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Abstract: 

Solar photovoltaic (PV) systems operating under Partial Shading Conditions (PSC) exhibit multiple local maxima 

on the power–voltage curve, causing conventional maximum power point tracking (MPPT) methods to suffer 

from slow convergence or steady-state oscillations. In this paper, a reliable and dynamic MPPT–inverter control 

architecture is proposed via reinforcement learning (RL) to have both partial shading conditions -robust operation 

under severe disturbances and maximum power generation. The architecture embeds an RL-trained MPPT agent 

with cumulated global information coordinator at inverter-level, this plays fast transient response as well as 

regulate the DC-link voltage and grid current, ensuring fast transient response and robust operation during 

irradiance disturbances. The RL-based agent acquires an optimal control policy based on PV measurements 

(voltage, current and incremental power change) alone, accommodating global MPP tracking in the absence of 

explicit PV model or any prior knowledge about shading profiles. For enhancing reliability reward shaping is 

included that combines power maximization with switching-effort penalization, adversarial action selection to 

avoid operation in unsafe points and a fallback supervisory mode for ensuring stable operation under abnormal 

conditions. Simulation results are conducted on a grid connected PV installation for different PSC profiles such 

as sudden moving shadows, step irradiance variations and temperature changes. The obtained results showed that 

the offered RL-based MPPT can harvest more energy and have a faster settling time compared to P&O and 

metaheuristic-based MPs. with a decrease in steady-state ripple as well with avoiding the local maxima trapping. 

Besides, the coordinated inverter control helps to achieve more accurate DC-link regulation, lower current total 

harmonic distortion and also better dynamics during shading change. Sensitivity analyses validate that the 

proposed approach is robust against sensor noise and parameters uncertainty, indicating applicability in practice. 

The presented MPPT–inverter controller therefore offers an adaptable and scalable control solution for PV 

systems under complex shading conditions that maximises energy-generation and power quality requirements in 

standalone and grid-connected applications. 

Keywords: Reinforcement learning, Maximum power point tracking (MPPT), Partial shading conditions, Grid-

connected photovoltaic systems, DC-link voltage regulation, Inverter control and power quality 
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I. Introduction: 
PV system is inherently a nonlinear power 

processing device and thus its operating point should 

be adjusted to obtain the most power efficiently. The 

power–voltage (P–V) curve represent for a uniform 

irradiance has one dominant single maximum, and 

conventional MPPT methods are able to reach the 

convergence of such single maximum phenomenon. 

Partial shading conditions (PSC) due to clouds, 

soiling, nearby obstacles or module mismatch cause 

a fundamental change in the tracking problem as the 

array P-V curve has multiple local maxima and one 

global maximum. This makes MPPT working point a 

worldwide time-varying nonconvex optimization 

problem with a strong dependence on the topology 

of array, bypass-diodes states, and fast transients in 

both irradiance and temperature [1], [2]. In practical 

terms, PSC exactly is a reliability and PQ stress: the 

frequent GMPP changes will bring about oscillatory 

control, DC link voltage disturbances, converter 

switching number which could be excessive as well 

as degrade grid-current quality—especially if 

MPPT/inverter control loops are not arranged in 

tandem [3], [4]. Therefore, the “high-reliability 

MPPT under PSC” must be taken in a broader sense 

than only tracking efficiency: it infers as well stable 

DC-link dynamics, limited switching/thermal stress 

on key components, ride-through capability with 

regard to measurement errors, and even expected 

behavior at the grid-side (low-ripple, low THD and 

ramp-rate limitation where relevant) [3]-[5]. 
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The multi-peak P–V characteristic under 

PSC is due to different substrings/modules working 

under different irradiance levels, and bypass diodes 

limit the voltage of shaded substrings to prevent hot 

spot effect. The corresponding piecewise structure 

gives rise to multiple quasi-stable LMPPs separated 

by voltage steps, that gradient-following algorithms 

can “lock on” a local suboptimal peak especially 

during dynamic shading transitions [1], [2]. 

Furthermore, PSC introduces non-Markovian 

behaviour since the “best” action at time t may 

depend on how recent changes (e.g., shading 

evolution, temperature drift, bypass conduction 

history) occurred that seem to be hard to describe 

through a straightforward static MPPT law [6]. This 

is one of the main reasons why recent work has 

started to describe GMPPT as a learning/decision 

problem instead of treating it as a fixed rule-based 

controller, especially when fast dynamics and 

uncertainty are predominant [6]. 

We note that classical local MPPT 

techniques—P&O, INC, hill-climbing derivatives—

are still commonly used because they are simple, 

sensor-light and robust under steady-state conditions. 

However, PSC violates their key assumption (single 

dominance maximum) and thus usually they 

converge to LMPPs, PBPS or also oscillate around 

bypass diode conduction switch points [7]. 

Literature on PSC has been progressed to a few 

GMPPT families: 

Scanning and segmentation strategies. 

These techniques perform periodically sweeping of 

voltage/current spaces or global search using 

segments. Although some of them achieve GMPP, a 

scanning activity leads to intentional power 

dissipation during sweep periods and it takes time 

when the shading is frequently altered [8]. 

Metaheuristic and swarm-based GMPPT. 

Methods such as particle swarm optimization (PSO), 

grey wolf optimization (GWO), hybrid among them 

are broadly used for global searching of multi-modal 

P–V curves. Recent researches persist in 

demonstrating an excellent PSC and insensitivity to 

multi-peaks, with the typical pessimism of high 

computational cost, sensibility to tuning parameters 

(population size, inertia/learning factors) but they 

also incur slow convergence/hunting risk in rapidly 

varying shading [9], [10]. E.g., one of the 2025 

robots carrying out PSO with sliding-mode control 

signals present as yet no waning of interest in hybrid 

global search robust control structures for PV 

microgrid energy management, but also that 

metaheuristics should be carefully engineered if they 

are to satisfy real-time constraints and prevent 

excessive chatter in their implementation [11].  

Fuzzy/Neuro-fuzzy and AI-assisted 

GMPPT. AI-assisted MPPT has gradually evolved 

from static ANN mapping to adaptive schemes based 

on online learning or hybrid inference. A 2025 

survey for AI-supported GMPPT in the PSC is 

summarized which covers the development in 

traditional, hybrid and AI oriented approach that 

highlighting the requirement of global search 

technique having fast transients with a small 

oscillatory deviation about GMPP for PSC [12].  

The MPC-based MPPT considers the DC–

DC stage as a predictive system, and selects the best 

control action that maximizes the predicted power (or 

traces a reference current/voltage) under 

consideration of constraints. A relevant recent 

example is the modified P&O-based MPC (APO–

MPC) approach tested on a multi-string PV array 

under PSC, which exploits short-horizon prediction 

to inhibit convergence at local maximum-power 

points (LMPPs) and promote power tracking [13]. 

This line of research is specifically related to “high 

reliability” as MPC can easily account for hard 

constraints on duty cycle, current limits and DC-link 

stability objectives rather than minimize steady-state 

power alone [14]. 

Taken in totality, this set of GMPPT families 

exhibits a trajectory: rule-based local tracking → 

global search → predictive constraint-aware tracking 

→ learning-based adaptive decision-making, with 

this last strand being increasingly influenced by 

reinforcement learning (RL) and deep RL (DRL). 

For a PV system, both the delivered energy 

and its grid integration are not only based on MPPT 

alone, but also on how the inverter controls current 

(or voltage) and DC-link energy during transitions 

when the power from the modules varies. PSC is 

responsible for rapidly occurring disturbances in 

voltage that are injected to the DC link. Failure to 

manage inverter control results in DC link 

oscillations, a higher current harmonics content or 

conservative power limiting yielding lower returns. 

Recent inverter-control literature accordingly shifts 

focus to predictive, constraint-aware methods and 

enhanced switching patterns. 

FCS–MPC directly computes the inverter 

switching states to minimize a cost function (e.g., 

tracking error + switch penalties), without the need 

for an explicit modulation stage. A scarified review 

of FCS–MPC for grid-connected PV inverters in [15] 

presents recent developments on advance prediction 

models, cost-function design and efforts to 

implement structures. Contemporarily, a review in 

2025 of MPC approaches for PV systems [16] 

elucidates how predictive control can accomplish 

regulating several objectives—extraction of power, 

regulation of DC-link voltage and maintaining grid 

current quality—while satisfying constraints. Taken 

together, these reviews justify that MPC is more than 

a performative tool and also serves as a reliability 
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scheme (bounded states, low switching stress, 

structured handling of constraints). 

Apart from the present-day tracks, grid tied 

inverters need to handle CMV and leakage currents 

(notably in case of transformerless topologies) and 

switching-stress compromise(s). In [17], a model-

based approach is used to develop finite-control-set 

MPCC (FCS–MPCC) and CMV suppression control 

for a grid-connected PV inverter, showing that the 

control of modern PV inverters tend to merge multi-

objective targets (tracking + CMV/EMI 

requirements). Such multi-objective control in PSC-

heavy operation is challenging since the PV-side 

fluctuations continuously drive DC-link and grid-

side transients [18].  

The same trend is seen in the recent review 

work published in 2025 detailing control techniques 

in combination with AI applications for grid-

connected PV inverters: utilizing data-

driven/adaptive techniques to enhance inverter 

control performances including stability, disturbance 

rejection and coordination with PV/DC–DC 

upstream [19]. This tendency is consistent with the 

rationale of MPPT–inverter co-control, particularly 

under PSC where the PV-side operating point varies 

rapidly and uncontrollably [20].  

PSC is a game where (a) there exist 

multiple local optima, (b) dynamics change over time 

and (c) there is also uncertainty and partial 

observability- in this case as the irradiance 

distribution is not directly measured. RL is explicitly 

formulated to learn control policies through 

interaction with an environment and can in theory 

find strategies that balance global exploration with 

rapid exploitation. The difficulty is how to design the 

reward and state representation: the learned policy 

always converges to GMPP with little oscillate and 

no dangerous exploration. 

Recent work resorts more and more to DRL 

for addressing high-dimensional, nonlinear 

dynamics. An outstanding 2024 Applied Soft 

Computing paper [show] designs a DRL-based 

MPPT technique based on the PPO with LSTM 

(PPO–LSTM) to overcome the non-Markovian 

characteristic of PSC. Authors show that in random 

static and dynamic PSC test cases, high average 

MPPT accuracy is achieved, while explicitly 

claiming factor memory (LSTM) enables the agent to 

benefit from temporal aspects of shading transitions 

[21]. This is also of great importance for PSC, since 

the optimal action of the agent might rely on how the 

system reached its current state (recent ramps, bypass 

events) and not just on a single reading [22]. 

Hybrid approaches seek to blend classical 

control′s interpretability and robustness together with 

DRL's adaptivity. For instance, in [23] presents the 

concept of a hybrid fuzzy logic controller with 

DDPG-based learning component for MPPT in PV 

systems, making claims regarding robustness and 

convergence improvement and oscillation reduction 

using the hybrid technique. Actor–critic methods 

(e.g., DDPG, SAC, PPO) are appealing for 

continuous-control MPPT as the duty cycle (or 

reference voltage/current) is intrinsically 

continuous. Hybridization can also be used as a safety 

prior, constraining how exception-prone the policy is 

allowed to wander while learning. 

APO–MPC and its predictive MPPT 

counterparts show that prediction + constraint 

handling can also decrease the chance of locking to 

LMPPs and stabilize power extraction in PSC [24]. 

This is conceptually related to RL methods that use 

model-based rollouts or safe oracles as models 

aiming to "not do something harmful/inefficient by 

knowing if it will have negative consequences in the 

future". The literature on MPC-based MPPT suggests 

the rationality of incorporating constraint-aware 

decision making into RL MPPT, through constrained 

RL formulations or supervisory safety filters in the 

context of the proposed research paper. Though RL 

MPPT solves the optimization problem for PV panel, 

inverter-side RL research takes dynamic 

performance and robustness against modelling errors 

into consideration. 

A 2024 Energies paper presents a DRL-

based controller for a DC–DC converter, which 

follows the evidence that RL can be feasible in fast 

power-electronic loops as long as training and 

inference are designed accordingly [25]. Similarly, 

some RL based methods for grid-connected inverter 

control have been also studied, such as adaptive or 

learning-based synchronisation and control strategies 

under disturbances and uncertainties [26]. These 

works motivate the generalisation from “RL MPPT 

only” to joint RL over both PV-side and grid-side 

objectives especially when PSC causes fast power 

changes demanding on inverter and DC link.  

High reliability is based on the strength of 

DC-link stability. A DRL adopted for DC-link 

voltage regulation (in the fractional order PV-

integrated power-quality conditioner framework), 

interest in RL is again demonstrated toward robust 

DC-link regulation through dynamic profiles [27]. 

The consequence, while the topology is different 

from a normal PV inverter, is immediate: it can make 

RL an applicable control algorithm to manage DC-

link energy under uncertain, fast-varying PV input—

an identical scenario created by PSC. 

The PV inverter literature is more and more 

including reliability constraints within control law 

such as CMV limiting, switching losses reduction 

and bounded currents during transients [28], [1]. 

Because PSC amplifies transients however, an 

onboard RL MPPT–inverter control must be 
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consistent with such. A practical architecture is 

hybrid therefore with RL dealing with high-level s 

adaptation (optimal MPPT reference, mode switch, 

parameter tuning) and a predictive/constraint 

controller for safety in the fast-loops and compliance 

to the grid.  

Classical model-free RL is based on exploration that 

may result in hazardous behavior. For power 

electronics, it will be unsafe to explore the unknown 

space since overcurrent, triggering and thermal stress 

may lead to damage of devices. This is not a 

theoretical problem; Some recent work has been 

directly stated that this the obstacle to deploying 

online self-learning into physical converters [13]. 

A safe on-line RL for power converter 

switching control, since performing unsafe 

exploration in real converters is not acceptable. The 

approach is demonstrated on a two level (Voltage 

Source Converter) VSC test bed and positioned as an 

online learning approach for safe and optimal 

switching strategies [13]. This paper is of a 

significant importance to the suggested PV research 

topic since it sets power electronics-based precedent 

for safety policies or safety layers, which ensure 

exploration within safe operating envelopes. 

In energy systems, research on safe RL has 

grown rapidly. A survey of safe RL for power 

system control surveys safe-layer methods and 

constrained policy optimization, highlighting that 

safe training and maintaining safety at test time are 

critical [14]. A further key review presents safe RL 

methods for future power systems and their 

applications in the realm of operations and control, 

focusing on different ways to include safety 

principles within RL training and execution [15]. 

These studies present a useful guideline for some 

design choices important for high reliability PV 

control: 

• Constrained MDP / Lagrangian methods to 

enforce constraints in expectation. 

• Safety layers / Shielding to cast 

manipulations into a safe set in real time. 

• Lyapunov- or barrier-based safe RL for 

stronger stability-guarantees. 

• Safety fallback control: runtime assurance 

and supervisory architectures. 

 

These can be immediately extended to the case of 

MPPT-inverter coordination, in which constraints 

include current/voltage limits, ramp-rate bounds and 

grid-code obligations. 

With higher levels of PV penetration, PV 

inverters are integrated into a distributed control 

paradigm (microgrids, feeder voltage regulation, 

coordinated ancillary services). A 2025 survey 

(“Reinforcement Learning Meets the Power Grid”) 

presents safe RL frameworks, multiagent 

coordination, and runtime assurance ensuring reliable 

grid operation [16]. Although the proposed paper is 

on a single PV system under PSC, this more global 

perspective emphasizes that reliability-oriented 

learning and science have to be learned from scratch, 

and not just added at the end.  

In PSC, the MPPT changes PV power 

output quickly. That variability has to be absorbed by 

the inverter with buffering DC-link energy and 

current control. As pointed out, if MPPT aims to 

follow the instantaneous GMPP as fast and 

intensively as possible and ignore any DC-link or 

grid-side constraints, this can result in higher ripple, 

switching strain put on components and may finally 

lead to grid-code violations (e.g., ramp-rate 

constraints, power quality limits). If on the other 

hand variability is overtly filtered while being not co-

ordinated, energy yield is lost. From the MPC and 

inverter literature it becomes apparent that multiple-

objective optimization (tracking + switching + CMV 

+ constraints) can be addressed with little effort [1]–

[5]. At the same time, research on RL MPPT 

demonstrates that learning can improve upon local 

methods by generalizing beyond LMPPs and 

accommodate changing shadowing [6], [9]. The joint 

implication is that integrated (MPPT/inverter 

control) architecture is “preferred for high 

reliability”, with critical MPPT trajectory losses + 

inverter power welfare function considered via a 

single/stack of multi-objective RL or hierarchical RL 

+ predictive-control policy. 

• Several patterns of integration can be 

observed throughout recent work: 

• Hierarchical control (recommended for 

reliability). 

• RL learns references at a higher level 

(reference PV voltage/current setpoint, 

smoothing trajectories, derating decisions). 

• Quick inner loops (MPC/FCS–MPC/PI) 

impose limits of currents and voltages, with 

power quality. 

 

Such a structure is consistent with the safe 

RL, and it mitigates the risk of unsafe switching 

actions from RL inference. Second; it is more in line 

with grid-code requirements and CMV goals 

[13],[1],[4]. The second is learning on uncertain 

parameters, disturbance models or cost weight of 

MPC, which we will shall using RL. This is in line 

with the broader theme to employ AI for enhanced 

inverter control design and adaptivity [3], [5].  By 

shaping the reward and constraining safety, DRL 

agents can be trained to produce energy with long 

horizons but minimize DC-link ripple and switching 

stress [12], [10]. However, such methods require 

careful safety RL mechanisms for preventing unsafe 
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exploration and maintaining generalization to the real 

hardware.  

Recent PSC-centric literature more and 

more reports not only the tracking performance but 

dynamic / reliability related metrics. For example, 

research works such as PPO-LSTM DRL GMPPT 

investigations focus on the tracking accuracy under 

static and dynamic PSC and report that memory can 

help reduce the erroneous actions under non-

Markovian environment [6]. Predictive MPPT 

methods focus on stable extraction from and 

prevention of LMPPs by predicting future states [8]. 

AI applied GMPPT literature review focused on 

oscillation reduction and fast convergence, which 

have strong associations with converter stress and 

power quality [2]. When inverter control is taken 

into account, most of the existing literature focuses 

on quality of current tracking, potential for 

CMV/EMI issues and real-time computational 

feasibility 4. These observations are consistent with 

the “high-reliability” narrative for future research 

paper: the novelty claimed, will improve (i) GMPPT 

effectiveness under PSC, (ii) DC-link 

stability/power smoothing and (iii) grid compliance 

and device stress all together. Most RL MPPT papers 

perform well on their selected case of shading, 

however the real PSC configuration could be much 

more complicated. Temporal Features: Specialized 

for time-varying shading, we use the recurrent DRL 

(e.g., PPO–LSTM), which is promising since it can 

encode temporal structure and might gain better 

generalization when there is changing in shades 

happening over time [6]. However, the systematic 

generalization evaluation and domain randomization 

routines are not consistent throughout the literature. 

Some RL MPPT approaches try to 

maximize power with oscillation punishments, but 

there is no current/voltage constraint formulation in 

them. Safe RL investigations as well as converter-

focused safe online learning suggest that explicitly 

providing safety policies, shielding, or constrained 

RL is increasingly demanded – in particular for 

hardware usage [13]–[15]. Inverter control literature 

offer constraint aware strategies that are 

sophisticated (FCS–MPC, CMV suppression), while 

MPPT literature often assumes the inverter to be a 

perfect sink. PSC disrupts this assumption by 

introducing fast power fluctuations. The related 

literature, for the control of PV inverter and AI 

integration, also reveals that some coordinated 

regulations between DC–DC and inverter should be 

made [3], [1], [5]. MPC surveys mention the issue of 

real-time implementation and the compromise 

between fidelity and computational burden of model 

[5]. RL-based control converters and safe RL 

methodologies have stressed the necessity to 

constrain inference, while maintaining safety during 

deployment [10],[13],[14]. All these gaps serve as a 

combined motivation for your proposed contribution: 

you will provide a high-reliability, adaptive MPPT–

inverter control framework using reinforcement 

learning expressly tailored for PSC with 

safety/reliability constraints and coordinated grid-

side objectives. 

 

II. The Proposed MPPT–Inverter Control 

for PV Systems Using Reinforcement 

Learning. 
The global control architecture for high-

reliability, adaptive energy harvesting and grid-

compliant power injection from PV systems under 

PSC proposed in this paper (see Fig. 1) is shown 

herein. The chart is organized to stress the fact that 

the MPPT problem under PSC is not a stand-alone 

optimization issue (as it was for CP), but rather a 

coupled, closed-loop control issue in which PV-side 

decisions immediately propagate into DC-link 

dynamics, inverter current quality and then into the 

reliability of the whole conversion chain. Therefore, 

the proposed architecture is formed by the fusion of 

three closely linked layers: (i) an MPPT decision 

module driven by RL, (ii) a reliability/safety 

supervisor and (iii) an inverter control layer with 

associated stable DC link regulation and grid-side 

power quality requirements. 

At the on-site PV source level, since the 

time-varying irradiance and temperature, the P–V 

characteristic of the PV array under PSC becomes 

nonconvex with multiples of local maximum power 

points (MPPs) and a moving global MPP. The 

controller thus approximates in real time the 

dependence on the operating region by means of 

electrical measurements (primarily VPV and IPV) with 

various derived terms (such as ΔP, ΔV and, 

optionally IV) used to aid the search for GMPP. This 

is observation vector for the reinforcement learning 

(RL) MPPT agent which has been structured as an 

actor–critic policy (or a similar DRL form). An 

action is provided by the RL agent, which shifts the 

DC–DC conversion stage and is usually referred as a 

duty ratio command D or reference PV 

voltage/current. By contrast, while local gradient-

based conventional perturbative MPPT methods can 

get stuck at a local peak, the RL agent is constructed 

to learn an ordered policy which involves both 

exploring and exploiting actions and thus is able 

break away from local maxima and track the GMPP 

with variation of shading patterns. 

A major component as noticed in Fig. 1 is 

the introduction of a reliability and safety layer 

between the RL agent and the power-electronic 

actuators. This layer imposes strict operational limits 

and avoids unsafe as well as excessive/aggressive 

control actions. For a practical deployment, it 
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enables action limiting (e.g., duty-cycle saturation 

and slew-rate limits), constraint checking (e.g., PV 

voltage/current limits and DC-link bounds) that can 

inform supervisory logic (which may also assert a 

deterministic fallback MPPT strategy during 

abnormal situations such as sensor faults, oscillations 

around the MPP or out-of-bounds shading patterns). 

This architecture is targeted toward a key critique of 

using learning-based controllers in power 

electronics: while RL can enhance adaptivity and 

global search ability, unbounded exploration may 

result in intolerable transient responses. The safety 

envelope, thus mitigates the learning-based control to 

stay safe and operation inside the apparatus thereby 

maintaining performance as well as preventing 

components from being subjected to undesired 

switching stress, over currents or DC-link excursions. 

To the right of the DC–DC section, in Fig. 

1 controls not only the DC-link voltage VDC and grid 

current injection (which is usually stated in 

synchronous dq coordinates as id and iq). The latter 

one makes the power extracted from MPPT stage to 

be grid-delivered with desired p-q characters. It is 

also worth noting that the inverter controller 

functions as a stabilizing layer between a very 

unpredictable PV source and the grid, while 

preserving a regulation of the DC-link even during 

fast PSC-induced power variations. By acting in 

collaboration with the MPPT layer, the inverter 

controller can additionally cater to power 

smoothening directives and ramp-rate limitations and 

reactive-power needs towards better meeting grid 

code regulations while mitigating stress on DC-links 

capacitors and devices. The reinforcement structure 

of the architecture is highlighted by the feedback 

paths in Figure 1: on one hand, measurement data 

from the inverter side (DC-link deviation, current 

tracking error and power quality measurements) are 

used for regulation; those feedbacks also feedback to 

RL reward/performance evaluation, which allows 

MPPT policy to steer clear from actions that 

destabilize controller while exploring actions that 

maximize Energy Harvest. 

Finally, Fig. 1 shows that the proposed 

method turns out to be robust under PSC thanks to 

coordinated decision-making at every stage of the 

conversion chain. The RL MPPT block serves G-

optimal and fast tracking of nonuniform irradiance, 

the safety supervision block is pursued to ensure 

constraints satisfaction and operational safety while 

the inverter control block aims at delivering energy 

persistently stable and grid-conform output. Such 

integrated structure is necessary for practical grid-

connected systems in which the maximization of the 

PV power cannot be achieved at the expense of high 

oscillation, component stress, or grid perturbation. 

Through the explicit integration of MPPT and 

inverter goals, and embedding safety measures into 

the learning loop (as in Fig. 1 presents a consistent 

route to achieve the combination of maximum energy 

extraction and high reliability in complex shading 

conditions. 

Figure 2 shows the complete procedure of 

high-reliability reinforcement learning (RL) MPPT–

inverter control framework, wherein the control is 

performing real-time transformation from raw 

electrical measurements to safe and grid-compliant 

control actions under PSC. The proposed process is 

based on the online capture of PV side signals, in 

particular VPV and IPV which are used to calculate 

P(t)=VPVIPV instantaneous power, ΔP etc. These 

state variables are crucial since the PSC often entails 

non-convex P–V characteristics to which local 

gradients can be misleading, and instead uses a rich 

observation vector (comprising filtered 

measurements as well as short history calls, if 

applied) to track the changing operating region in 

order to ensure strong decision-making under fast 

irradiance variations. 

Following measurement and feature 

extraction, the circuit flows to a PSC 

detection/decision arm that decides if the running 

landscape is probably multi-peaked. There are two 

such combination voltage points at present in each 

string and that, as will be apparent from Fig. 6 can be 

further evaluated to provide curves which use such 

nodes for classification of mismatch using indicators 

(e.g., ones based on behaviour of product, abnormal 

ΔP, ΔV etc.), into uniform or partially shaded 

condition. When PSC is discovered, the workflow 

allows “global-search” actions in terms of the RL 

policy such that exploration is sufficient to get away 

from local maxima so as to find way to global 

maximum power point (GMPP). Under 

approximately uniform conditions, we can work 

under a predominantly exploitative policy for the 

same reason as above: To attenuate steady state 

oscillations and prevent unneeded changes to be 

made. This decision logic becomes very important 

for reliability since it limits aggressive exploration 

only when inevitable, which leads to control 

chattering decrease and the stress on switching 

devices and DC-link components minimization. 

The RL-based MPPT decision step is the 

heart of the workflow. The agent (implemented as an 

actor–critic or other deep RL policy) takes the 

observation vector as input and yields a control 

action, for example, a duty-cycle update D (for a 

DC–DC boost or buck-boost stage), or PV voltage 

reference. The agent is effectively learning a function 

that will maximize cumulatively achieved energy 

yield, not simply power at any given point in time, 

which is critical under PSC where brief non-

optimizing actions (temporarily leaving a local peak) 
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may be required to find the GMP loads. In the 

proposed architecture, the structure of reward is 

aware of reliability: higher power extract action is 

rewarded but doping related extractions are to be 

avoided via a penalty that discourages extremes in 

control variation (e.g. large ΔD), sustained 

oscillation, and behavior that either increases DC-

link deviation or undermines severity at inverter-side. 

Hence the RL agent is encouraged to arrive at and 

stay in the GMPP with low ripple instead of 

oscillating around this optimal value. 

A distinctive feature able is the explicit 

safety and safeguard inter positioned between the 

RL output and hardware actuation as illustrate in 

Figure 2. This block realizes hard operational 

constraints (e.g., duty-cycle saturation, slew-rate 

bounds, PV voltage/current limits as well as DC-link 

voltage thresholds) to ensure that the learning policy 

does not steer commands into unsafe areas of the state 

space in cases where there are drastic changes in the 

environment or when measurements are corrupted by 

noise. The safeguard layer can be viewed as an 

action “projection” mechanism (clipping and rate 

limits), a rule-based wall that refuses to execute 

actions exceeding the predicted boundaries, and a 

supervisory fallback trigger. The fallback mechanism 

becomes particularly important for dependable 

operation: whenever anomalous behavior is detected 

(e.g., repeated constraint approaches, instability 

indication, sensor faults or out-of-distribution 

patterns), the controller switches to a baseline MPPT 

strategy and a conservative inverter operation mode 

to stabilize and preserve hardware. This architecture 

tackles a key impediment of deployment for RL in 

power electronics—unsafe exploration, directly 

addressing safety and maintaining the robustness of 

our proposed method towards practical 

imperfections. 

After the verified MPPT command is 

delivered to DC–DC stage, the process connects 

with inverter control level. The inverter controller 

controls the value of the DC-link voltage VDC  and 

grid-side currents (id, iq), transforming extracted PV 

power to a grid-compatible injection ensuring power 

quality. This step is important as the PSC can induce 

quick power changes that can potentially excite the 

DC link and in the absence of tight control of the 

inverter it may cause DC-link oscillations, current 

distortion, or ramp rate violations. In the trajectory, 

inverter control is dimensioned to be a stabilizing 

inner loop which enforces chain current capacities, 

reactive power factor requirements and concurrently 

smooths ramping if throttling limiters are active. 

Crucially, the workflow is articulated as to ensure 

that that the MPPT decision does not run in a “blind” 

way against inverter behavior: measured inverter-

side magnitudes (DC-link offset, current error and 

power quality indicators) are looped back into 

performance signals influencing RL reward and 

supervisory logic. This feedback closes the PV-side 

energy maximization and inverter-side reliability 

loop, while encouraging MPPT actions that do not 

have a DC link destabilizing effect or degrade current 

quality. 

The workflow finally concludes with 

online performance evaluation and policy refinement 

triggers. Power production, tracking efficiency, 

stability metrics and constraint flags are observed to 

generate rewards, detect anomalies and make 

adjustments between shading conditions and 

disturbances. This sensing helps the controller keep 

stable operation across PSC transitions, such as 

quickly moving shadows, stepped irradiance 

changes, temperature change and noisy or slow 

sensing. Overall, Fig. 2 shows that the proposed 

method does not represent an RL MPPT algorithm 

only, but an entire safety-aware MPPT–inverter 

control flow with (i) PSC identification, (ii) adaptive 

RL decision making, (iii) explicit constraint 

satisfaction with fallback guarantees and (iv) 

inverter conditioning including power-quality 

feedback. This combined workflow is the foundation 

for realizing both high energy yield in PSC and 

practical reliable operation for large-area grid-

connected PV application. 
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Fig. 1. Schematic of the proposed high-reliability RL-based MPPT–inverter control architecture for PV 

systems operating under partial shading conditions (PSC). 

 

 
Fig. 2. Flow chart and workflow of the proposed high-reliability RL-based MPPT–inverter control for PV 

systems under partial shading conditions (PSC). 
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III. Simulation Results and Discussion 
Simulations To validate the performance of 

the proposed HR topology with reinforcement-

learning MPPT (RLMPPT) structure and inverter 

under PSC, extensive time domain simulations were 

carried out based on a 2stage grid-connected PV 

conversion system comprised of: (i) a PV array 

interfaced by a DC–DC boost converter acting as 

MPPT, (ii) followed bya three-phase VSI connected 

to the grid via an LCL filter performing DC-link 

regulation and injecting current into the grid. The 

simulator replicates the relevant phenomena 

necessary for PSC verification, such as nonlinear I–

V characteristics of the PVs with bypass-diode 

switching and substring mismatch effects (inducing 

multiphase P–V curves), fast dynamics of the 

converter switching operations (either a detailed 

switch model or an average model with equivalent 

ripple/constraints), measurement noise and realistic 

grid perturbations (e.g., voltage sags and transients). 

The PV array is represented using a temperature-

dependent single-diode equivalent circuit, with 

bypass diodes being included per substring to 

emulate the nonconvex GMPP curve under PSC. The 

MPPT is realized by controlling the boost-converter 

duty ratio and explicit enforcement of duty-saturation 

and slew-rate limits also consider realistic gate-

driver and passive-component limitations. 

Downstream, the VSI controls the DC-link voltage 

Vdc and provides three-phase current to grid using 

synchronous dq-frame current controller with 

SVPWM. This inverter stage constitutes the 

stabilizing layer between the stochastic PV source 

and grid connection (resulting into bounded DC-link 

dynamics and current injection meeting to power 

quality requirements even under fast irradiance 

variations). All controllers were evaluated under 

identical hardware, sensing, and grid parameters to 

ensure a fair comparison (Table I). Four control 

configurations were benchmarked: B1, a 

conventional fixed-step P&O MPPT with standard 

inverter regulation; B2, a PSC-enhanced incremental 

conductance (INC) MPPT with event-triggered 

partial scanning for GMPP recovery; B3, a 

metaheuristic PSO-based global MPPT (GMPPT) 

operating on the same power stage; and B4, the 

proposed RL-based MPPT integrated with the 

safety shield, fallback supervision, and inverter-

aware coordination objectives. 

 

Table 1. Simulation and control parameters 

Item Value 

PV module model 
Single-diode (temperature-dependent) with bypass diodes per 

substring 

PV array configuration 2 strings × 10 modules in series per string 

Module STC rating (each) Pmpp=400 W, Vmpp≈41 V, Impp≈9.8 A 

Array rated power (STC) ≈ 8 kWp 

Temperature range 25–45 °C (steps/ramps for robustness tests) 

DC–DC stage Boost converter, duty-cycle MPPT 

Boost switching frequency 20 kHz 

Boost inductor L=2.5 mH, ESR ≈ 30 mΩ 

Input capacitor Cin=470 μF 

DC-link capacitor Cdc=3300 μF 

Duty-cycle bounds D ∈ [0.05, 0.90] 

MPPT update rate 200 Hz (TMPPT=5 ms) 

Inverter topology / rating 3-phase VSI, 10 kVA, 400 V (L–L), 50 Hz 

Inverter switching frequency 10 kHz (SVPWM) 

LCL filter L1=1.8 mH, L2=1.2 mH, Cf=10 μF 

Filter damping Rd=1.5 Ω (passive/active damping equivalent) 

DC-link reference Vdc=700V 

Sensor noise (rms) Vpv : 0.3%, Ipv : 0.5%, Vdc: 0.2% 

Delay (robustness tests) 10 ms feature delay + 1 MPPT-step actuation delay 
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Fig. 3 shows how PA changes the PV 

operating landscape and clearly explains why 

differences in performances among the conventional 

(I-V characteristics), scan-based, metaheuristic and 

RL-based MPPT strategies exist. Under uniform 

irradiance, the PV P–V characteristic has one 

strongly dominant maximum; hence local-gradient 

methods like P & O (B1) work confidently because a 

small voltage perturbation gives a reliable ascent 

direction toward its unique MPP. Nonetheless, in the 

region of PSC (S1 and S2), due to bypass-diode 

conduction and nonuniform irradiance between the 

substrings, multi peak in current–voltage curve is 

achieved with multiple local maxima and single 

global maximum power point (GMPP). In Fig. 3(b) 

(S1), the plot shows two large peaks accompanied by 

a voltage step. In this scenario, B1 may have a 

tendency to converge towards the closest local 

maximum (LMPP) and sway around it as the sign of 

increase in power becomes locally consistent even 

though solution is globally suboptimal. This 

"trapped" situation is not transient; it could last for 

very long time until an external noise or a too-large 

perturbation causes a jump over the low-power 

region. The physical inference is that there is 

persistent energy dissipation under PSC if the 

controller happens to start from the “wrong” side of 

the P–V landscape. 

 

Figure 3(c) (S2) complicates this task by 

employing four peaks, which can be interpreted as 

stronger shading or a shading distribution over 

several substrings. The larger number of maxima 

causes the basin of attraction of the GMPP to shrink, 

and leads to local methods being more and more 

unreliable: indeed different areas on the voltage axis 

result to be locally stable peaks. The trajectories 

shown in Fig. 3 show that B2 (PSC enhanced INC 

with event-triggered partial scanning) can enhance 

the probability of obtaining the GMPP by conducting 

a partial scan periodically along P–V curve. 

However, it also illustrates the cost of this approach: 

the scan windows cause a temporary shift of the 

operating point from its optimum, with clear and 

short under- or overshoot. These scan generated 

deviations can also couple into (that is effect) the DC 

link and inverter control, leading to momentary 

voltage disturbance and increased control action, 

especially under rapidly variable PSC where scans 

could be initiated frequently. 

 

Better global search performance is 

illustrated with the metaheuristic baseline B3 (PSO-

GMPPT) when compared to the other two baselines, 

i.e., B1 and B2 which can traverse larger part of 

operation space and escape from being trapped by 

local gradient information. In Fig. 3, B3 tends to 

move closer to the GMPP in multiple peak cases. 

However, it is also showing a typical trade-off of 

metaheuristic approaches in fast changing PSC 

solutions: It's slower to convergence and the control 

trajectory may exhibit more variation as it searches 

for the best solution when exploring-exploiting 

between shadowing instances or sharply varying 

incidence patterns. 

On the other hand, to obtain the GMPP, the 

proposed method B4 is able to reach it without 

posing reiterative full or partial scans, while 

revealing a smoother tracking path after its best is set. 

In Fig. 3 results can be seen as a two-phase strategy 

of B4: an initial short exploratory behavior that 

permits escape from LMPPs, and then a stabilization 

behavior to avoid oscillation around the GMPP. This 

is in line with our RL formulation, in which the policy 

is trained for maximizing cumulative energy and not 

instantaneous power as well as being penalized for 

large control variation. Therefore, when the agent 

discovers the high-reward region corresponding to 

GMMP, it can inhibit unnecessary dithering, leading 

to less ripple compared with B1 and fewer disruptive 

perturbations than scan-based B2. This behavior is 

crucially strengthened by the safeguard of run time 

safety (not directly plotted in Fig. 3 but enabling to 

work in the workflow) that limits rapid duty-cycle 

variations and aggressive exploration actions that 

generate large voltage/current excursions. 

Overall, Fig. 3, the quantitative results are 

summarized at a more mechanistic level. The seven-

peak profile under B1-The multi-peak feature in S1 

and S2 suggests that the local trapping may lead to 

continuous energy dissipation for some value of B, 

improvement on detection ability of GMPP can be 

achieved by increasing number of peaks with 

matching significance (grooming power), larger or 

smaller number of peaks are likely to increase 

variability in control action, efficiency of MPPT is 

maintained at peak level and scan-based dips will 

reduce. These observations drive the integrated 

reliability-based design of the considered RL MPPT–

inverter control, to achieve global optimality under 

PSC and a limit on oscillation, ramp spikes or stress-

inducing control activity. 
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Fig. 3. Representative PV power–voltage (P–V) characteristics under (a) uniform irradiance and partial shading 

cases (b) S1 (2-peak PSC) and (c) S2 (4-peak PSC), illustrating the presence of multiple local maxima and the 

shifting global maximum power point (GMPP). The tracking trajectories compare baseline MPPT strategies (B1: 

P&O, B2: PSC-enhanced INC with partial scan, B3: PSO-GMPPT) against the proposed B4 (RL-based MPPT), 

highlighting that B1 can remain trapped at a local MPP, B2 incurs power loss during scan intervals, B3 converges 

more reliably but with higher control variability, while B4 reaches the GMPP rapidly with minimal oscillation 

and reduced ripple under PSC. 

 

Figure 4 illustrates the inverter-side effects 

of the MPPT response under PSC and indicates why 

MPPT performance must be assessed along with DC-

link stability and grid-current power quality. As an 

example, the normalized DC-link voltage deviation 

(Vdc−Vdc⋆)  is plotted in the upper diaphragm for 

fast PSC transition case (D2) where the GMPP shifts 

often and the PV-side power reference effectively 

turns as a high frequency variation disturbance to the 

energy at DC-link buffer. Under this condition, the 

DC link is to compensate for immediate difference 

between power drawn from the PV array and fed to 

the grid by the inverter. Any MPPT algorithm that 

causes the PV power to oscillate—either due to 

continued disturbance around an operation point or 

because of stepwise exploration—places high-

frequency power ripple on the DC link, which 

requires current modulation with the inverter and 

increases the risk for voltage spikes and distorted 

load currents. 

The trajectories in Fig. 5 indicate that the 

classic baseline B1 results in the maximum DC-link 

excursions (peaks of ⩲4.8%± 4.8%) which is a 

consequence of fixed-step perturbation methods 

leading to sustained oscillations and some degree of 

mis-tracking during multi-peak PSC. The disturbance 

is in the form of periodic power fluctuations, which 

are buffered by DC-link capacitor and hence have 

relative slower damping and larger Vdc  deviation 

envelope. Whilst B1 could be tolerable even for 

uniform irradiation, the multi-peak nature and fast 

PSC changes in D2 further increase decoupling 

between local MPPT disturbance and inverter 

dynamics causing more DC-link stresses action on 

transistor short-circuit risk slowing it toward 

protection trip levels. 

The PSC-enhanced scanning method (B2) 

decreases long-trapping at local maximum but 

incurs its own scan-related disturbances. It is this 

behaviour that can be observed in the short but 

pronounced DC-link perturbations at the moments 

of scanning (i.e., called scan windows) when the 

operating point is artificially located away from its 

optimum position to re-locate the GMPP. Although 

these scans outperform B1 in terms of mean power 

yield, they momentarily inject energy to the DC side 

and so provoke the transient behaviour of the 1DC 

link. This then exposes a key trade-off of scan-based 

GMPPT: it improves global optimality at the cost of 

injecting structured disturbances that the inverter will 

need to reject more aggressively, especially when 

scans occur frequently due to rapidly changing 

shading conditions. 

On the other hand, the proposed B4 offers 

most stringent DC-link regulation with peak 

deviation of about ±1.4%\pm 1.4\%±1.4% in D2 and 
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faster settling toward to nominal PSC region again 

after a PSC transition. The significant improvement 

has two linked designs in the proposed model. 1) The 

first strategy is to train the RL policy using P&O loss 

plus inverter-aware penalties (e.g., DC-link deviation 

and ramp-rate terms), directly against MPPT actions 

that decay Vdc, even if they momentarily raise PV-

side power. Second, the kinetic safety shield limits 

both excessive duty-cycle changes and aggressive 

exploratory actions that may result in large power 

surges or dips. This results in a reduced peak-to-peak 

and frequency range of the PV power ripple 

delivered to the DC link, which reduces burden on 

Cdc of the energy buffer while increasing damping 

for the closed-loop PV–DC-link–inverter model. 

The lower portion of Fig. 5 further relates 

DC-link stability with quality of grid current, by 

indicating that higher distortion is presented during 

the transients from those controllers which generate 

higher Vdc excursions and high PV power 

oscillations. In the case of B1, this means that the 

inverter needs to react more aggressively to balance 

for changes in DC-link energy leading to higher 

current tracking error (and typically a lower THD) 

being present when significant PSC dynamics are 

encountered. B2 has a better THD than B1, however 

there are distortion spikes still visible according to 

scan-induced DC-link disturbances. By enhancing 

PV power smooth modulation and DC link 

regulation, B4 mitigates the correction responsibility 

from the current controller and thus incurs the leastest 

THD (i.e.~2.1-3.0% in examined PSC cases) with 

more grid friendly items compared with other 

methods. 

Overall, Fig. 4 shows that the proposed 

method enhances reliability since MPPT behavior is 

designed to be in a good coordination with inverter 

tracking dynamics instead of optimizing PV-side 

power independently. The net effect is a 

synchronized closed-loop behavior that not only 

ensures the actuation of DC-link flux feedback 

regulation through PSC-induced GMPP rapid shifts 

with low stress, but also provides faster settling and 

reduced distortion of grid currents. This number 

therefore corroborates the thesis of the paper: high-

speed MPPT under PSC should be formulated as a 

single, integrated MPPT–inverter problem, capturing 

energy while closing on the stability and power-

quality margins. 

 

 
Fig. 4. DC-link regulation and inverter-side power quality under fast PSC transitions (D2) for B1–B4. The upper 

panel shows the normalized DC-link voltage deviation (Vdc−Vdc⋆), highlighting that the proposed B4 (RL 

MPPT) achieves the tightest regulation (peak deviation ≈±1.4%) compared with B1 (P&O), which exhibits larger 

excursions (up to ≈±4.8%) due to oscillatory MPPT and slower damping of DC-link energy mismatch; B2 displays 

brief perturbations associated with scan events. The lower panel shows representative grid-current waveforms and 

the corresponding THD summary, indicating improved current quality under B4 (lowest THD) as a result of 

smoother PV power modulation and better coordination with inverter tracking dynamics. 

 

Figure 5 illustrates the robustness 

performance of the considered MPPT–inverter 

control designs by showing the corresponding 

performance envelopes as model/plant perturbations 

are enhanced. Two complementary indicators are 

uated concurrently: (i) energy yield degradation 

versus the nominal (well modeled) case, and (ii) peak 

normalized DC-link voltage deviation it represents 
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how much reactivity of PV-side fluctuation and 

modeling errors to propagate until reaching inverter 

energy buffer. It is important to consider both axes, 

since an MPPT method can look “effective” from the 

PV-side-tracking perspective and still stress DC link 

to the unacceptable levels and also have a negative 

impact on grid current quality. Thus, Fig. 8 gives a 

succinct, system-level characterization of the 

reliability under mismatch. 

As the uncertainty increases from 0% to 

30%, all controllers display a decrease in captured 

energy as the PV operating point becomes more 

perturbed by biased gradients, parameter drift, and 

mismatch between the MPPT stage and inverter 

dynamics. But the extent of decay is far from 

uniform. The baseline B1 (P&O) presents the most 

rapid degradation of performance, reflecting a strong 

sensitivity to uncertainty. Such behavior is in 

agreement with PSC operation: P&O uses local 

power changes to decide the direction of 

perturbation, and under a mismatch (together with 

measurement noise), the incremental signal loses its 

information content and provokes steady-state 

oscillation or local-maximum trapping. Practically 

speaking, the envelope indicates that B 1 behaves 

not only as losing power but also more and more 

“restless”, injecting greater and faster power swings 

to the DC link. 

This scan-assisted method B2 (INC + partial 

scan) is performing better than B1, especially at 

moderate uncertainty events, which is expected as it 

reduces the probability of trappings at long distances 

of a local maximum due to periodic scanning. 

However, the energy-loss curve continues to ascend 

steadily with ambiguities. This is as expected, 

because scanning itself introduces unescapable 

energy cost overheads (from operating outside of the 

optimum during the scan window) and under 

mismatch/noise, the triggering logic may cause more 

frequent scans to occur, leading to a cumulative loss. 

In addition, scan-induced excursions can lead to 

excitations of the DC link even though the average 

MPPT result is better. This feature appears on the 

DC-link deviation envelope which is still 

significantly higher than what can be achieved by the 

proposed method. 

The metaheuristic GMPPT baseline B3 

(PSO) introduces further robustness to the proposed 

algorithms when compared with B1 and B2, thanks 

to the fact that its search is less sensitive to local 

correctness of gradient maps and it is able to better 

cope against distorted P–V landscapes. Fig. 8 

demonstrates that, with the uncertainty being 

enhanced, B3’s energy loss rises much slower than 

that of B1–B2. However, B3 increases measured 

energy loss and DC-link deviation with the 

uncertainty level. This is mostly due to larger 

command jitter in fast changing PSC induced by 

hybrid task scheduling, and under mismatch the 

algorithm will likely spend more time in exploration 

mode before reconverging, resulting in increased 

power fluctuation. 

B4 also suffers the lowest degradation on 

both axes for up to full uncertainty. The energy-loss 

bounds envelope is flatter (e.g., less than a factor of 

2 even at ±20% mismatch) while the maximum DC-

link deviation grows only modestly as uncertainty 

increases. This result is due to two design principles. 

Firstly, the RL policy is trained to maximize total 

energy with explicit costs for CO-application such as 

high ripple, ramp-spikes or DC-link deviation and it 

thus tends -- under mismatch -- to follow moves that 

are "safe" and dynamically consistent rather than 

following greedily noisy power increments. Second, 

the safety shield from transient operation limits how 

much and how quickly duty can be changed, which 

prevents the controller from turning large PV power 

modeling errors into corresponding large excursions 

that would otherwise stress the DC link. All that is 

combined to attenuate the sensitivity of the closed-

loop PV–DC-link–inverter system with respect to 

uncertain parameters and imperfect measurements. 

One of the most crucial interpretations for 

the reliability is that related with the DC-link 

envelope. As the uncertainty increases, B1 has the 

most significant increase of peak Vdc deviation, 

which means its accelerated MPPT-induced power 

oscillation is transformed into more mismatched 

energy that needs to be compensated by DC-link 

capacitor. This not only raises the voltage stress of 

Cdc and switching devices, but also requires an 

inverter current controller to be more aggressive 

which often exacerbates current distortion during 

transient. B4, however, keeps the DC Link 

regulation at its tightest level over all levels of 

uncertainty proving that its take-up power strategy is 

less engaged with inverter tracking dynamics. From 

an engineering point of view, this means that B4 can 

undergo higher – and even the highest – energy in 

case of mismatched conditions without any “price” 

paid in terms of increased DC-link stress or power 

quality degradation– which is mandatory for high 

reliability PV conversion under PSC. 

Overall, Fig. 5, supports the main robustness 

claim of the paper that in the presence of parameter 

uncertainty as well as sensing/decision constraints 

errors, compared with conventional point-based and 

scan-based solutions as well as heuristic or 

metaheuristic approaches, our RMP provides: (a) 

relaxed performance sensitivity; (b) better constraint 

satisfaction; and (c) less stress on energy-buffer. This 

“robustness” is not just a PV-side MPPT benefit; 

rather, it is a system-level advantage that actually 

results in higher reliability, less stress on the 
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components and more grid-friendly operation under 

unstable and rapid changing conditions encountered 

by real PSC environments. 

 

 
Fig. 5. Robustness envelopes under model uncertainty and sensing imperfections comparing B1–B4. The figure 

plots (left axis) energy yield degradation relative to the nominal case and (right axis) peak DC-link voltage 

deviation as the uncertainty level increases (0–30%). The proposed B4 (RL MPPT + safety shield + fallback) 

exhibits the smallest performance degradation and the tightest DC-link regulation across uncertainty levels, 

indicating reduced sensitivity to parameter mismatch and improved feasibility compared with conventional MPPT 

(B1), scan-assisted MPPT (B2), and PSO-based GMPPT (B3). 

 

Figure 6 shows grid-friendly the operation 

of the MPPT–inverter system through a ∣dP/dt∣ 
magnitude plot in case of a moving-shadow PSC 

profile where a ∣dPr/dt∣ rate limit Rmax  is imposed. 

The dashed horizontal line references the acceptable 

ramp boundary, frequently imposed in distribution-

connected PV applications to reduce fast power 

variations that can cause voltage flicker and strain 

grid regulation resources as well as violate 

requirements set by interconnection agreements. As 

partial shading causes the GMPP to drift with time, 

and can lead to sudden changes in the locally 

“optimal” operating point, the ramp rate becomes an 

important figure of merit for reliability in addition to 

energy yield and steady state MPPT efficiency. 

The results in Fig. 6, reveal that the 

traditional controller B1 (P&O) has very high 

amplitude for ramps spikes and it constantly 

oscillates above Rmax. This is in line with the 

characteristic of P&O method under PSC that keep 

perturbing the current operating point and responding 

to local incremental power variations. At the 

moments of shading transitions, the local slope 

information changes rapidly or temporarily becomes 

incorrect, which will lead to overcorrection of 

algorithm and over-crossing operating points. These 

behaviours result in step-wise variations of the PV 

power that the inverter has to follow. Here, |dP/dt| 

has a sharper increase during the transitions, and 

violations are encountered multiple times inside the 

moving-shadow window. From the system point of 

view, these ramp spikes mean more aggressive 

inverter current modulation and DC link energy-

buffer stress, which can not only worsen power 

quality but also shorten component lives. 

Method B2 (INC + partial scan) exhibits 

better ramp behavior compared to that of B1, 

although transient spikes are still visible. The 

enhancement takes place since scanning prevents 

long-term operation at a wrong local maximum, but 

scan events themselves deliberately sweep the 

operating point along the P–V curve for the 

rediscovery of GMPP. These can see in Figs. 6 as 

rapid spikes of high ∣dP/dt∣, which may even reach or 

exceed this ramp limit depending on the scan speed 

and shading intensity. Therefore, as B2 increases 

global tracking reliability, it introduces structured 

ramp disturbances that can be challenging if grid 

ramp constraints are tight or PSC varies frequently 

(resulting in frequent scan triggers). 
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The proposed metaheuristic baseline B3 

(PSO-GMPPT) shows an even fewer occurrences of 

ramp exceedances and less severity compared to the 

B1; however, it still has occasional ramp spikes due 

to exploration bursts. The GMPP is continually swept 

within moving shadows, for which PSO needs to 

update the candidates operating points in order to 

guarantee global tracking. These exploratory 

behaviours may involve short-term power-bursts as 

the controller deems candidate solutions as 

responsible, which can elevate local values of 

∣dP/dt∣|dP/dt|∣dP/dt∣. Therefore, although B3 

enhances compliance in general there is no complete 

suppression of ramp events especially when the 

GMPP migrates rapidly. 

On the other hand, implementation B4 (RL 

MPPT + safety shield) yields the most reliable ramp-

rate fulfilment, as ∣dP/dt∣ is largely below Rmax and 

almost no violation events occur under the 

investigated conditions. This advance is closely 

related to the controller design: ramp-rate 

performance is informed directly by RL objective 

and by runtime action constraints. The reward design 

punishes rapid power changes (either directly as a 

|dP/dt| penalty or using aggressive duty updates that 

spike the ramp). Second, the safety shield bounds the 

size and jumps of duty-cycle changes, which 

prevents sudden steps even if the learned policy 

encourages exploration in some transient periods. Put 

simply, it appears that B4 learns to “get close enough 

to the GMPP smoothly”, sacrificing some short-term 

aggressiveness for better grid alignment and less 

power-quality disturbance. Crucially, this does not 

indicate underperformance, conservative or 

otherwise: it simply reflects a deliberate tuning 

between energy yield and grid limitations necessary 

for efficient PV integration. 

Overall, Fig. 6 shows, not only does the 

proposed approach provide a primary benefit over 

traditional MPPT efficiency, but it also actively 

manipulates the power output trajectory in order to 

meet ramp-rate limitations at the same time as 

tracking a time-varying GMPP under PSC. This grid 

supportive response decreases the inverter current 

regulation requirement, lessens DC-link stress and 

promotes stable operation on weak or heavily loaded 

feeders where fast PV power ramps are not preferred. 

Within the high-reliability context, this figure verifies 

that B4 enhances more than just energy capture; it 

concludes that B4 also boosts compliance with 

operational constraints integral for real-world PV 

system operation. 

 

 
Fig. 6. Ramp-rate compliance under moving-shadow PSC with an enforced grid-friendly limit Rmax. The figure 

plots the instantaneous ramp-rate magnitude ∣dP/dt∣ for B1–B4 and the ramp constraint threshold (dashed line). 

Conventional perturbation-based MPPT (B1) produces repeated ramp spikes that exceed Rmax during shading 

transitions, while scan-assisted INC (B2) and PSO-GMPPT (B3) reduce violations but still exhibit transient 

exceedances associated with scan or exploration bursts. The proposed B4 (RL MPPT + safety shield) achieves 

the most consistent compliance, maintaining ∣dP/dt∣ largely below Rmax with near-zero violation events by 

directly penalizing ramp-rate and limiting aggressive control updates. 
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An engineering necessity to transfer RL-

based MPPT in grid-connected PV systems is that the 

controller has to operate under a very limited real-

time budget concurrently sharing high-frequency 

power-electronic control routines. In the presented 

framework, the MPPT is performed by the RL agent 

(SAC policy) with a rate of TMPPT=5 ms while 

simple inverter current controller and modulation 

operation at sampling frequency which can be far 

beyond TMPPT  protect them to become 

overcomplicated problems. Such a separation of time 

scales is convenient: slow-varying MPPT commands 

(e.g., ΔD) are provided by the RL component, while 

fast inner-loop dynamics (current control, SVPWM 

and protection functions) can be treated with 

deterministic controllers already known in real-time 

implementation. 

With representative embedded target (or an 

equivalent timing model to the selected policy 

network size), SAC policy evaluation has low 

computational cost, as it simply requires going 

forward through a lean neural network and does not 

need online iterative optimization. In the simulated 

setup, time for policy inference was always very 

efficient being within a sub-millisecond range 

(usually 0.1‐0.8 ms per step depending on processor 

implementation, numeric precision and network 

width/depth). The overhead of the runtime safety 

shield (action bounding, slew-rate enforcement, and 

simple constraint checks) was negligible compared to 

the latter and still well below the MPPT sampling 

time. As a result, total MPPT decision time (policy + 

shield + supervisory logic) remained below 1 ms, 

with considerable room within the 5 ms update 

budget, and deterministic scheduling feasibility 

together with other control actions (sampling, 

filtering, communications, logging). 

Notably, the inverter control layer is not 

bottlenecked by RL. The VSI control law is then the 

standard dq-frame current controller with a 

synchronous frame origin (or a classical finite-

control-set MPC if it is chosen) at the 

switching/control frequency of the inverter. Because 

the RL part is not placed within the inner current loop 

of the inverter, it does not add to computational load 

on the fastest and most timing-critical portion of the 

system. This architectural choice reflects 

implementation pragmatism: RL is applied where it 

has the most to offer—forcing infeasible global 

MPPT decision-making under PSC—while 

completely safe, high-bandwidth grid-current control 

remains tractably deterministic. In general, the 

numerical evidence shows that the proposed strategy 

is algorithmically efficient and can be employed for 

on-line implementation of embedded high speed PV 

power-electronic controllers. 

Results show that the proposed RL MPPT–

inverter co-control enhances PSC performance with 

three integrated benefits, to that extent they balance 

common shortcomings of traditional MPPT 

schemes. First, the method is furnished with a global 

search property: for multi-peak P–V curves, one can 

bypass local maximum without repeatedly searching 

(partially/fully), which would help confine persistent 

energy absence and shorten recovery duration 

following Ci increase/decrease. Second, the approach 

adheres to stability-concerned optimization: through 

penalties on power ripples, ramp-rate and DC-link 

deviation, it learns and maximizes system 

controllability over energy extraction and polishes 

the injected power profile in order not to compromise 

inverter's control dynamics nor grid power-quality 

standards. This is demonstrated by the concurrent 

reductions in MPPT loss and σP, ramp peak value, 

and DC-link ripple magnitude; indicating enhanced 

energy harvesting without compromising operational 

smoothness. Third, the runtime assurance is part of 

the framework including safety shield and fallback 

supervision. This layer imposes hard limits on duty 

updates and operation boundaries so that unsafe 

exploratory actions are avoided, while rare or out-of-

distribution states do not result in unreasonable 

behaviour -- an important point to take into 

consideration when aiming at practical adoption of 

learning–based controllers in power electronics. 

From an engineering perspective, these 

dual advantages specifically tackle a criticism of 

MPPT investigations that controllers are frequently 

assessed solely in terms of energy capture with vocal 

disregard for inverter-side impacts and reliability 

constraints. The proposed approach reveals that 

MPPT can be made a problem of system level, rather 

than a PV-optimal only problem: energy gain is 

coupled with DC-link stability improvements and 

better grid-current quality also resulting in less 

stressed components and in higher compliance to 

interconnection norms. This is especially the case for 

PSC-heavy systems of interest such as in urban 

rooftops and distribution feeders in which shadowing 

effects are common and clouds can be transient, with 

penalties on the ramp-rate or power-quality profile 

incrementally applied by grid operators. The safety 

layer becomes even more critical in deployment, as 

it offers a principled mechanism to ensure bounded 

operation and to fallback conservatively when the 

quality of sensing is poor or when the operational 

conditions differ from those observed during training. 

Taken as a whole, the results support the stability of 

reliability-based RL MPPT–inverter co-control to 

provide practical, grid-friendly performance 

enhancements under PSC while remaining 

computationally manageable for embedded 

interrogation. 
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IV. Conclusions 
This paper proposed a high-robustness and 

adaptive MPPT–inverter co-control scheme for PSC 

in grid-connected PV systems. The approach 

involves the combination of a RL-based MPPT 

policy with inverter-aware objective shaping and a 

runtime-assurance layer (safety shield + supervisory 

fallback). By interpreting MPPT as a two-port 

problem with coupling between the PV–DC-link and 

the inverter, the technique achieves global MPPT 

(GMPP) tracking while reducing power ripple, 

controlling DC-link voltage excursions, and avoiding 

ramp-rate overloads that compromise grid 

compliance and converter reliability over time. 

Time-domain simulations on a two-stage 

PV system (PV module + boost DC-DC + three-

phase VSI with LCL filter) confirmed that the 

proposed controller always showed superiority to 

conventional and global-search baselines under static 

and dynamic PSC profiles. The proposed method 

under a four-peak PSC profile (S2) enabled MPPT 

tracking efficiency of 99.6% and enhanced energy 

yield by 6.8% when compared to conventional P&O, 

3.2% compared to scan assisted INC, and 1.7% 

compared to PSO based GMPPT over a five minutes 

run time period. In fast PSC transitions (D2), the 

control action achieved tight DC-link regulation 

with peak Vdc deviation reduced to about ±1.4% 

compared to ±4.8% for P&O, as well as better 

inverter current distortion characteristics [THD ≈ 

2.1–3.2% vs 3.5–5.3% for P&O]. In the presence of 

ramp constraints, maximum ramp–rate was 35–60% 

lower than those of P&O under moving shadows and 

ramp limit violations were virtually zero as rapidly 

changing outputs and safety-limited duty updates are 

directly penalised. Reliability metrics also 

demonstrated 25–43% lower RMS duty variation and 

45–68% fewer saturation events than P&O here, with 

near zero sustained hard-constraint violations even 

with sensing delay and ±20% parameter mismatch 

(energy-loss capped at ~2.9%). 

Computationally, SAC policy inference at 

200 Hz still took place in less than a millisecond, and 

the added safety checks did not jeopardize real-time 

margins; desired inverter current regulation levels 

remained deterministic and undisturbed by any RL 

considerations. Future work will focus on hardware-

in-the-loop and experimental validation, formal 

safety analysis (e.g., constrained/tube MPC–RL 

hybrids or certified shielding), and wider domain-

randomized training for aging, temperature drift, and 

sensor faults. Generalization of the framework to 

coordinated multi-string (or farm-level) control and 

grid-code stress checks (LVRT, flicker, harmonic 

limits) shall also be encouraged. 
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