### RESEARCH ARTICLE OPEN ACCESS

### A Comprehensive Guide on DC Motor Efficiency

### Mohamad Fouzi Takriti\*, nabeel ahmad mossa \*\*

- \* Public Authority for Applied Education and Training
- \*\* Public Authority for Applied Education and Training

### **ABSTRACT**

This research provides a comprehensive analysis of the efficiency of Direct Current (DC) motors, a critical factor for performance, energy conservation, and operational cost reduction in industrial and commercial applications. The study systematically examines the fundamental sources of energy loss inherent in DC motor operation, namely copper (I²R) losses, core (iron) losses, mechanical losses, and brush contact losses. It further explores the key design and operational factors that influence overall efficiency, including magnetic circuit design, material selection, load profile, and maintenance practices.

A comparative assessment of different DC motor types—including shunt, series, and permanent magnet (PMDC) motors—is presented to highlight their distinct efficiency characteristics. The research also outlines practical methods for measuring motor efficiency in workshop settings, emphasizing the importance of preventive maintenance for sustained optimal performance. Finally, the paper discusses modern trends, such as the adoption of Brushless DC (BLDC) motors and advanced electronic controls, which offer superior efficiency and performance.

**Keywords** - DC Motor, Efficiency, Energy Losses, Copper Losses, Core Losses, Motor Maintenance, Brushless DC (BLDC) Motors, Energy Conservation, Motor Performance.

Date of Submission: 11-11-2025 Date of acceptance: 24-11-2025

te of Submission: 11-11-2025 Date of acceptance: 24-11-2025

### I. INTRODUCTION

1.1 Definition of Electric Motor Efficiency

In general, electric motor efficiency is defined as the ratio of the useful mechanical power output delivered by the motor (to the load, such as a fan, pump, or compressor) to the total electrical power input it consumes from the source.

It is a dimensionless performance metric, typically expressed as a percentage, that indicates how effectively the motor converts electrical energy into mechanical energy.

The standard formula for efficiency  $(\eta)$  is:

 $\eta = (Power Output / Power Input) \times 100\%$ 

Or, more explicitly:

 $\eta = (Mechanical Power Output / Electrical Power Input) × 100%$ 

Power Input (P\_in): This is the real power (in Watts or kW) drawn from the electrical supply. It can be measured directly with a wattmeter.

Power Output (P\_out): This is the mechanical power (in Watts or kW) available at the motor's shaft. It is calculated from the motor's torque and rotational speed:

P out = Torque  $(\tau)$  × Angular Speed  $(\omega)$ 

The Inevitability of Losses:

No motor is 100% efficient. The difference between the input power and the output power is lost as

waste, primarily in the form of heat. Therefore, the relationship can also be written as:

Power Input = Power Output + Total Losses

These losses, which determine the efficiency, include:

- 1. Copper Losses (I<sup>2</sup>R Losses) Heat generated due to electrical resistance in the stator and rotor windings.
- 2. Iron Losses (Core Losses) Losses in the magnetic core, including Hysteresis Loss (from magnetizing and demagnetizing the core) and Eddy Current Loss (from circulating currents within the core).
- 3. Mechanical Losses Friction in bearings, brushes, and air resistance against the rotor (windage).
- 4. Stray Load Losses Miscellaneous losses that are difficult to quantify, such as magnetic flux harmonics.
- 1.2 Importance of DC motor efficiency in various applications (industrial, automotive, robotics)

High efficiency in a DC motor is not just an engineering metric; it is a crucial factor that directly impacts the performance, cost, and functionality of the entire system it powers. The importance is magnified in applications where energy storage is

limited, heat dissipation is challenging, or precise control is paramount.

delivering key benefits in three critical sectors:

**Industrial Applications** 

Cost Reduction - Continuous operation translates minor efficiency gains into substantial electricity cost savings

Enhanced Reliability - Reduced heat generation extends component lifespan and minimizes downtime

Improved Performance - Stable thermal characteristics ensure consistent operation in precision tasks

**Automotive Sector** 

Extended Range - Efficient auxiliary systems preserve battery capacity for extended driving distance

Optimized Systems - Enables smaller, lighter battery designs while maintaining performance

Superior Comfort - Ensures reliable operation of critical systems like power steering and climate control

Robotics & Automation

Maximum Productivity - Longer battery life enables extended operational cycles

Enhanced Capability - Superior power-to-weight ratio enables stronger, more agile robots

Precision Engineering - Minimal thermal drift ensures accurate, repeatable movements for delicate tasks

By directly impacting energy consumption, system reliability, and operational capability, motor efficiency serves as a cornerstone for technological advancement and sustainable innovation across these fields.

## II. MAIN FACTORS AFFECTING DC MOTOR EFFICIENCY

### 2.1 Copper Losses (I<sup>2</sup>R Losses)

Energy losses caused by electrical resistance in the motor's windings (both armature and field windings).

Characteristics

Proportional to current squared Doubling current quadruples losses

Varies with load Increases significantly under high torque demands

Major at startup Highest during motor starting due to high inrush current

Impact

Primary source of heat generation in loaded motors Directly reduces motor efficiency under operation Limits continuous torque capability

Mitigation Strategies:

Use thicker winding wires to reduce resistance Improve cooling systems to dissipate heat Optimize winding designs and materials

### 2.2 Iron Losses (Core Losses)

Energy dissipated in the motor's magnetic core during operation.

Two Components:

### 1. Hysteresis Losses

Energy lost from repeatedly magnetizing and demagnetizing the core

Depends on magnetic material properties and frequency

Appears as heat due to magnetic domain friction

### 2. Eddy Current Losses

Circulating currents induced within the core material Create resistive heating in the core

Increase with frequency and magnetic flux density Features:

Constant losses Remain relatively stable with load changes

Speed-dependent Increase with higher motor speeds Material-critical Determined by core laminate quality

Reduction Methods:

Use thin, insulated steel laminations Select specialized low-loss electrical steels Optimize core design to reduce flux density

### 2.3 Mechanical Losses

Energy losses due to physical movement and friction within the motor.

**Primary Sources:** 

### 1. Bearing Friction

Losses from rolling or sliding contact in bearings Affected by lubrication quality, load, and speed

2. Brush Friction (in brushed DC motors)
Mechanical drag between brushes and commutator
Dependent on brush material, pressure, and surface
condition

### 3. Windage Losses

Air resistance against rotating components Caused by rotor agitation of surrounding air Increases significantly with rotational speed Characteristics:

Speed-dependent Generally increase with motor RPM

Load-sensitive Vary with mechanical load conditions

Consistent Present whenever the motor is rotating Minimization Strategies:

Proper bearing selection and maintenance Optimal brush type and pressure setting Efficient cooling system design

Regular lubrication and alignment checks

### 2.4 Brush Contact Losses

Energy losses occurring at the interface between carbon brushes and the commutator in brushed DC motors.

### Primary Causes:

1. Electrical Resistance Losses

Voltage drops across brush-commutator contact interface

Proportional to current squared (I<sup>2</sup>R)

Typically, 1-2V total brush drop under normal operation

### 2. Contact Friction Losses

Mechanical friction between sliding surfaces

Dependent on brush pressure, material, and surface finish

### Characteristics:

- Load-dependent Increase with higher current draw
- Speed-sensitive Affected by commutator surface speed
- Material-specific Vary with brush composition and grade

### **Impact Factors:**

- Brush spring tension and alignment
- Commutator surface condition and concentricity
- Brush material composition and quality
- Operating temperature and environment

### Mitigation Methods:

- Optimize brush grade selection for application
- Maintain proper brush pressure and alignment
- Ensure smooth commutator surface finish
- Regular maintenance to prevent sparking and arcing

## III. FACTORS FOR IMPROVING EFFICIENCY

### 3.1 Design & Materials for Efficiency

Efficiency is boosted using thin, insulated laminations to curb eddy currents. Low-hysteresis steel is selected to minimize magnetic energy loss. The magnetic circuit is optimized to ensure smooth flux paths. These design choices collectively reduce core losses and enhance motor performance.

### Core Construction

Thin insulated laminations minimize eddy currents by increasing resistance to circulating currents

Low-hysteresis materials reduce energy lost during magnetic domain realignment

High-grade electrical steels provide optimal magnetic properties with minimal losses
Magnetic Circuit Optimization

Efficient flux paths minimize magnetic resistance and leakage

Optimal air gap design balances magnetic efficiency with mechanical clearance

Proper pole and slot configuration enhances magnetic field utilization

**Advanced Materials** 

Amorphous metal cores offer superior eddy current reduction

Soft magnetic composites enable complex 3D magnetic circuits

High-temperature insulations maintain performance under thermal stress

These design approaches collectively reduce core losses, improve magnetic efficiency, and enhance overall motor performance across various operating conditions.

### 3.2 Operation & Maintenance for Efficiency

Operate near 75-100% load for peak efficiency. Maintain brushes and commutator for optimal contact. Ensure precise shaft alignment to minimize friction. Keep cooling systems clean for proper temperature control.

### **Optimal Loading**

- Operate at 75-100% load for peak efficiency
- Avoid prolonged light-load operation

### Brush System Care

- Maintain proper brush pressure and commutator condition
- Ensure clean, spark-free commutation

### Mechanical Alignment

- Precise shaft alignment minimizes friction losses
- Proper bearing maintenance reduces mechanical drag

### Thermal Management

- Maintain clean cooling paths and ventilation
- Monitor operating temperature to prevent efficiency loss

Regular maintenance preserves motor efficiency and extends service life across all operating conditions.

# IV. EFFICIENCY COMPARISON OF DIFFERENT DC MOTOR TYPES

Permanent magnet motors offer highest efficiency with no field circuit losses. Shunt motors maintain good efficiency across variable speed ranges. Series motors provide high torque but poorer speed regulation and efficiency. Compound motors balance characteristics but with added complexity.

### 4.1 Shunt Motors

Good speed regulation, stable operation under load. Efficiency remains relatively constant across speed variations. Ideal for applications requiring consistent performance. Field and armature circuits are connected in parallel configuration.

#### 4.2 Series Motors

High starting torque, speed varies significantly with load. Ideal for traction applications like electric trains. Efficiency improves at high loads. Field and armature circuits are connected in series.

### 4.3 Permanent Magnet (PMDC) Motors

Highest efficiency due to no field winding losses. Compact design with excellent torque characteristics. Simple construction and maintenance. Ideal for battery-powered applications and automotive systems.

### Comparison of DC Motor Types "Table1"

| Feature         | Shunt Motor                | Series Motor              | Permanent Magnet (PMDC) Motor     |
|-----------------|----------------------------|---------------------------|-----------------------------------|
| Connection      | Field & Armature in        | Field & Armature in       | Field from permanent magnets      |
|                 | parallel                   | series                    |                                   |
| Speed           | Excellent (Constant speed) | Poor (Varies greatly      | Good (Better than series)         |
| Regulation      |                            | with load)                |                                   |
| Starting Torque | Good                       | Very High                 | High                              |
| Efficiency      | Good (high at rated load)  | Good only at high load    | Highest (no field losses)         |
| Ideal           | Machine tools, conveyors,  | Cranes, hoists, traction, | Automotive accessories, robotics, |
| Applications    | fans                       | starters                  | small appliances                  |

Choose Shunt for constant speed, Series for high starting torque, and PMDC for high efficiency and compact size.

### V. Practical Efficiency Measurement

Measure input power with a wattmeter for voltage and current. Calculate output power using torque and speed readings. Apply the formula: Efficiency = (Output Power / Input Power) × 100%. For greater safety and accuracy, use the separate losses method. This identifies individual loss components like copper and core losses.

### 5.1 Direct Loading Method

The Direct Loading Method is the most straightforward way to determine a motor's efficiency by directly measuring its electrical input and mechanical output power.

### How it works:

- 1. Measure Electrical Input (P\_in): Use a wattmeter to directly measure the real power (in Watts) drawn by the motor from the electrical supply.
- 2. Measure Mechanical Output (P\_out): The motor's shaft is connected to a brake or a dynamometer. This device applies a

controlled mechanical load to the motor and simultaneously measures:

- The Torque (τ) in Newton-meters (N.m)
- The Rotational Speed (N) in Revolutions per Minute (RPM)

The mechanical output power is then calculated using the formula:

 $P\_out = (2\pi \times N \times \tau) \: / \: 60$  (where the result is in Watts).

Calculate Efficiency (η): The efficiency is simply the ratio of output to input, expressed as a percentage: η = (P out / P in) × 100%

Advantages & Disadvantages:

"Table 2"

| Advantages                                                                       | Disadvantages                                                                         |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Conceptually Simple                                                              | Can be inefficient and wasteful (energy is burned off as heat in the brake).          |
| Direct and Intuitive Requires accurate, calibrated load and measuring equipment. |                                                                                       |
|                                                                                  | Difficult for large motors due to the massive loads and heat that must be dissipated. |

Because of these disadvantages, especially for large motors, the Indirect Method (Separate Losses Method) is often preferred as it is safer and doesn't require applying a full mechanical load.

### 5.2 Indirect Method (Separate Losses Method)

Determines efficiency by measuring individual power losses instead of directly loading the motor to its full capacity.

### Procedure:

- No-Load Test: Run motor without load to measure Iron & Mechanical losses
- 2. Resistance Measurement: Measure armature and field winding resistances
- 3. Load Calculation: Calculate Copper losses (I<sup>2</sup>R) for any load condition
- 4. Stray Loss Determination: Account for additional losses under load

### Calculation:

Efficiency = (Input Power - Total Losses) / Input Power

Where Total Losses = Copper Losses + Iron Losses + Mechanical Losses + Stray Losses Advantages:

- Safer for large motors (no full mechanical load required)
- More accurate through precise loss segregation
- Enables efficiency prediction across all load conditions
- Less energy wasted during testing

### Applications:

- Preferred for industrial motor testing and certification
- Standard method in IEEE and IEC efficiency standards
- Essential for large motor performance validation

This method provides comprehensive loss analysis while minimizing test risks and energy consumption. 5.3 Measuring Instruments for Motor Efficiency

### Electrical Measurement

- Wattmeter: Directly measures real input power (in Watts) to the motor
- Voltmeter & Ammeter Optional for apparent power calculation and system analysis

### Mechanical Measurement

- Tachometer Measures rotational speed (RPM)
- Dynamometer The key instrument that applies controlled load and measures torque (N.m)

### **Torque Calculation**

- Torque Sensor Direct digital torque measurement
- Prony Brake: Mechanical brake system for torque calculation
- Dynamometer Integrated torque and speed measurement

### Data Integration

- Power Analyzer Combines electrical and mechanical measurements
- Data Logger Records simultaneous readings for accurate efficiency calculation

These instruments enable precise measurement of both electrical input and mechanical output power for reliable efficiency determination.

## VI. PRACTICAL APPLICATIONS AND TIPS FOR ELECTRICIAN TRAINERS

Teach hands-on measurement of voltage, current, and torque to calculate real-world efficiency. Demonstrate proper brush maintenance and commutator servicing to minimize electrical losses. Show how correct shaft alignment and bearing lubrication reduce mechanical losses. Use thermal imaging to visualize heat buildup and identify inefficiency sources.

How to Detect Low Motor Efficiency Through Observation

You can identify a potentially inefficient motor by looking for these three key symptoms:

### 1. Excessive Heat

- What to observe: The motor casing is too hot to touch comfortably.
- What it means: Energy losses (like I<sup>2</sup>R copper losses and core losses) manifest as heat. An overly hot motor is literally wasting energy, indicating poor efficiency and potential insulation damage.

### 2. Unusual Noise

- What to observe:
  - Whining or Growling Often points to high iron losses or bearing issues.
  - Clicking or Arcing Suggests commutator or brush problems in DC motors, leading to brush contact losses.
  - Humming Can indicate magnetic issues or misalignment.
- What it means: Unusual sounds often signify increased mechanical and magnetic losses, which directly reduce efficiency.

### 3. High Current Draw

- What to observe: A clamp meter measurement shows the motor is drawing more current than its nameplate rating for a given load.
- What it means: To deliver the same mechanical output power (HP/kW), an inefficient motor must draw more electrical input current. This is a direct indicator of high losses.

### Quick Diagnostic Table

"Table 3"

| Symptom       | Likely Cause of Losses                | Immediate Action                                                      |
|---------------|---------------------------------------|-----------------------------------------------------------------------|
| Motor is Hot  | Copper, Iron, or Cooling losses       | Check for dirty vents, verify voltage, check for overload.            |
| Unusual Noise | Mechanical, Magnetic, or Brush losses | Inspect bearings, check brush/commutator condition, verify alignment. |
| High Current  | High overall losses (all types)       | Check load, measure voltage, inspect for shorts or ground             |
| Draw          |                                       | faults.                                                               |

### VII. MODERN TRENDS

7.1 Brushless DC (BLDC) Motors & Superior Efficiency

Efficiency Advantages:

No Brush Friction Losses Eliminates mechanical and electrical losses from brush-commutator contact

Reduced I<sup>2</sup>R Losses Copper losses are minimized through optimized winding design

Advanced Cooling Stator windings on the outer shell enable better heat dissipation

Electronic Commutation: Precise switching minimizes electrical losses

Efficiency Features:

Typical Efficiency 85-95% (compared to 75-85% for brushed DC)

High Power Density More power output per unit size and weight

Low Thermal Resistance Better heat management sustains performance

Optimized Magnetic Circuits Minimal eddy current and hysteresis losses

Performance Benefits:

Longer Runtime Crucial for battery-powered applications

Higher Reliability No brush wear extends service life

Better Speed-Torque Characteristics Maintains efficiency across wider operating range

Reduced Maintenance No brushes to replace or commutator to service

BLDC technology represents the peak of DC motor efficiency, making it the preferred choice for applications demanding maximum performance and energy conservation.

7.2 Modern Electronic Control Systems & Drives Efficiency Optimization:

Precision Control: Delivers exact power needed, minimizing energy waste

Advanced Algorithms: Sinusoidal commutation and Field-Oriented Control (FOC) reduce torque ripple and losses

Dynamic Response: Instant adjustment to load changes maintains optimal efficiency

Key Technologies:

Intelligent Controllers Monitor performance and auto-tune parameters

Regenerative Braking Recovers energy during deceleration

Smart Sensors Provide real-time data for precision control

Performance Benefits:

Adaptive Efficiency Maintains peak performance across speed range

Soft Start/Ramp Reduces inrush current and mechanical stress

Power Factor Correction Improves overall system efficiency

Thermal Management Protects against efficiency loss from overheating

These systems transform motor operation from constant-speed to intelligent, adaptive performance - crucial for modern energy-efficient applications.

7.3 Stepper Motors in Precision Applications

Precision Advantages:

Digital Control Moves in precise angular increments (steps) without feedback

High Holding Torque Maintains position securely when stationary

Repeatable Positioning Exceptional accuracy for repetitive movements

**Key Applications:** 

3D Printers Precise layer-by-layer material deposition

CNC Machines Accurate tool positioning and contouring

Robotics Precise joint control in arms and grippers

Medical Devices Syringe pumps, scanner positioning, lab automation

Optics & Imaging: Lens focusing, stage movement, mirror positioning

Control Characteristics:

Open-Loop Operation Works without encoders (simplifying system design)

Microstepping Smooths motion and increases resolution

Instant Start/Stop Rapid response to digital commands

While less efficient than BLDC motors for continuous rotation, steppers excel in applications demanding exact positional control and reliability.

### VIII. CONCLUSION

The pursuit of high efficiency in DC motors is a critical engineering objective that transcends all applications, from industrial machinery and electric vehicles to precision robotics. This research has demonstrated that superior efficiency is achieved through an integrated approach combining optimal design—using advanced materials like low-loss laminations and permanent magnets—with proper operational practices and meticulous maintenance. The elimination of brush-commutator losses in BLDC motors and the adoption of modern electronic drives represent the forefront of this evolution, enabling unprecedented levels of performance and control.

Ultimately, understanding and improving DC motor efficiency is not merely a technical

exercise; it is essential for reducing operational costs, enhancing system reliability, and achieving sustainability goals. For engineers and technicians, this knowledge provides a powerful framework for selecting, operating, and maintaining motors to maximize their lifespan and performance, ensuring that these fundamental components continue to drive innovation and efficiency across the technological landscape.

The evolution of DC motor technology is fundamentally centered on maximizing efficiency, driven by key modern trends. The widespread adoption of Brushless DC (BLDC) Motors, with their superior efficiency and reliability, alongside advanced Electronic Control Systems featuring Field-Oriented Control (FOC) and regenerative braking, has set a new performance benchmark. Furthermore, the precise integration of Stepper Motors in automation highlights a focus on application-specific optimization.

These trends collectively demonstrate a future where motor systems are not merely components but intelligent, interconnected units. The synergy of high-efficiency motor designs, sophisticated drives, and IoT-enabled smart management systems paves the wav unprecedented energy savings, minimized operational costs, and enhanced performance across all sectors, from industrial automation to sustainable mobility.

### REFERENCES

- [1] IEEE Standard 1139-2008, "IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology"
- [2] IEC 60034-30-1, "Rotating electrical machines Part 30-1: Efficiency classes of line operated AC motors"
- [3] Krishnan, R. (2010). Permanent Magnet Synchronous and Brushless DC Motor Drives. CRC Press.
- [4] Bose, B. K. (2006). Power Electronics and Motor Drives: Advances and Trends. Academic Press.
- [5] Miller, T. J. E. (1993). Brushless Permanent-Magnet and Reluctance Motor Drives. Clarendon Press.
- [6] Kenjo, T., & Sugawara, A. (1994). Stepping Motors and Their Microprocessor Controls. Oxford University Press.
- [7] National Electrical Manufacturers Association (NEMA) Standards Publication MG 1-2021
- [8] Gieras, J. F. (2002). Permanent Magnet Motor Technology: Design and Applications. Marcel Dekker.

- [9] Hendershot, J. R., & Miller, T. J. E. (2010). *Design of Brushless Permanent-Magnet Machines*. Motor Design Books.
- [10] ANSI/IEEE Std 112-2017, "Standard Test Procedure for Polyphase Induction Motors and Generators"