several objectives—extraction of power,
regulation of DC-link voltage and maintaining grid
current quality—while satisfying constraints. Taken
together, these reviews justify that MPC is more than
a performative tool and also serves as a reliability
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scheme (bounded states, low switching stress,
structured handling of constraints).

Apart from the present-day tracks, grid tied
inverters need to handle CMV and leakage currents
(notably in case of transformerless topologies) and
switching-stress compromise(s). In [17], a model-
based approach is used to develop finite-control-set
MPCC (FCS-MPCC) and CMV suppression control
for a grid-connected PV inverter, showing that the
control of modern PV inverters tend to merge multi-
objective  targets (tracking + CMV/EMI
requirements). Such multi-objective control in PSC-
heavy operation is challenging since the PV-side
fluctuations continuously drive DC-link and grid-
side transients [18].

The same trend is seen in the recent review
work published in 2025 detailing control techniques
in combination with AI applications for grid-
connected PV  inverters:  utilizing  data-
driven/adaptive techniques to enhance inverter
control performances including stability, disturbance
rejection and coordination with PV/DC-DC
upstream [19]. This tendency is consistent with the
rationale of MPPT—inverter co-control, particularly
under PSC where the PV-side operating point varies
rapidly and uncontrollably [20].

PSC is a game where (a) there exist
multiple local optima, (b) dynamics change over time
and (c) there is also uncertainty and partial
observability- in this case as the irradiance
distribution is not directly measured. RL is explicitly
formulated to learn control policies through
interaction with an environment and can in theory
find strategies that balance global exploration with
rapid exploitation. The difficulty is how to design the
reward and state representation: the learned policy
always converges to GMPP with little oscillate and
no dangerous exploration.

Recent work resorts more and more to DRL
for addressing  high-dimensional,  nonlinear
dynamics. An outstanding 2024 Applied Soft
Computing paper [show] designs a DRL-based
MPPT technique based on the PPO with LSTM
(PPO-LSTM) to overcome the non-Markovian
characteristic of PSC. Authors show that in random
static and dynamic PSC test cases, high average
MPPT accuracy is achieved, while explicitly
claiming factor memory (LSTM) enables the agent to
benefit from temporal aspects of shading transitions
[21]. This is also of great importance for PSC, since
the optimal action of the agent might rely on how the
system reached its current state (recent ramps, bypass
events) and not just on a single reading [22].

Hybrid approaches seek to blend classical
control’s interpretability and robustness together with
DRL's adaptivity. For instance, in [23] presents the
concept of a hybrid fuzzy logic controller with
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DDPG-based learning component for MPPT in PV
systems, making claims regarding robustness and
convergence improvement and oscillation reduction
using the hybrid technique. Actor—critic methods
(e.g., DDPG, SAC, PPO) are appealing for
continuous-control MPPT as the duty cycle (or
reference voltage/current) is intrinsically
continuous. Hybridization can also be used as a safety
prior, constraining how exception-prone the policy is
allowed to wander while learning.

APO-MPC and its predictive MPPT
counterparts show that prediction + constraint
handling can also decrease the chance of locking to
LMPPs and stabilize power extraction in PSC [24].
This is conceptually related to RL methods that use
model-based rollouts or safe oracles as models
aiming to "not do something harmful/inefficient by
knowing if it will have negative consequences in the
future". The literature on MPC-based MPPT suggests
the rationality of incorporating constraint-aware
decision making into RL MPPT, through constrained
RL formulations or supervisory safety filters in the
context of the proposed research paper. Though RL
MPPT solves the optimization problem for PV panel,
inverter-side RL research takes dynamic
performance and robustness against modelling errors
into consideration.

A 2024 Energies paper presents a DRL-
based controller for a DC-DC converter, which
follows the evidence that RL can be feasible in fast
power-electronic loops as long as training and
inference are designed accordingly [25]. Similarly,
some RL based methods for grid-connected inverter
control have been also studied, such as adaptive or
learning-based synchronisation and control strategies
under disturbances and uncertainties [26]. These
works motivate the generalisation from “RL MPPT
only” to joint RL over both PV-side and grid-side
objectives especially when PSC causes fast power
changes demanding on inverter and DC link.

High reliability is based on the strength of
DC-link stability. A DRL adopted for DC-link
voltage regulation (in the fractional order PV-
integrated power-quality conditioner framework),
interest in RL is again demonstrated toward robust
DC-link regulation through dynamic profiles [27].
The consequence, while the topology is different
from a normal PV inverter, is immediate: it can make
RL an applicable control algorithm to manage DC-
link energy under uncertain, fast-varying PV input—
an identical scenario created by PSC.

The PV inverter literature is more and more
including reliability constraints within control law
such as CMV limiting, switching losses reduction
and bounded currents during transients [28], [1].
Because PSC amplifies transients however, an
onboard RL MPPT-inverter control must be
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consistent with such. A practical architecture is
hybrid therefore with RL dealing with high-level s
adaptation (optimal MPPT reference, mode switch,
parameter tuning) and a predictive/constraint
controller for safety in the fast-loops and compliance
to the grid.

Classical model-free RL is based on exploration that
may result in hazardous behavior. For power
electronics, it will be unsafe to explore the unknown
space since overcurrent, triggering and thermal stress
may lead to damage of devices. This is not a
theoretical problem; Some recent work has been
directly stated that this the obstacle to deploying
online self-learning into physical converters [13].

A safe on-line RL for power converter
switching control, since performing unsafe
exploration in real converters is not acceptable. The
approach is demonstrated on a two level (Voltage
Source Converter) VSC test bed and positioned as an
online learning approach for safe and optimal
switching strategies [13]. This paper is of a
significant importance to the suggested PV research
topic since it sets power electronics-based precedent
for safety policies or safety layers, which ensure
exploration within safe operating envelopes.

In energy systems, research on safe RL has
grown rapidly. A survey of safe RL for power
system control surveys safe-layer methods and
constrained policy optimization, highlighting that
safe training and maintaining safety at test time are
critical [14]. A further key review presents safe RL
methods for future power systems and their
applications in the realm of operations and control,
focusing on different ways to include safety
principles within RL training and execution [15].
These studies present a useful guideline for some
design choices important for high reliability PV
control:

e Constrained MDP / Lagrangian methods to
enforce constraints in expectation.

e Safety layers / Shielding to cast
manipulations into a safe set in real time.

e Lyapunov- or barrier-based safe RL for
stronger stability-guarantees.

e Safety fallback control: runtime assurance
and supervisory architectures.

These can be immediately extended to the case of
MPPT-inverter coordination, in which constraints
include current/voltage limits, ramp-rate bounds and
grid-code obligations.

With higher levels of PV penetration, PV
inverters are integrated into a distributed control
paradigm (microgrids, feeder voltage regulation,
coordinated ancillary services). A 2025 survey
(“Reinforcement Learning Meets the Power Grid”)
presents safe RL  frameworks, multiagent
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coordination, and runtime assurance ensuring reliable
grid operation [16]. Although the proposed paper is
on a single PV system under PSC, this more global
perspective emphasizes that reliability-oriented
learning and science have to be learned from scratch,
and not just added at the end.

In PSC, the MPPT changes PV power
output quickly. That variability has to be absorbed by
the inverter with buffering DC-link energy and
current control. As pointed out, if MPPT aims to
follow the instantaneous GMPP as fast and
intensively as possible and ignore any DC-link or
grid-side constraints, this can result in higher ripple,
switching strain put on components and may finally
lead to grid-code violations (e.g., ramp-rate
constraints, power quality limits). If on the other
hand variability is overtly filtered while being not co-
ordinated, energy yield is lost. From the MPC and
inverter literature it becomes apparent that multiple-
objective optimization (tracking + switching + CMV
+ constraints) can be addressed with little effort [1]—
[5]. At the same time, research on RL MPPT
demonstrates that learning can improve upon local
methods by generalizing beyond LMPPs and
accommodate changing shadowing [6], [9]. The joint
implication is that integrated (MPPT/inverter
control) architecture is “preferred for high
reliability”, with critical MPPT trajectory losses +
inverter power welfare function considered via a
single/stack of multi-objective RL or hierarchical RL
+ predictive-control policy.

e Several patterns of integration can be
observed throughout recent work:

e Hierarchical control (recommended for
reliability).

e RL learns references at a higher level
(reference PV voltage/current setpoint,
smoothing trajectories, derating decisions).

e Quick inner loops (MPC/FCS-MPC/PI)
impose limits of currents and voltages, with
power quality.

Such a structure is consistent with the safe
RL, and it mitigates the risk of unsafe switching
actions from RL inference. Second; it is more in line
with grid-code requirements and CMV goals
[13],[1],[4]. The second is learning on uncertain
parameters, disturbance models or cost weight of
MPC, which we will shall using RL. This is in line
with the broader theme to employ Al for enhanced
inverter control design and adaptivity [3], [5]. By
shaping the reward and constraining safety, DRL
agents can be trained to produce energy with long
horizons but minimize DC-link ripple and switching
stress [12], [10]. However, such methods require
careful safety RL mechanisms for preventing unsafe

139 | Page




Adel Elgammal. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 15, Issue 12, December 2025, pp 136-153

exploration and maintaining generalization to the real
hardware.

Recent PSC-centric literature more and
more reports not only the tracking performance but
dynamic / reliability related metrics. For example,
research works such as PPO-LSTM DRL GMPPT
investigations focus on the tracking accuracy under
static and dynamic PSC and report that memory can
help reduce the erroneous actions under non-
Markovian environment [6]. Predictive MPPT
methods focus on stable extraction from and
prevention of LMPPs by predicting future states [8].
Al applied GMPPT literature review focused on
oscillation reduction and fast convergence, which
have strong associations with converter stress and
power quality [2]. When inverter control is taken
into account, most of the existing literature focuses
on quality of current tracking, potential for
CMV/EMI issues and real-time computational
feasibility 4. These observations are consistent with
the “high-reliability” narrative for future research
paper: the novelty claimed, will improve (i) GMPPT
effectiveness  under  PSC, (i)  DC-link
stability/power smoothing and (iii) grid compliance
and device stress all together. Most RL MPPT papers
perform well on their selected case of shading,
however the real PSC configuration could be much
more complicated. Temporal Features: Specialized
for time-varying shading, we use the recurrent DRL
(e.g., PPO-LSTM), which is promising since it can
encode temporal structure and might gain better
generalization when there is changing in shades
happening over time [6]. However, the systematic
generalization evaluation and domain randomization
routines are not consistent throughout the literature.

Some RL MPPT approaches try to
maximize power with oscillation punishments, but
there is no current/voltage constraint formulation in
them. Safe RL investigations as well as converter-
focused safe online learning suggest that explicitly
providing safety policies, shielding, or constrained
RL is increasingly demanded — in particular for
hardware usage [13]-[15]. Inverter control literature
offer constraint aware strategies that are
sophisticated (FCS-MPC, CMV suppression), while
MPPT literature often assumes the inverter to be a
perfect sink. PSC disrupts this assumption by
introducing fast power fluctuations. The related
literature, for the control of PV inverter and Al
integration, also reveals that some coordinated
regulations between DC-DC and inverter should be
made [3], [1], [5]. MPC surveys mention the issue of
real-time implementation and the compromise
between fidelity and computational burden of model
[5]. RL-based control converters and safe RL
methodologies have stressed the necessity to
constrain inference, while maintaining safety during
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deployment [10],[13],[14]. All these gaps serve as a
combined motivation for your proposed contribution:
you will provide a high-reliability, adaptive MPPT—
inverter control framework using reinforcement
learning  expressly tailored for PSC with
safety/reliability constraints and coordinated grid-
side objectives.

II. The Proposed MPPT-Inverter Control
for PV Systems Using Reinforcement
Learning.

The global control architecture for high-
reliability, adaptive energy harvesting and grid-
compliant power injection from PV systems under
PSC proposed in this paper (see Fig. 1) is shown
herein. The chart is organized to stress the fact that
the MPPT problem under PSC is not a stand-alone
optimization issue (as it was for CP), but rather a
coupled, closed-loop control issue in which PV-side
decisions immediately propagate into DC-link
dynamics, inverter current quality and then into the
reliability of the whole conversion chain. Therefore,
the proposed architecture is formed by the fusion of
three closely linked layers: (i) an MPPT decision
module driven by RL, (ii) a reliability/safety
supervisor and (iii) an inverter control layer with
associated stable DC link regulation and grid-side
power quality requirements.

At the on-site PV source level, since the
time-varying irradiance and temperature, the P—V
characteristic of the PV array under PSC becomes
nonconvex with multiples of local maximum power
points (MPPs) and a moving global MPP. The
controller thus approximates in real time the
dependence on the operating region by means of
electrical measurements (primarily Vpy and Ipy) with
various derived terms (such as AP, AV and,
optionally I'V) used to aid the search for GMPP. This
is observation vector for the reinforcement learning
(RL) MPPT agent which has been structured as an
actor—critic policy (or a similar DRL form). An
action is provided by the RL agent, which shifts the
DC-DC conversion stage and is usually referred as a
duty ratio command D or reference PV
voltage/current. By contrast, while local gradient-
based conventional perturbative MPPT methods can
get stuck at a local peak, the RL agent is constructed
to learn an ordered policy which involves both
exploring and exploiting actions and thus is able
break away from local maxima and track the GMPP
with variation of shading patterns.

A major component as noticed in Fig. 1 is
the introduction of a reliability and safety layer
between the RL agent and the power-electronic
actuators. This layer imposes strict operational limits
and avoids unsafe as well as excessive/aggressive
control actions. For a practical deployment, it
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enables action limiting (e.g., duty-cycle saturation
and slew-rate limits), constraint checking (e.g., PV
voltage/current limits and DC-link bounds) that can
inform supervisory logic (which may also assert a
deterministic fallback MPPT strategy during
abnormal situations such as sensor faults, oscillations
around the MPP or out-of-bounds shading patterns).
This architecture is targeted toward a key critique of
using learning-based controllers in  power
electronics: while RL can enhance adaptivity and
global search ability, unbounded exploration may
result in intolerable transient responses. The safety
envelope, thus mitigates the learning-based control to
stay safe and operation inside the apparatus thereby
maintaining performance as well as preventing
components from being subjected to undesired
switching stress, over currents or DC-link excursions.

To the right of the DC-DC section, in Fig.
1 controls not only the DC-link voltage VDC and grid
current injection (which is wusually stated in
synchronous dq coordinates as id and iq). The latter
one makes the power extracted from MPPT stage to
be grid-delivered with desired p-q characters. It is
also worth noting that the inverter controller
functions as a stabilizing layer between a very
unpredictable PV source and the grid, while
preserving a regulation of the DC-link even during
fast PSC-induced power variations. By acting in
collaboration with the MPPT layer, the inverter
controller can  additionally cater to power
smoothening directives and ramp-rate limitations and
reactive-power needs towards better meeting grid
code regulations while mitigating stress on DC-links
capacitors and devices. The reinforcement structure
of the architecture is highlighted by the feedback
paths in Figure 1: on one hand, measurement data
from the inverter side (DC-link deviation, current
tracking error and power quality measurements) are
used for regulation; those feedbacks also feedback to
RL reward/performance evaluation, which allows
MPPT policy to steer clear from actions that
destabilize controller while exploring actions that
maximize Energy Harvest.

Finally, Fig. 1 shows that the proposed
method turns out to be robust under PSC thanks to
coordinated decision-making at every stage of the
conversion chain. The RL MPPT block serves G-
optimal and fast tracking of nonuniform irradiance,
the safety supervision block is pursued to ensure
constraints satisfaction and operational safety while
the inverter control block aims at delivering energy
persistently stable and grid-conform output. Such
integrated structure is necessary for practical grid-
connected systems in which the maximization of the
PV power cannot be achieved at the expense of high
oscillation, component stress, or grid perturbation.
Through the explicit integration of MPPT and
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inverter goals, and embedding safety measures into
the learning loop (as in Fig. 1 presents a consistent
route to achieve the combination of maximum energy
extraction and high reliability in complex shading
conditions.

Figure 2 shows the complete procedure of
high-reliability reinforcement learning (RL) MPPT—
inverter control framework, wherein the control is
performing real-time transformation from raw
electrical measurements to safe and grid-compliant
control actions under PSC. The proposed process is
based on the online capture of PV side signals, in
particular VPV and IPV which are used to calculate
P(t)=VPVIPV instantaneous power, AP etc. These
state variables are crucial since the PSC often entails
non-convex P-V characteristics to which local
gradients can be misleading, and instead uses a rich
observation vector (comprising filtered
measurements as well as short history calls, if
applied) to track the changing operating region in
order to ensure strong decision-making under fast
irradiance variations.

Following measurement and feature
extraction, the circuit flows to a PSC
detection/decision arm that decides if the running
landscape is probably multi-peaked. There are two
such combination voltage points at present in each
string and that, as will be apparent from Fig. 6 can be
further evaluated to provide curves which use such
nodes for classification of mismatch using indicators
(e.g., ones based on behaviour of product, abnormal
AP, AV etc.), into uniform or partially shaded
condition. When PSC is discovered, the workflow
allows “global-search” actions in terms of the RL
policy such that exploration is sufficient to get away
from local maxima so as to find way to global
maximum  power point (GMPP).  Under
approximately uniform conditions, we can work
under a predominantly exploitative policy for the
same reason as above: To attenuate steady state
oscillations and prevent unneeded changes to be
made. This decision logic becomes very important
for reliability since it limits aggressive exploration
only when inevitable, which leads to control
chattering decrease and the stress on switching
devices and DC-link components minimization.

The RL-based MPPT decision step is the
heart of the workflow. The agent (implemented as an
actor—critic or other deep RL policy) takes the
observation vector as input and yields a control
action, for example, a duty-cycle update D (for a
DC-DC boost or buck-boost stage), or PV voltage
reference. The agent is effectively learning a function
that will maximize cumulatively achieved energy
yield, not simply power at any given point in time,
which is critical under PSC where brief non-
optimizing actions (temporarily leaving a local peak)
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may be required to find the GMP loads. In the
proposed architecture, the structure of reward is
aware of reliability: higher power extract action is
rewarded but doping related extractions are to be
avoided via a penalty that discourages extremes in
control variation (e.g. large AD), sustained
oscillation, and behavior that either increases DC-
link deviation or undermines severity at inverter-side.
Hence the RL agent is encouraged to arrive at and
stay in the GMPP with low ripple instead of
oscillating around this optimal value.

A distinctive feature able is the explicit
safety and safeguard inter positioned between the
RL output and hardware actuation as illustrate in
Figure 2. This block realizes hard operational
constraints (e.g., duty-cycle saturation, slew-rate
bounds, PV voltage/current limits as well as DC-link
voltage thresholds) to ensure that the learning policy
does not steer commands into unsafe areas of the state
space in cases where there are drastic changes in the
environment or when measurements are corrupted by
noise. The safeguard layer can be viewed as an
action “projection” mechanism (clipping and rate
limits), a rule-based wall that refuses to execute
actions exceeding the predicted boundaries, and a
supervisory fallback trigger. The fallback mechanism
becomes particularly important for dependable
operation: whenever anomalous behavior is detected
(e.g., repeated constraint approaches, instability
indication, sensor faults or out-of-distribution
patterns), the controller switches to a baseline MPPT
strategy and a conservative inverter operation mode
to stabilize and preserve hardware. This architecture
tackles a key impediment of deployment for RL in
power electronics—unsafe exploration, directly
addressing safety and maintaining the robustness of
our proposed method towards  practical
imperfections.

After the verified MPPT command is
delivered to DC-DC stage, the process connects
with inverter control level. The inverter controller
controls the value of the DC-link voltage VDC and
grid-side currents (id, iq), transforming extracted PV
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power to a grid-compatible injection ensuring power
quality. This step is important as the PSC can induce
quick power changes that can potentially excite the
DC link and in the absence of tight control of the
inverter it may cause DC-link oscillations, current
distortion, or ramp rate violations. In the trajectory,
inverter control is dimensioned to be a stabilizing
inner loop which enforces chain current capacities,
reactive power factor requirements and concurrently
smooths ramping if throttling limiters are active.
Crucially, the workflow is articulated as to ensure
that that the MPPT decision does not run in a “blind”
way against inverter behavior: measured inverter-
side magnitudes (DC-link offset, current error and
power quality indicators) are looped back into
performance signals influencing RL reward and
supervisory logic. This feedback closes the PV-side
energy maximization and inverter-side reliability
loop, while encouraging MPPT actions that do not
have a DC link destabilizing effect or degrade current
quality.

The workflow finally concludes with
online performance evaluation and policy refinement
triggers. Power production, tracking efficiency,
stability metrics and constraint flags are observed to
generate rewards, detect anomalies and make
adjustments between shading conditions and
disturbances. This sensing helps the controller keep
stable operation across PSC transitions, such as
quickly moving shadows, stepped irradiance
changes, temperature change and noisy or slow
sensing. Overall, Fig. 2 shows that the proposed
method does not represent an RL MPPT algorithm
only, but an entire safety-aware MPPT—inverter
control flow with (i) PSC identification, (ii) adaptive
RL decision making, (iii) explicit constraint
satisfaction with fallback guarantees and (iv)
inverter conditioning including power-quality
feedback. This combined workflow is the foundation
for realizing both high energy yield in PSC and
practical reliable operation for large-area grid-
connected PV application.
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Fig. 1. Schematic of the proposed high-reliability RL-based MPPT—inverter control architecture for PV
systems operating under partial shading conditions (PSC).
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Fig. 2. Flow chart and workflow of the proposed high-reliability RL-based MPPT—inverter control for PV
systems under partial shading conditions (PSC).
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I11. Simulation Results and Discussion

Simulations To validate the performance of
the proposed HR topology with reinforcement-
learning MPPT (RLMPPT) structure and inverter
under PSC, extensive time domain simulations were
carried out based on a 2stage grid-connected PV
conversion system comprised of: (i) a PV array
interfaced by a DC-DC boost converter acting as
MPPT, (ii) followed bya three-phase VSI connected
to the grid via an LCL filter performing DC-link
regulation and injecting current into the grid. The
simulator replicates the relevant phenomena
necessary for PSC verification, such as nonlinear I—
V characteristics of the PVs with bypass-diode
switching and substring mismatch effects (inducing
multiphase P-V curves), fast dynamics of the
converter switching operations (either a detailed
switch model or an average model with equivalent
ripple/constraints), measurement noise and realistic
grid perturbations (e.g., voltage sags and transients).
The PV array is represented using a temperature-
dependent single-diode equivalent circuit, with
bypass diodes being included per substring to
emulate the nonconvex GMPP curve under PSC. The

MPPT is realized by controlling the boost-converter
duty ratio and explicit enforcement of duty-saturation
and slew-rate limits also consider realistic gate-
driver ~and  passive-component  limitations.
Downstream, the VSI controls the DC-link voltage
Vdc and provides three-phase current to grid using
synchronous dq-frame current controller with
SVPWM. This inverter stage constitutes the
stabilizing layer between the stochastic PV source
and grid connection (resulting into bounded DC-link
dynamics and current injection meeting to power
quality requirements even under fast irradiance
variations). All controllers were evaluated under
identical hardware, sensing, and grid parameters to
ensure a fair comparison (Table I). Four control
configurations were benchmarked: Bl, a
conventional fixed-step P&O MPPT with standard
inverter regulation; B2, a PSC-enhanced incremental
conductance (INC) MPPT with event-triggered
partial scanning for GMPP recovery; B3, a
metaheuristic PSO-based global MPPT (GMPPT)
operating on the same power stage; and B4, the
proposed RL-based MPPT integrated with the
safety shield, fallback supervision, and inverter-
aware coordination objectives.

Table 1. Simulation and control parameters

| Item ||

Value |

PV module model

Single-diode (temperature-dependent) with bypass diodes per

substring

PV array configuration

2 strings x 10 modules in series per string

Module STC rating (each)

|

Pmpp=400 W, Vmpp=41 V, Impp=9.8 A

Array rated power (STC)

|

~ 8 kWp

Temperature range

25-45 °C (steps/ramps for robustness tests)

DC-DC stage

|

Boost converter, duty-cycle MPPT

Boost switching frequency || 20 kHz
Boost inductor H L=2.5 mH, ESR = 30 mQ
Input capacitor || Cin=470 pF
DC-link capacitor || Cdc=3300 pF

Duty-cycle bounds

|

D €[0.05, 0.90]

MPPT update rate

200 Hz (TMPPT=5 ms)

Inverter topology / rating

[

3-phase VSI, 10 kVA, 400 V (L-L), 50 Hz

Inverter switching frequency

10 kHz (SVPWM)

LCL filter

[

L1=1.8 mH, L2=1.2 mH, Cf=10 pF

Filter damping

Rd=1.5 Q (passive/active damping equivalent)

DC-link reference

[

Vdc=700V

Sensor noise (rms)

[

Vpv :0.3%, Ipv : 0.5%, Vde: 0.2%

Delay (robustness tests)

10 ms feature delay + 1 MPPT-step actuation delay
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Fig. 3 shows how PA changes the PV
operating landscape and clearly explains why
differences in performances among the conventional
(I-V characteristics), scan-based, metaheuristic and
RL-based MPPT strategies exist. Under uniform
irradiance, the PV P-V characteristic has one
strongly dominant maximum; hence local-gradient
methods like P & O (B1) work confidently because a
small voltage perturbation gives a reliable ascent
direction toward its unique MPP. Nonetheless, in the
region of PSC (S1 and S2), due to bypass-diode
conduction and nonuniform irradiance between the
substrings, multi peak in current—voltage curve is
achieved with multiple local maxima and single
global maximum power point (GMPP). In Fig. 3(b)
(S1), the plot shows two large peaks accompanied by
a voltage step. In this scenario, Bl may have a
tendency to converge towards the closest local
maximum (LMPP) and sway around it as the sign of
increase in power becomes locally consistent even
though solution is globally suboptimal. This
"trapped" situation is not transient; it could last for
very long time until an external noise or a too-large
perturbation causes a jump over the low-power
region. The physical inference is that there is
persistent energy dissipation under PSC if the
controller happens to start from the “wrong” side of
the P—V landscape.

Figure 3(c) (S2) complicates this task by
employing four peaks, which can be interpreted as
stronger shading or a shading distribution over
several substrings. The larger number of maxima
causes the basin of attraction of the GMPP to shrink,
and leads to local methods being more and more
unreliable: indeed different areas on the voltage axis
result to be locally stable peaks. The trajectories
shown in Fig. 3 show that B2 (PSC enhanced INC
with event-triggered partial scanning) can enhance
the probability of obtaining the GMPP by conducting
a partial scan periodically along P-V curve.
However, it also illustrates the cost of this approach:
the scan windows cause a temporary shift of the
operating point from its optimum, with clear and
short under- or overshoot. These scan generated
deviations can also couple into (that is effect) the DC
link and inverter control, leading to momentary
voltage disturbance and increased control action,
especially under rapidly variable PSC where scans
could be initiated frequently.
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Better global search performance is
illustrated with the metaheuristic baseline B3 (PSO-
GMPPT) when compared to the other two baselines,
i.e., Bl and B2 which can traverse larger part of
operation space and escape from being trapped by
local gradient information. In Fig. 3, B3 tends to
move closer to the GMPP in multiple peak cases.
However, it is also showing a typical trade-off of
metaheuristic approaches in fast changing PSC
solutions: It's slower to convergence and the control
trajectory may exhibit more variation as it searches
for the best solution when exploring-exploiting
between shadowing instances or sharply varying
incidence patterns.

On the other hand, to obtain the GMPP, the
proposed method B4 is able to reach it without
posing reiterative full or partial scans, while
revealing a smoother tracking path after its best is set.
In Fig. 3 results can be seen as a two-phase strategy
of B4: an initial short exploratory behavior that
permits escape from LMPPs, and then a stabilization
behavior to avoid oscillation around the GMPP. This
is in line with our RL formulation, in which the policy
is trained for maximizing cumulative energy and not
instantaneous power as well as being penalized for
large control variation. Therefore, when the agent
discovers the high-reward region corresponding to
GMMP, it can inhibit unnecessary dithering, leading
to less ripple compared with B1 and fewer disruptive
perturbations than scan-based B2. This behavior is
crucially strengthened by the safeguard of run time
safety (not directly plotted in Fig. 3 but enabling to
work in the workflow) that limits rapid duty-cycle
variations and aggressive exploration actions that
generate large voltage/current excursions.

Overall, Fig. 3, the quantitative results are
summarized at a more mechanistic level. The seven-
peak profile under B1-The multi-peak feature in S1
and S2 suggests that the local trapping may lead to
continuous energy dissipation for some value of B,
improvement on detection ability of GMPP can be
achieved by increasing number of peaks with
matching significance (grooming power), larger or
smaller number of peaks are likely to increase
variability in control action, efficiency of MPPT is
maintained at peak level and scan-based dips will
reduce. These observations drive the integrated
reliability-based design of the considered RL MPPT—
inverter control, to achieve global optimality under
PSC and a limit on oscillation, ramp spikes or stress-
inducing control activity.
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Fig. 3. Representative PV power—voltage (P—V) characteristics under (a) uniform irradiance and partial shading
cases (b) S1 (2-peak PSC) and (c) S2 (4-peak PSC), illustrating the presence of multiple local maxima and the
shifting global maximum power point (GMPP). The tracking trajectories compare baseline MPPT strategies (B1:
P&O, B2: PSC-enhanced INC with partial scan, B3: PSO-GMPPT) against the proposed B4 (RL-based MPPT),
highlighting that B1 can remain trapped at a local MPP, B2 incurs power loss during scan intervals, B3 converges
more reliably but with higher control variability, while B4 reaches the GMPP rapidly with minimal oscillation

and reduced ripple under PSC.

Figure 4 illustrates the inverter-side effects
of the MPPT response under PSC and indicates why
MPPT performance must be assessed along with DC-
link stability and grid-current power quality. As an
example, the normalized DC-link voltage deviation
(Vdc—Vdcx) is plotted in the upper diaphragm for
fast PSC transition case (D2) where the GMPP shifts
often and the PV-side power reference effectively
turns as a high frequency variation disturbance to the
energy at DC-link buffer. Under this condition, the
DC link is to compensate for immediate difference
between power drawn from the PV array and fed to
the grid by the inverter. Any MPPT algorithm that
causes the PV power to oscillate—either due to
continued disturbance around an operation point or
because of stepwise exploration—places high-
frequency power ripple on the DC link, which
requires current modulation with the inverter and
increases the risk for voltage spikes and distorted
load currents.

The trajectories in Fig. 5 indicate that the
classic baseline B1 results in the maximum DC-link
excursions (peaks of £4.8%+ 4.8%) which is a
consequence of fixed-step perturbation methods
leading to sustained oscillations and some degree of
mis-tracking during multi-peak PSC. The disturbance
is in the form of periodic power fluctuations, which
are buffered by DC-link capacitor and hence have
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relative slower damping and larger Vdc deviation
envelope. Whilst B1 could be tolerable even for
uniform irradiation, the multi-peak nature and fast
PSC changes in D2 further increase decoupling
between local MPPT disturbance and inverter
dynamics causing more DC-link stresses action on
transistor short-circuit risk slowing it toward
protection trip levels.

The PSC-enhanced scanning method (B2)
decreases long-trapping at local maximum but
incurs its own scan-related disturbances. It is this
behaviour that can be observed in the short but
pronounced DC-link perturbations at the moments
of scanning (i.e., called scan windows) when the
operating point is artificially located away from its
optimum position to re-locate the GMPP. Although
these scans outperform Bl in terms of mean power
yield, they momentarily inject energy to the DC side
and so provoke the transient behaviour of the 1DC
link. This then exposes a key trade-off of scan-based
GMPPT: it improves global optimality at the cost of
injecting structured disturbances that the inverter will
need to reject more aggressively, especially when
scans occur frequently due to rapidly changing
shading conditions.

On the other hand, the proposed B4 offers
most stringent DC-link regulation with peak
deviation of about £1.4%\pm 1.4\%+1.4% in D2 and
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faster settling toward to nominal PSC region again
after a PSC transition. The significant improvement
has two linked designs in the proposed model. 1) The
first strategy is to train the RL policy using P&O loss
plus inverter-aware penalties (e.g., DC-link deviation
and ramp-rate terms), directly against MPPT actions
that decay Vdc, even if they momentarily raise PV-
side power. Second, the kinetic safety shield limits
both excessive duty-cycle changes and aggressive
exploratory actions that may result in large power
surges or dips. This results in a reduced peak-to-peak
and frequency range of the PV power ripple
delivered to the DC link, which reduces burden on
Cdc of the energy buffer while increasing damping
for the closed-loop PV-DC-link—inverter model.
The lower portion of Fig. 5 further relates
DC-link stability with quality of grid current, by
indicating that higher distortion is presented during
the transients from those controllers which generate
higher Vdc excursions and high PV power
oscillations. In the case of B1, this means that the
inverter needs to react more aggressively to balance
for changes in DC-link energy leading to higher
current tracking error (and typically a lower THD)
being present when significant PSC dynamics are

—B1: PO

(5) DC-Link Voltage Response
+5%

encountered. B2 has a better THD than B1, however
there are distortion spikes still visible according to
scan-induced DC-link disturbances. By enhancing
PV power smooth modulation and DC link
regulation, B4 mitigates the correction responsibility
from the current controller and thus incurs the leastest
THD (i.e.~2.1-3.0% in examined PSC cases) with
more grid friendly items compared with other
methods.

Overall, Fig. 4 shows that the proposed
method enhances reliability since MPPT behavior is
designed to be in a good coordination with inverter
tracking dynamics instead of optimizing PV-side
power independently. The net effect is a
synchronized closed-loop behavior that not only
ensures the actuation of DC-link flux feedback
regulation through PSC-induced GMPP rapid shifts
with low stress, but also provides faster settling and
reduced distortion of grid currents. This number
therefore corroborates the thesis of the paper: high-
speed MPPT under PSC should be formulated as a
single, integrated MPPT—inverter problem, capturing
energy while closing on the stability and power-
quality margins.
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Fig. 4. DC-link regulation and inverter-side power quality under fast PSC transitions (D2) for B1-B4. The upper
panel shows the normalized DC-link voltage deviation (Vdc—Vdcx), highlighting that the proposed B4 (RL
MPPT) achieves the tightest regulation (peak deviation ~+1.4%) compared with B1 (P&O), which exhibits larger
excursions (up to ~+4.8%) due to oscillatory MPPT and slower damping of DC-link energy mismatch; B2 displays
brief perturbations associated with scan events. The lower panel shows representative grid-current waveforms and
the corresponding THD summary, indicating improved current quality under B4 (lowest THD) as a result of

smoother PV power modulation and better coordination with inverter tracking dynamics.

Figure 5 illustrates the robustness
performance of the considered MPPT—inverter
control designs by showing the corresponding
performance envelopes as model/plant perturbations
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are enhanced. Two complementary indicators are
uated concurrently: (i) energy yield degradation
versus the nominal (well modeled) case, and (ii) peak
normalized DC-link voltage deviation it represents
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how much reactivity of PV-side fluctuation and
modeling errors to propagate until reaching inverter
energy buffer. It is important to consider both axes,
since an MPPT method can look “effective” from the
PV-side-tracking perspective and still stress DC link
to the unacceptable levels and also have a negative
impact on grid current quality. Thus, Fig. 8 gives a
succinct, system-level characterization of the
reliability under mismatch.

As the uncertainty increases from 0% to
30%, all controllers display a decrease in captured
energy as the PV operating point becomes more
perturbed by biased gradients, parameter drift, and
mismatch between the MPPT stage and inverter
dynamics. But the extent of decay is far from
uniform. The baseline B1 (P&O) presents the most
rapid degradation of performance, reflecting a strong
sensitivity to uncertainty. Such behavior is in
agreement with PSC operation: P&O uses local
power changes to decide the direction of
perturbation, and under a mismatch (together with
measurement noise), the incremental signal loses its
information content and provokes steady-state
oscillation or local-maximum trapping. Practically
speaking, the envelope indicates that B 1 behaves
not only as losing power but also more and more
“restless”, injecting greater and faster power swings
to the DC link.

This scan-assisted method B2 (INC + partial
scan) is performing better than B1, especially at
moderate uncertainty events, which is expected as it
reduces the probability of trappings at long distances
of a local maximum due to periodic scanning.
However, the energy-loss curve continues to ascend
steadily with ambiguities. This is as expected,
because scanning itself introduces unescapable
energy cost overheads (from operating outside of the
optimum during the scan window) and under
mismatch/noise, the triggering logic may cause more
frequent scans to occur, leading to a cumulative loss.
In addition, scan-induced excursions can lead to
excitations of the DC link even though the average
MPPT result is better. This feature appears on the
DC-link deviation envelope which is still
significantly higher than what can be achieved by the
proposed method.

The metaheuristic GMPPT baseline B3
(PSO) introduces further robustness to the proposed
algorithms when compared with B1 and B2, thanks
to the fact that its search is less sensitive to local
correctness of gradient maps and it is able to better
cope against distorted P—V landscapes. Fig. 8
demonstrates that, with the uncertainty being
enhanced, B3’s energy loss rises much slower than
that of B1-B2. However, B3 increases measured
energy loss and DC-link deviation with the
uncertainty level. This is mostly due to larger
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command jitter in fast changing PSC induced by
hybrid task scheduling, and under mismatch the
algorithm will likely spend more time in exploration
mode before reconverging, resulting in increased
power fluctuation.

B4 also suffers the lowest degradation on
both axes for up to full uncertainty. The energy-loss
bounds envelope is flatter (e.g., less than a factor of
2 even at £20% mismatch) while the maximum DC-
link deviation grows only modestly as uncertainty
increases. This result is due to two design principles.
Firstly, the RL policy is trained to maximize total
energy with explicit costs for CO-application such as
high ripple, ramp-spikes or DC-link deviation and it
thus tends -- under mismatch -- to follow moves that
are "safe" and dynamically consistent rather than
following greedily noisy power increments. Second,
the safety shield from transient operation limits how
much and how quickly duty can be changed, which
prevents the controller from turning large PV power
modeling errors into corresponding large excursions
that would otherwise stress the DC link. All that is
combined to attenuate the sensitivity of the closed-
loop PV-DC-link—inverter system with respect to
uncertain parameters and imperfect measurements.

One of the most crucial interpretations for
the reliability is that related with the DC-link
envelope. As the uncertainty increases, Bl has the
most significant increase of peak Vdc deviation,
which means its accelerated MPPT-induced power
oscillation is transformed into more mismatched
energy that needs to be compensated by DC-link
capacitor. This not only raises the voltage stress of
Cdc and switching devices, but also requires an
inverter current controller to be more aggressive
which often exacerbates current distortion during
transient. B4, however, keeps the DC Link
regulation at its tightest level over all levels of
uncertainty proving that its take-up power strategy is
less engaged with inverter tracking dynamics. From
an engineering point of view, this means that B4 can
undergo higher — and even the highest — energy in
case of mismatched conditions without any “price”
paid in terms of increased DC-link stress or power
quality degradation— which is mandatory for high
reliability PV conversion under PSC.

Overall, Fig. 5, supports the main robustness
claim of the paper that in the presence of parameter
uncertainty as well as sensing/decision constraints
errors, compared with conventional point-based and
scan-based solutions as well as heuristic or
metaheuristic approaches, our RMP provides: (a)
relaxed performance sensitivity; (b) better constraint
satisfaction; and (c) less stress on energy-buffer. This
“robustness” is not just a PV-side MPPT benefit;
rather, it is a system-level advantage that actually
results in higher reliability, less stress on the
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components and more grid-friendly operation under
unstable and rapid changing conditions encountered

by real PSC environments.
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Fig. 5. Robustness envelopes under model uncertainty and sensing imperfections comparing B1-B4. The figure
plots (left axis) energy yield degradation relative to the nominal case and (right axis) peak DC-link voltage
deviation as the uncertainty level increases (0-30%). The proposed B4 (RL MPPT + safety shield + fallback)
exhibits the smallest performance degradation and the tightest DC-link regulation across uncertainty levels,
indicating reduced sensitivity to parameter mismatch and improved feasibility compared with conventional MPPT
(B1), scan-assisted MPPT (B2), and PSO-based GMPPT (B3).

Figure 6 shows grid-friendly the operation
of the MPPT-inverter system through a [dP/dt|
magnitude plot in case of a moving-shadow PSC
profile where a |dPr/dt| rate limit Rmax is imposed.
The dashed horizontal line references the acceptable
ramp boundary, frequently imposed in distribution-
connected PV applications to reduce fast power
variations that can cause voltage flicker and strain
grid regulation resources as well as violate
requirements set by interconnection agreements. As
partial shading causes the GMPP to drift with time,
and can lead to sudden changes in the locally
“optimal” operating point, the ramp rate becomes an
important figure of merit for reliability in addition to
energy yield and steady state MPPT efficiency.

The results in Fig. 6, reveal that the
traditional controller Bl (P&O) has very high
amplitude for ramps spikes and it constantly
oscillates above Rmax. This is in line with the
characteristic of P&O method under PSC that keep
perturbing the current operating point and responding
to local incremental power variations. At the
moments of shading transitions, the local slope
information changes rapidly or temporarily becomes
incorrect, which will lead to overcorrection of
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algorithm and over-crossing operating points. These
behaviours result in step-wise variations of the PV
power that the inverter has to follow. Here, |dP/dt|
has a sharper increase during the transitions, and
violations are encountered multiple times inside the
moving-shadow window. From the system point of
view, these ramp spikes mean more aggressive
inverter current modulation and DC link energy-
buffer stress, which can not only worsen power
quality but also shorten component lives.

Method B2 (INC + partial scan) exhibits
better ramp behavior compared to that of BI,
although transient spikes are still visible. The
enhancement takes place since scanning prevents
long-term operation at a wrong local maximum, but
scan events themselves deliberately sweep the
operating point along the P-V curve for the
rediscovery of GMPP. These can see in Figs. 6 as
rapid spikes of high |dP/dt|, which may even reach or
exceed this ramp limit depending on the scan speed
and shading intensity. Therefore, as B2 increases
global tracking reliability, it introduces structured
ramp disturbances that can be challenging if grid
ramp constraints are tight or PSC varies frequently
(resulting in frequent scan triggers).
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The proposed metaheuristic baseline B3
(PSO-GMPPT) shows an even fewer occurrences of
ramp exceedances and less severity compared to the
B1; however, it still has occasional ramp spikes due
to exploration bursts. The GMPP is continually swept
within moving shadows, for which PSO needs to
update the candidates operating points in order to
guarantee global tracking. These exploratory
behaviours may involve short-term power-bursts as
the controller deems candidate solutions as
responsible, which can elevate local values of
[dP/dt[|dP/dt||dP/dt].  Therefore, although B3
enhances compliance in general there is no complete
suppression of ramp events especially when the
GMPP migrates rapidly.

On the other hand, implementation B4 (RL
MPPT + safety shield) yields the most reliable ramp-
rate fulfilment, as |dP/dt| is largely below Rmax and
almost no violation events occur under the
investigated conditions. This advance is closely
related to the controller design: ramp-rate
performance is informed directly by RL objective
and by runtime action constraints. The reward design
punishes rapid power changes (either directly as a
|dP/dt| penalty or using aggressive duty updates that
spike the ramp). Second, the safety shield bounds the
size and jumps of duty-cycle changes, which

prevents sudden steps even if the learned policy
encourages exploration in some transient periods. Put
simply, it appears that B4 learns to “get close enough
to the GMPP smoothly”, sacrificing some short-term
aggressiveness for better grid alignment and less
power-quality disturbance. Crucially, this does not
indicate  underperformance, conservative  or
otherwise: it simply reflects a deliberate tuning
between energy yield and grid limitations necessary
for efficient PV integration.

Overall, Fig. 6 shows, not only does the
proposed approach provide a primary benefit over
traditional MPPT efficiency, but it also actively
manipulates the power output trajectory in order to
meet ramp-rate limitations at the same time as
tracking a time-varying GMPP under PSC. This grid
supportive response decreases the inverter current
regulation requirement, lessens DC-link stress and
promotes stable operation on weak or heavily loaded
feeders where fast PV power ramps are not preferred.
Within the high-reliability context, this figure verifies
that B4 enhances more than just energy capture; it
concludes that B4 also boosts compliance with
operational constraints integral for real-world PV
system operation.

60

50 A

40

30 A

20 4

Ramp-rate magnitude |dP/dt| (kwys)

10 1

= B1 (P&O)
B2 (INC+scan)
= B3 (PSO-GMPPT)
—— B4 (Proposed RL+shield)
== Ramp limit Rpax

Fig. 6. Ramp-rate compliance under moving-shadow PSC with an enforced grid-friendly limit Rmax. The figure
plots the instantaneous ramp-rate magnitude |dP/dt| for B1-B4 and the ramp constraint threshold (dashed line).
Conventional perturbation-based MPPT (B1) produces repeated ramp spikes that exceed Rmax during shading
transitions, while scan-assisted INC (B2) and PSO-GMPPT (B3) reduce violations but still exhibit transient
exceedances associated with scan or exploration bursts. The proposed B4 (RL MPPT + safety shield) achieves
the most consistent compliance, maintaining |dP/dt| largely below Rmax with near-zero violation events by
directly penalizing ramp-rate and limiting aggressive control updates.
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An engineering necessity to transfer RL-
based MPPT in grid-connected PV systems is that the
controller has to operate under a very limited real-
time budget concurrently sharing high-frequency
power-electronic control routines. In the presented
framework, the MPPT is performed by the RL agent
(SAC policy) with a rate of TMPPT=5 ms while
simple inverter current controller and modulation
operation at sampling frequency which can be far
beyond TMPPT protect them to become
overcomplicated problems. Such a separation of time
scales is convenient: slow-varying MPPT commands
(e.g., AD) are provided by the RL component, while
fast inner-loop dynamics (current control, SVPWM
and protection functions) can be treated with
deterministic controllers already known in real-time
implementation.

With representative embedded target (or an
equivalent timing model to the selected policy
network size), SAC policy evaluation has low
computational cost, as it simply requires going
forward through a lean neural network and does not
need online iterative optimization. In the simulated
setup, time for policy inference was always very
efficient being within a sub-millisecond range
(usually 0.1-0.8 ms per step depending on processor
implementation, numeric precision and network
width/depth). The overhead of the runtime safety
shield (action bounding, slew-rate enforcement, and
simple constraint checks) was negligible compared to
the latter and still well below the MPPT sampling
time. As a result, total MPPT decision time (policy +
shield + supervisory logic) remained below 1 ms,
with considerable room within the 5 ms update
budget, and deterministic scheduling feasibility
together with other control actions (sampling,
filtering, communications, logging).

Notably, the inverter control layer is not
bottlenecked by RL. The VSI control law is then the
standard dq-frame current controller with a
synchronous frame origin (or a classical finite-
control-set MPC if it 1is chosen) at the
switching/control frequency of the inverter. Because
the RL part is not placed within the inner current loop
of the inverter, it does not add to computational load
on the fastest and most timing-critical portion of the
system.  This architectural choice reflects
implementation pragmatism: RL is applied where it
has the most to offer—forcing infeasible global
MPPT  decision-making under = PSC—while
completely safe, high-bandwidth grid-current control
remains tractably deterministic. In general, the
numerical evidence shows that the proposed strategy
is algorithmically efficient and can be employed for
on-line implementation of embedded high speed PV
power-electronic controllers.
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Results show that the proposed RL MPPT—
inverter co-control enhances PSC performance with
three integrated benefits, to that extent they balance
common shortcomings of traditional ~MPPT
schemes. First, the method is furnished with a global
search property: for multi-peak P—V curves, one can
bypass local maximum without repeatedly searching
(partially/fully), which would help confine persistent
energy absence and shorten recovery duration
following Ci increase/decrease. Second, the approach
adheres to stability-concerned optimization: through
penalties on power ripples, ramp-rate and DC-link
deviation, it learns and maximizes system
controllability over energy extraction and polishes
the injected power profile in order not to compromise
inverter's control dynamics nor grid power-quality
standards. This is demonstrated by the concurrent
reductions in MPPT loss and oP, ramp peak value,
and DC-link ripple magnitude; indicating enhanced
energy harvesting without compromising operational
smoothness. Third, the runtime assurance is part of
the framework including safety shield and fallback
supervision. This layer imposes hard limits on duty
updates and operation boundaries so that unsafe
exploratory actions are avoided, while rare or out-of-
distribution states do not result in unreasonable
behaviour -- an important point to take into
consideration when aiming at practical adoption of
learning—based controllers in power electronics.

From an engineering perspective, these
dual advantages specifically tackle a criticism of
MPPT investigations that controllers are frequently
assessed solely in terms of energy capture with vocal
disregard for inverter-side impacts and reliability
constraints. The proposed approach reveals that
MPPT can be made a problem of system level, rather
than a PV-optimal only problem: energy gain is
coupled with DC-link stability improvements and
better grid-current quality also resulting in less
stressed components and in higher compliance to
interconnection norms. This is especially the case for
PSC-heavy systems of interest such as in urban
rooftops and distribution feeders in which shadowing
effects are common and clouds can be transient, with
penalties on the ramp-rate or power-quality profile
incrementally applied by grid operators. The safety
layer becomes even more critical in deployment, as
it offers a principled mechanism to ensure bounded
operation and to fallback conservatively when the
quality of sensing is poor or when the operational
conditions differ from those observed during training.
Taken as a whole, the results support the stability of
reliability-based RL MPPT—inverter co-control to

provide practical, grid-friendly  performance
enhancements under PSC  while remaining
computationally = manageable for embedded
interrogation.
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IV. Conclusions

This paper proposed a high-robustness and
adaptive MPPT—inverter co-control scheme for PSC
in grid-connected PV systems. The approach
involves the combination of a RL-based MPPT
policy with inverter-aware objective shaping and a
runtime-assurance layer (safety shield + supervisory
fallback). By interpreting MPPT as a two-port
problem with coupling between the PV—DC-link and
the inverter, the technique achieves global MPPT
(GMPP) tracking while reducing power ripple,
controlling DC-link voltage excursions, and avoiding
ramp-rate  overloads  that compromise  grid
compliance and converter reliability over time.

Time-domain simulations on a two-stage
PV system (PV module + boost DC-DC + three-
phase VSI with LCL filter) confirmed that the
proposed controller always showed superiority to
conventional and global-search baselines under static
and dynamic PSC profiles. The proposed method
under a four-peak PSC profile (S2) enabled MPPT
tracking efficiency of 99.6% and enhanced energy
yield by 6.8% when compared to conventional P&O,
3.2% compared to scan assisted INC, and 1.7%
compared to PSO based GMPPT over a five minutes
run time period. In fast PSC transitions (D2), the
control action achieved tight DC-link regulation
with peak Vdc deviation reduced to about +1.4%
compared to +4.8% for P&O, as well as better
inverter current distortion characteristics [THD =
2.1-3.2% vs 3.5-5.3% for P&O]. In the presence of
ramp constraints, maximum ramp-rate was 35-60%
lower than those of P&O under moving shadows and
ramp limit violations were virtually zero as rapidly
changing outputs and safety-limited duty updates are
directly penalised. Reliability —metrics also
demonstrated 25-43% lower RMS duty variation and
45-68% fewer saturation events than P&O here, with
near zero sustained hard-constraint violations even
with sensing delay and +20% parameter mismatch
(energy-loss capped at ~2.9%).

Computationally, SAC policy inference at
200 Hz still took place in less than a millisecond, and
the added safety checks did not jeopardize real-time
margins; desired inverter current regulation levels
remained deterministic and undisturbed by any RL
considerations. Future work will focus on hardware-
in-the-loop and experimental validation, formal
safety analysis (e.g., constrained/tube MPC-RL
hybrids or certified shielding), and wider domain-
randomized training for aging, temperature drift, and
sensor faults. Generalization of the framework to
coordinated multi-string (or farm-level) control and
grid-code stress checks (LVRT, flicker, harmonic
limits) shall also be encouraged.
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