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ABSTRACT 
The photovoltaic (PV) power plants offer considerable environmental and economic advantages; its large 

penetration poses challenges to power system operation and planning owing to the unpredictable and variable 

nature of solar generation. Therefore, accurate forecasting of PV power is essential to guarantee provision of 

high-quality electricity to consumers and to enhance the reliability of the power grid. This research develops a 

hybrid deep learning model for PV power forecasting that synergistically combines LSTM and CNN 

architecture. The model is designed to leverage the complementary strengths of each network: the LSTM is 

employed to learn extended temporal correlations within the historical time-series data, whereas the CNN is 

utilized to identify complex spatial patterns and local features from the sequence. A case study utilizing a real-

world dataset for one year demonstrates the superior performance of the proposed hybrid LSTM-CNN model. 

The evaluation is based on the annual performance of day-ahead PV output power forecasting. Comparative 

analysis against standalone LSTM and CNN models demonstrates that the proposed hybrid architecture achieves 

greater forecasting accuracy and stability, as evidenced by lower values of key performance indicators: RMSE, 

MAE, and MAPE. 
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I. INTRODUCTION 

Over the past century, fossil fuels such as 

natural gas, coal, and oil were the main sources for 

producing electrical energy through large capacity 

generation stations. While they still contribute 

significantly today, their use has led to major 

environmental impacts, including global warming, 

emissions of harmful gases, and widespread 

pollution. Consequently, the modern world seeks to 

integrate renewable energy sources (RESs) with high 

penetration while reducing dependence on fossil 

fuels in the energy sector [1]. Among RESs, wind 

and solar energy appear as particularly viable and 

promising energy sources due to their widespread 

availability, low costs, and substantial generation 

possible. These factors are enabling their accelerated 

penetration into the energy market. Furthermore, 

growing environmental awareness and supportive 

government policies worldwide are accelerating 

their adoption as clean alternatives for energy [2]. 

Solar energy from Photovoltaic (PV) has 

achieved widespread global acceptance, establishing 

itself as a foundational element in the transition to 

clean and resilient electrical grids. However, this 

rapid integration introduces significant challenges to 

electrical grid stability. The fundamental issue lies in 

the intermittency and variability of PV power 

generation [3] which is directly dependent on 

fluctuating weather conditions like cloud cover, 

humidity, air pressure and solar irradiance [4]. 

Consequently, accurate forecasting of generating PV 

power has become an essential energy management 

tool for grid operators and utilities. As it contributes 

to improve the balance between load demand and 

supply energy, schedule power plants, ensure grid 

reliability, reduce operational costs mitigate the solar 

power's unpredictability impacts. 

The challenge of predicting solar power 

generation has stimulated considerable academic and 

industrial research over the last decade, resulting in a 

large number of studies proposing forecasting 

methods. These methods can be broadly categorized 

by their approach as; statistical, physical, machine 

Learning (ML), and hybrid models [5]. 

Physical Models utilize Numerical Weather 

Prediction (NWP) data and satellite imagery as 

primary inputs. It depends on some mathematical 

equations to calculate the physical performance of 

the PV system.  The work in [6] presented a 

correction method for errors in NWP-based 

irradiance forecasts. This approach utilized an 

RESEARCH ARTICLE                    OPEN ACCESS 



Turki O. Alosaimi, et. al. International Journal of Engineering Research and Applications 

www.ijera.com 

ISSN: 2248-9622, Vol. 15, Issue 11, November 2025, pp 01-10 

 

A 
www.ijera.com                                    DOI: 10.9790/9622-15110110                                     2 | Page 

                

 

extensive set of standard meteorological variables 

from NWP output in conjunction with a clear sky 

model. Ref. [7] developed a research forecasting 

model based on direct-cloud-assimilating NWP 

uniquely assimilated satellite cloud imagery directly 

into its initial states. The model was specially 

configured, with tailored resolution and physics 

parameterizations, to replicate the life cycle of the 

region's characteristic low-altitude stratiform clouds. 

The modeling process for physical models is 

complicated because it requires detailed 

meteorological data for PV power stations and 

geographic information. Additionally, the 

performance of these models cannot be assured if 

there are significant variations in weather [8], [9], 

[10]. In contrast, statistical models forecast PV 

power output by establishing mathematical 

relationships between historical generation data and 

weather parameters through time-series analysis 

[11][12]. The accuracy of these models is highly 

sensitive to both input data quality and the forecast 

horizon. Commonly used statistical models include 

the autoregressive moving average (ARMA) model 

[13] and its variants such as ARIMA, SARIMA, and 

ARMAX [14]—as well as exponential smoothing 

[15], and regression models (RM) [16][17]. While 

these techniques are effective for stable time series, 

they often exhibit significant errors when applied to 

real-life PV data, which typically exhibits high 

variability [18]. 

Machine Learning (ML) models utilize 

algorithms ranging from regression trees to 

sophisticated deep neural networks. They establish 

mappings by training on datasets that include input 

and output samples [19]. These models have found 

applications across various engineering and 

scientific fields, including predicting PV power 

output. Typically, the modeling process involves 

four key stages: data preprocessing, model training, 

model validation, and fine-tuning the final 

predictions. Commonly employed ML models for 

PV power generation forecasting include extreme 

learning machines [20],  support vector machines 

(SVM) [21], recurrent neural networks (RNN) [22] 

and artificial neural networks (ANN) [23][24][25]. 

Additionally, Long Short-Term Memory (LSTM) 

[26], convolutional neural networks (CNN) [27] and 

Gated Recurrent Units (GRU) [28] are also utilized. 

Deep learning (DL) models have been extensively 

validated across a diverse range of solar forecasting 

applications. For instance, a study in Turkey utilized 

a DL model to estimate daily solar radiation for 30 

locations [29]. Similarly, an LSTM model applied to 

meteorological data from Santiago, Cape Verde, for 

Global Horizontal Irradiance (GHI) forecasting 

demonstrated a significant improvement over 

benchmark methods like persistence, 

backpropagation, and least squares regression [30]. 

The application of LSTMs extends beyond purely 

meteorological data; for example, a window-based 

multi-input/output LSTM model was used to 

forecast electric load demand [31], while another 

achieved GHI prediction by applying LSTM to 

satellite imagery from 21 locations [32]. The 

nonlinear processing capability of ANNs is 

particularly advantageous for capturing the high 

variability of solar power, contributing to their 

impressive results and widespread adoption in the 

field. 

Hybrid models, which combine two or more 

techniques, are an effective solution for enhancing 

forecasting accuracy by leveraging the 

complementary strengths of different topologies. 

This approach is demonstrated in several studies: for 

instance, the particle swarm optimization (PSO), 

wavelet transform, and SVM was integrated to 

develop short-term photovoltaic power forecasting, 

where PSO optimized the SVM's key parameters 

[33]. Similarly, the colliding bodies optimization 

algorithm was employed to determine the best 

neuron count in a DL model [34]. Further 

showcasing the versatility of this approach, another 

study utilized both genetic algorithm (GA) and PSO 

to improve a backpropagation ANN model for 

estimating daily diffuse solar radiation based on 

seven meteorological parameters [24]. In a related 

effort, a hybrid technique using wavelet 

multiresolution analysis with a discrete wavelet 

transformation (DWT) algorithm was proposed to 

decompose complex meteorological signals. This 

decomposition was then applied to four different 

ANN architectures to improve modeling 

performance [25]. A hybrid methodology for day-

ahead photovoltaic power forecasting (PPF) coupled 

with uncertainty analysis was presented in [35]. The 

model integrated whale optimization algorithm, least 

squares SVM, non-parametric kernel density 

estimation, and fuzzy c-means [35]. This work was 

driven by recent advances in DL and its successful 

application in the electrical power sector. Several 
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hybrid DL architectures demonstrate this potential. 

For instance, one study merged LSTM and CNN 

models to improve solar power system operations 

[36], while another implemented the LSTM-CNN to 

model the joint spatiotemporal characteristics of the 

input sequences for PV prediction [37]. Other 

methods included a hybrid prediction approach that 

uses genetic algorithms and long-term memory for 

optimization [38], a combination of CNN with the 

Salp Swarm Algorithm for power output prediction 

[39], and a Convolutional Self-Attention-based 

LSTM (CA-LSTM) framework designed to capture 

local data context and improve accuracy [40]. These 

models are typically validated using actual power 

generation and consumption data. 

The above-mentioned review of the existing 

research reveals several persistent challenges and 

opportunities for advancement in PV forecasting. 

For example, conventional artificial intelligence 

methods have inherent limitations, the rapid 

evolution of DL presents an effective alternative. 

Moreover, although the PV power fluctuation due to 

weather instability is widely acknowledged, the 

strong periodicity and regularity of solar energy are 

often underutilized. Thus, there is a need for a 

sophisticated hybrid deep learning framework that 

moves beyond treating PV data as a simple time 

series. Additionally, models the dual nature of solar 

power generation, its deterministic patterns (diurnal, 

seasonal) and its stochastic disturbances (weather-

induced fluctuations) by dynamically integrating 

high-resolution meteorological. 

The remainder of this paper is structured as 

lists. Section 2 details the methodology of the 

proposed hybrid DL model for day-ahead PV 

forecasting. Section 3 describes the evaluation 

metrics used for assessment. Section 4 presents and 

discusses the simulation results, evaluating the 

performance of the proposed model. Finally, Section 

5 presents the concluding remarks. 

II. PV POWER GENERATION 

FORECASTING MODELS 

This section presents the architecture details for the 

PV output power forecasting model. The overall 

methodology consists of sequential steps: 

1. Data Preprocessing: Input variables are 

normalized to standardize the data scale. 

2. Data Splitting: The preprocessed dataset was 

split into training and testing sets. 

3. Model Training: The proposed CNN-LSTM 

model is trained by using the training data 

patterns. 

4. Model Evaluation: The efficiency of all 

trained models is evaluated using the testing 

set. 

The selection of deep learning architectures 

is guided by the multivariate time series structure of 

the data. Two models are employed for their 

complementary strengths: 

1. CNN: This architecture (comprising CL, PL, 

and FC layers) is applied for its proficiency in 

extracting spatial features and local patterns 

from sequential data [41]. 

2. LSTM: As a specialized RNN, it is utilized for 

its proficiency in modeling long-range 

temporal dynamics via its unique gated 

structure [30]. 

Due to their different operational mechanisms, 

the proposed model's performance is compared 

separately against each of these benchmarks. 

 

2.1 Convolution Neural network  

One of the key benefits of the CNN is their 

relatively low parameter requirements compared to 

traditional ANNs. This characteristic helps decrease 

computational complexity and memory usage, 

leading to enhanced performance. CNNs are 

structured with three main types of layers: fully 

connected, max-pooling and convolutional layers 

[41]. Figure 1 provides an illustration of CNN 

architecture. Additionally, the subsequent sections 

will illustrate the functions and descriptions of each 

layer utilized in the design of the proposed CNN 

presented in this research. 

 

Fig. 1. Proposed CNN construction 
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2.1.1 Convolutional layers  

Convolution layers utilize 2D filters 

(convolution kernels) to convolve input images, 

producing two-dimensional feature maps. The 

number of filters used depends on the neurons' 

number in the corresponding the subspaces of the 

input. The size of these filters (width and height) is 

determined by the dimensions of the sliding window 

applied across the input array [42] [43]. Crucially, 

the neurons' number in the output feature map must 

match the number in the convolutional layer itself. 

The total layers are configurable based on the 

network architecture. Mathematically, it can be 

modelled as: 

 

where l (mask row) and k (mask column) are indices 

for the mask M, and c (feature row) and d (feature 

column) are indices for the feature matrix A. The 

filter dimensions are L (height/rows) and K 

(width/columns). 

2.1.2 Non-Linearity Layer 

The feature maps from the convolutional 

layer are passed through a Rectified Linear Unit 

(ReLU), which acts as a non-linear filter that 

discards negative values as shown in (2). ReLU is 

widely adopted in CNNs because it significantly 

accelerates network training [43]. 

 
2.1.3 Max-pooling layer 

Maximum pooling layers reduce feature 

map dimensions, decrease computational complexity 

and redundant information to mitigate overfitting 

while enhancing robustness [41]. Positioned after 

convolution and ReLU operations, pooling enables 

an increased number of filters in convolutional 

layers without proportionally increasing 

computational load. This operation is 

mathematically represented in [43]. 

 

where, h and q are length and width of the pooling 

window, respectively.  and  denote the 

elements of the output and input feature maps for 

layers L and L′, respectively. 

 

2.1.4 Fully connected layer (FC) 

The FC layer follows the convolutional 

layers, integrating all locally learned features for 

final classification by connecting each of its neurons 

to every neuron in the previous layer. The neurons' 

number in the output layer corresponds directly to 

the number of target variable. 

2.2 Long Short-Term Memory (LSTM) 

As an advanced variant of RNNs, LSTM 

networks were developed to model long-term 

dependencies in sequential data, a task at which 

conventional RNNs fail due to vanishing and 

exploding gradients. While RNNs inherently process 

sequences via internal feedback loops, their inability 

to learn long-range context is a fundamental 

drawback. LSTM architecture, pioneered by 

Hochreiter & Schmidhuber [44], surmounts this 

limitation by employing memory cells and a 

multiplicative gating system. The input, forget, and 

output gates collaboratively manage the cell state, 

enabling precise control over which information is 

retained, updated, or discarded over time. This 

mechanism empowers LSTM networks to capture 

long-term temporal relationships reliably. The 

underlying algorithm is depicted in Fig. 2 and 

formalized mathematically as follows [32]: 

tanh σ σ σ 

Uitft Ot

xt

htht-1

Ct-1 Ct

tanh

Fig. 2 Architecture of the LSTM network 

The forget gate  maintains the flow of information 

by deciding what to remove from the cell state. It 

computes this using the previous hidden state, , 

and current input, . 
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A candidate cell state, , containing potential new 

information is first computed. The input gate, , 

then determines the proportion of this candidate state 

that is added to the network's long-term memory. It 

learns to select relevant new data from the  and 

: 

 

 

The new cell state, , is computed from the 

previous state, , and the new candidate cell 

state , as follows: 

 
The final step involves the output gate, , which 

filters the updated cell state, , to generate the 

hidden state, . This output is calculated by 

multiplying the output gate with a tanh of the current 

cell state, , as follows: 

 

 
where,   represents the hidden state from the 

previous time step,  is the current input, 𝜎 is 

logistic sigmoid function, tanh is the hyperbolic 

tangent function,   are the weight 

matrices and  are the bias vectors. 

 

2.3 Proposed LSTM-CNN Network 

This paper proposes a hybrid DL model for 

PV power forecasting that synergistically combines 

CNN and LSTM architectures. The model is 

designed to leverage the complementary strengths of 

each network: the LSTM is employed to model long-

range temporal dynamics via its unique gated 

structure, while the CNN is utilized to identify 

complex spatial patterns and local features from the 

sequence. 

The operational flowchart of the developed 

model, illustrated in Fig. 3, begins with the input of 

historical PV data into the LSTM layer. This stage 

processes sequential information, effectively 

learning the temporal dynamics critical for 

forecasting. The output from the LSTM, which 

represents the extracted temporal features, is then 

fed as input to the subsequent CNN layer. Then 

CNN performs convolutional operations to extract 

higher-level spatial hierarchies from the temporally 

enriched data. The final forecast output is generated 

from this stage. To enhance the model's 

generalization capability and mitigate overfitting, a 

dropout layer is incorporated into the architecture.  

III. EVALUATION INDICES 

To evaluate the proposed hybrid LSTM-

CNN model, three error indices are considered. 

These indices are mean absolute percentage error 

(MAPE), Mean absolute error (MAE), and root 

mean square error (RMSE). They are implemented 

to evaluate the model performance according to 

forecast results. The definitions of the three indices 

are described as follow: 

 
Fig. 3 flowchart of the developed hybrid model 
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• RMSE is the square root of the average squared 

differences between actual values  and 

predicted values: 

 

• MAE quantifies the average magnitude of the 

absolute errors between the observed values 

and the predicted values: 

 

• MAPE represents the average of the absolute 

percentage errors, where each error is the 

absolute difference between the actual 

value and forecasted value, divided by the 

actual value. 

 

where    is  the predicted PV output power, and  

the corresponding measured output over M datasets. 

MAE provides a direct measure of the average 

absolute difference between predictions and 

observations. RMSE, however, is often more 

sensitive to large errors because its calculation 

involves squaring the deviations before averaging, 

thereby emphasizing outliers. This makes RMSE a 

valuable metric when large errors are particularly 

undesirable. 

IV. SIMULATION AND DISCUSSION 

4.1. Dataset overview 

The proposed forecasting models are 

trained and tested for day-ahead PV power output 

prediction using the following daily averaged 

parameters: solar radiation (W/m²), wind speed 

(m/s), ambient temperature (°C), relative humidity 

(%), and PV power output (W). The original dataset, 

comprising high-resolution (5-minute interval) 

measurements from 2017 to 2018, was processed 

into daily averages to align with the forecasting 

horizon. The temporal patterns of these data are 

visualized in Figures 3 through 6. A temporal split 

was applied to the one-year dataset, allocating the 

initial 270 days for model training and the remaining 

95 days for performance evaluation. 

 
Fig. 3 Daily average solar radiation (W/m2) 

4.2 Proposed LSTM-CNN construction 

The optimal performance of the CNN is 

achieved with a specific architecture comprising one 

FC, two max-pooling, and two convolutional layers. 

 
Fig. 4 Daily average wind speed (m/s) 

 
Fig. 5 Daily average ambient temperature (oC) 

 

Fig. 6 Daily average PV power output power (W) 

A dropout rate of 0.1 was applied as a 

regularization technique to mitigate overfitting and 
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improve model generalization. This method 

randomly excludes 10% of neurons from training 

during each iteration. The model was trained over 

100 epochs with a batch size of 512 and a learning 

rate of 0.001, using the Adam (Adaptive Moment 

Estimation) optimizer due to its effectiveness for 

deep learning tasks. The first convolutional layer 

employs 386 filters with a 64x64 kernel size, while 

the second uses 98 filters of size 32x32. The 

subsequent max-pooling layers have sizes of 32x32 

and 16x16, respectively, with the first employing a 

stride of [2, 2] and zero padding. The FC segment 

consists of 652 neurons with ReLU activation, 

followed by a layer of 384 neurons using a TRelu 

activation function. The final output layer consists of 

single neuron with a SoftMax activation function to 

predict the PV output power. The proposed model 

utilizes a two-layer LSTM architecture. The first 

layer contains 64 neurons, designed to learn primary, 

lower-level temporal patterns from the input 

sequence. The second, deeper layer with 128 

neurons builds upon these initial features to capture 

more complex, long-term dependencies. Both layers 

employ the TRelu activation function to introduce 

non-linearity while mitigating the vanishing gradient 

problem, facilitating more effective learning of the 

time-series data. 

4.3. Performance evaluation 

This section provides a detailed 

performance evaluation of the proposed hybrid 

LSTM-CNN model. To demonstrate its superiority, 

the model is compared against several benchmarks: 

a standalone CNN, a standalone LSTM, and a CNN-

LSTM model. The evaluation is based on the annual 

performance of day-ahead PV output power 

forecasting. The analysis of model performance 

clearly demonstrates the advantage of hybrid deep 

learning architectures over single-model approaches 

for PV power forecasting. Among all evaluated 

models, the LSTM-CNN hybrid emerged as the most 

accurate, registering the lowest error scores across 

all key metrics: MAE, RMSE, and MAPE. This 

superior performance is evident when comparing the 

two hybrid models directly. The LSTM-CNN model 

showed a notable improvement over the CNN-

LSTM model, with its error rates being significantly 

lower. Furthermore, both hybrid models (CNN-

LSTM and LSTM-CNN) provided a more robust 

and reliable forecasting capability than the single 

CNN or LSTM models, which exhibited 

considerably higher errors. A visual comparison of 

the forecasting trends over a 92-day period across 

different seasons confirms these quantitative 

findings. While all models generally followed the 

actual pattern of PV power output, the hybrid 

models, particularly the LSTM-CNN, demonstrated 

a much higher degree of similarity to the actual 

values, with its forecasted line being the closest to 

the observed data. 

The forecasting performance of the 

evaluated models is summarized in Table 1. The 

results indicate that hybrid models consistently 

outperform their single-model counterparts. 

Specifically, the LSTM-CNN architecture 

demonstrates superior accuracy, achieving the 

lowest error rates across all metrics: an MAE of 

0.231, RMSE of 0.624, and MAPE of 0.041. This 

represents a significant improvement over the CNN-

LSTM model, with reductions of 0.056 in MAE, 

0.068 in RMSE, and 0.002 in MAPE. Moreover, the 

integration of architectures in hybrid models (CNN-

LSTM and LSTM-CNN) results in a more robust 

forecasting performance than using standalone 

LSTM or CNN models. The low MAE (0.231) for 

LSTM-CNN indicates that its forecasts are, on 

average, very close to the actual values. While 

the low RMSE (0.624), which is more sensitive to 

large errors, confirms that the model rarely produces 

drastic forecasting mistakes. Finally, the very low 

MAPE (0.041 or 4.1%) signifies a high degree of 

forecasting accuracy in percentage terms, which is 

highly valuable for practical energy management 

and grid integration. 

Table 1 performance results of the models 

Results 
Models 

CNN LSTM CNN-LSTM LSTM-CNN 

MAE 0.298 0.301 0.287 0.231 

MAPE 0.044 0.512 0.043 0.041 

RMSE 0.795 0.796 0.692 0.624 
 

Figure 7 presents the PV power forecasting 

results of the proposed model compared to other 

models across different seasons (a 92-day period). 

The core finding is that combining architectural 

strengths leads to better performance. Single models 

like CNN (good at extracting spatial features) or 

LSTM (good at learning temporal dependencies) 
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have limitations. Hybrid models like CNN-LSTM 

and LSTM-CNN likely combine these strengths, 

allowing them to capture both the spatial patterns in 

weather data and the temporal sequences in power 

generation more effectively. 

 
Fig. 7. Comparison of day ahead forecast PV output power 

based on the LSTM and other models. 

V. CONCLUSION 

This research successfully demonstrates 

that hybrid deep learning models significantly 

enhance the accuracy of photovoltaic power 

forecasting. The core finding is that combining 

architectural strengths leads to better performance. 

Single models like CNN (good at extracting spatial 

features) or LSTM (good at learning temporal 

dependencies) have limitations. Hybrid models like 

CNN-LSTM and LSTM-CNN likely combine these 

strengths, allowing them to capture both the spatial 

patterns in weather data and the temporal sequences 

in power generation more effectively. Moreover, the 

sequence of integration is critical; the LSTM-CNN 

model achieves the highest accuracy, with error 

metrics (MAE=0.231, RMSE=0.624, MAPE=0.041) 

that are notably lower than those of the CNN-LSTM 

model (MAE=0.287, RMSE=0.692, MAPE=0.043). 

This suggests that initially capturing temporal 

dependencies with LSTM before extracting spatial 

features with CNN is a more effective strategy for 

this task. This model's robust performance, validated 

both numerically and visually, positions it as a 

superior tool for improving the reliability and 

efficiency of solar power integration into the energy 

grid. 
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