Turki O. Alosaimi, et. al. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 15, Issue 11, November 2025, pp 01-10

RESEARCH ARTICLE OPEN ACCESS

Hybrid LSTM-CNN Deep Learning Model for Enhanced Day-
Ahead Photovoltaic Power Forecasting

Turki O. Alosaimi'*, Ali R. Alozainah'
! Vocational training institute, Public Authority for Applied Education and Training (PAAET), Kuwait.
*Corresponding Author

ABSTRACT

The photovoltaic (PV) power plants offer considerable environmental and economic advantages; its large
penetration poses challenges to power system operation and planning owing to the unpredictable and variable
nature of solar generation. Therefore, accurate forecasting of PV power is essential to guarantee provision of
high-quality electricity to consumers and to enhance the reliability of the power grid. This research develops a
hybrid deep learning model for PV power forecasting that synergistically combines LSTM and CNN
architecture. The model is designed to leverage the complementary strengths of each network: the LSTM is
employed to learn extended temporal correlations within the historical time-series data, whereas the CNN is
utilized to identify complex spatial patterns and local features from the sequence. A case study utilizing a real-
world dataset for one year demonstrates the superior performance of the proposed hybrid LSTM-CNN model.
The evaluation is based on the annual performance of day-ahead PV output power forecasting. Comparative
analysis against standalone LSTM and CNN models demonstrates that the proposed hybrid architecture achieves
greater forecasting accuracy and stability, as evidenced by lower values of key performance indicators: RMSE,
MAE, and MAPE.
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the intermittency and variability of PV power
generation [3] which is directly dependent on
fluctuating weather conditions like cloud cover,
humidity, air pressure and solar irradiance [4].
Consequently, accurate forecasting of generating PV
power has become an essential energy management
tool for grid operators and utilities. As it contributes
to improve the balance between load demand and
supply energy, schedule power plants, ensure grid
reliability, reduce operational costs mitigate the solar
power's unpredictability impacts.

The challenge of predicting solar power
generation has stimulated considerable academic and

I. INTRODUCTION

Over the past century, fossil fuels such as
natural gas, coal, and oil were the main sources for
producing electrical energy through large capacity
generation stations. While they still contribute
significantly today, their use has led to major
environmental impacts, including global warming,
emissions of harmful gases, and widespread
pollution. Consequently, the modern world seeks to
integrate renewable energy sources (RESs) with high
penetration while reducing dependence on fossil
fuels in the energy sector [1]. Among RESs, wind

and solar energy appear as particularly viable and
promising energy sources due to their widespread
availability, low costs, and substantial generation
possible. These factors are enabling their accelerated
penetration into the energy market. Furthermore,
growing environmental awareness and supportive
government policies worldwide are accelerating
their adoption as clean alternatives for energy [2].
Solar energy from Photovoltaic (PV) has
achieved widespread global acceptance, establishing
itself as a foundational element in the transition to
clean and resilient electrical grids. However, this
rapid integration introduces significant challenges to
electrical grid stability. The fundamental issue lies in

www.ijera.com

industrial research over the last decade, resulting in a
large number of studies proposing forecasting
methods. These methods can be broadly categorized
by their approach as; statistical, physical, machine
Learning (ML), and hybrid models [5].

Physical Models utilize Numerical Weather
Prediction (NWP) data and satellite imagery as
primary inputs. It depends on some mathematical
equations to calculate the physical performance of
the PV system. The work in [6] presented a
correction method for errors in NWP-based
irradiance forecasts. This approach utilized an
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extensive set of standard meteorological variables
from NWP output in conjunction with a clear sky
model. Ref. [7] developed a research forecasting
model based on direct-cloud-assimilating NWP
uniquely assimilated satellite cloud imagery directly
into 1its initial states. The model was specially
configured, with tailored resolution and physics
parameterizations, to replicate the life cycle of the
region's characteristic low-altitude stratiform clouds.
The modeling process for physical models is
complicated  because it detailed
meteorological data for PV power stations and
geographic Additionally,  the
performance of these models cannot be assured if
there are significant variations in weather [8], [9],
[10]. In contrast, statistical models forecast PV
power output by establishing mathematical
relationships between historical generation data and
weather parameters through time-series analysis
[11][12]. The accuracy of these models is highly
sensitive to both input data quality and the forecast
horizon. Commonly used statistical models include

requires

information.

the autoregressive moving average (ARMA) model
[13] and its variants such as ARIMA, SARIMA, and
ARMAX [14]—as well as exponential smoothing
[15], and regression models (RM) [16][17]. While
these techniques are effective for stable time series,
they often exhibit significant errors when applied to
real-life PV data, which typically exhibits high
variability [18].

Machine Learning (ML) models utilize
algorithms ranging from regression trees to
sophisticated deep neural networks. They establish
mappings by training on datasets that include input
and output samples [19]. These models have found
applications  across engineering and
scientific fields, including predicting PV power
output. Typically, the modeling process involves
four key stages: data preprocessing, model training,
model validation, and fine-tuning the final
predictions. Commonly employed ML models for
PV power generation forecasting include extreme

various

learning machines [20], support vector machines
(SVM) [21], recurrent neural networks (RNN) [22]
and artificial neural networks (ANN) [23][24][25].
Additionally, Long Short-Term Memory (LSTM)
[26], convolutional neural networks (CNN) [27] and
Gated Recurrent Units (GRU) [28] are also utilized.
Deep learning (DL) models have been extensively
validated across a diverse range of solar forecasting
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applications. For instance, a study in Turkey utilized
a DL model to estimate daily solar radiation for 30
locations [29]. Similarly, an LSTM model applied to
meteorological data from Santiago, Cape Verde, for
Global Horizontal Irradiance (GHI) forecasting
demonstrated a significant improvement over
benchmark methods like persistence,
backpropagation, and least squares regression [30].
The application of LSTMs extends beyond purely
meteorological data; for example, a window-based
multi-input/output LSTM model was wused to
forecast electric load demand [31], while another
achieved GHI prediction by applying LSTM to
satellite imagery from 21 locations [32]. The
nonlinear processing capability of ANNs is
particularly advantageous for capturing the high
variability of solar power, contributing to their
impressive results and widespread adoption in the
field.

Hybrid models, which combine two or more
techniques, are an effective solution for enhancing
forecasting  accuracy by  leveraging  the
complementary strengths of different topologies.
This approach is demonstrated in several studies: for
instance, the particle swarm optimization (PSO),
wavelet transform, and SVM was integrated to
develop short-term photovoltaic power forecasting,
where PSO optimized the SVM's key parameters
[33]. Similarly, the colliding bodies optimization
algorithm was employed to determine the best
neuron count in a DL model [34]. Further
showcasing the versatility of this approach, another
study utilized both genetic algorithm (GA) and PSO
to improve a backpropagation ANN model for
estimating daily diffuse solar radiation based on
seven meteorological parameters [24]. In a related
effort, a hybrid technique using wavelet
multiresolution analysis with a discrete wavelet
transformation (DWT) algorithm was proposed to
decompose complex meteorological signals. This
decomposition was then applied to four different
ANN  architectures  to modeling
performance [25]. A hybrid methodology for day-
ahead photovoltaic power forecasting (PPF) coupled
with uncertainty analysis was presented in [35]. The
model integrated whale optimization algorithm, least
squares SVM, non-parametric kernel density
estimation, and fuzzy c-means [35]. This work was
driven by recent advances in DL and its successful
application in the electrical power sector. Several

improve
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hybrid DL architectures demonstrate this potential.
For instance, one study merged LSTM and CNN
models to improve solar power system operations
[36], while another implemented the LSTM-CNN to
model the joint spatiotemporal characteristics of the
input sequences for PV prediction [37]. Other
methods included a hybrid prediction approach that
uses genetic algorithms and long-term memory for
optimization [38], a combination of CNN with the
Salp Swarm Algorithm for power output prediction
[39], and a Convolutional Self-Attention-based
LSTM (CA-LSTM) framework designed to capture
local data context and improve accuracy [40]. These
models are typically validated using actual power
generation and consumption data.

The above-mentioned review of the existing
research reveals several persistent challenges and
opportunities for advancement in PV forecasting.
For example, conventional artificial intelligence
methods have inherent limitations, the rapid
evolution of DL presents an effective alternative.
Moreover, although the PV power fluctuation due to
weather instability is widely acknowledged, the
strong periodicity and regularity of solar energy are
often underutilized. Thus, there is a need for a
sophisticated hybrid deep learning framework that
moves beyond treating PV data as a simple time
series. Additionally, models the dual nature of solar
power generation, its deterministic patterns (diurnal,
seasonal) and its stochastic disturbances (weather-
induced fluctuations) by dynamically integrating
high-resolution meteorological.

The remainder of this paper is structured as
lists. Section 2 details the methodology of the
proposed hybrid DL model for day-ahead PV
forecasting. Section 3 describes the evaluation
metrics used for assessment. Section 4 presents and
discusses the simulation results, evaluating the
performance of the proposed model. Finally, Section
5 presents the concluding remarks.

II. PV POWER GENERATION
FORECASTING MODELS
This section presents the architecture details for the
PV output power forecasting model. The overall
methodology consists of sequential steps:

1. Data Preprocessing: Input variables are
normalized to standardize the data scale.
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2. Data Splitting: The preprocessed dataset was
split into training and testing sets.

3. Model Training: The proposed CNN-LSTM
model is trained by using the training data
patterns.

4. Model Evaluation: The efficiency of all
trained models is evaluated using the testing
set.

The selection of deep learning architectures
is guided by the multivariate time series structure of
the data. Two models are employed for their
complementary strengths:

1. CNN: This architecture (comprising CL, PL,
and FC layers) is applied for its proficiency in
extracting spatial features and local patterns
from sequential data [41].

2. LSTM: As a specialized RNN, it is utilized for
its proficiency in modeling long-range
temporal dynamics via its unique gated
structure [30].

Due to their different operational mechanisms,

the proposed model's performance is compared
separately against each of these benchmarks.

2.1 Convolution Neural network

One of the key benefits of the CNN is their
relatively low parameter requirements compared to
traditional ANNSs. This characteristic helps decrease
computational complexity and memory usage,
leading to enhanced performance. CNNs are
structured with three main types of layers: fully
connected, max-pooling and convolutional layers
[41]. Figure 1 provides an illustration of CNN
architecture. Additionally, the subsequent sections
will illustrate the functions and descriptions of each
layer utilized in the design of the proposed CNN
presented in this research.

MmPod) Dez

Fully Connected

Comy-1+Relll Ma-Pod-1 Cony-1ReLll

Fig. 1. Proposed CNN construction
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2.1.1 Convolutional layers

Convolution layers utilize 2D filters
(convolution kernels) to convolve input images,
producing two-dimensional feature maps. The
number of filters used depends on the neurons'
number in the corresponding the subspaces of the
input. The size of these filters (width and height) is
determined by the dimensions of the sliding window
applied across the input array [42] [43]. Crucially,
the neurons' number in the output feature map must
match the number in the convolutional layer itself.
The total layers are configurable based on the
network architecture. Mathematically, it can be
modelled as:

L K
R(c, d) :ZZM(I,k) cA(c+1, d+k) (1)

I=1k=1

where / (mask row) and & (mask column) are indices
for the mask M, and ¢ (feature row) and d (feature
column) are indices for the feature matrix 4. The
filter dimensions are L (height/rows) and K
(width/columns).

2.1.2 Non-Linearity Layer

The feature maps from the convolutional
layer are passed through a Rectified Linear Unit
(ReLU), which acts as a non-linear filter that
discards negative values as shown in (2). ReLU is
widely adopted in CNNs because it significantly
accelerates network training [43].

yv=0

y<0 @

»

Fo) ={y
2.1.3 Max-pooling layer
Maximum pooling layers reduce feature
map dimensions, decrease computational complexity
and redundant information to mitigate overfitting
while enhancing robustness [41]. Positioned after
convolution and ReLU operations, pooling enables
an increased number of filters in convolutional
proportionally increasing
computational load. This operation is

layers without

mathematically represented in [43].

’

yr";,:max(xf;k;=££E’<(l+h),k£k’<(k +q) (3)

where, & and g are length and width of the pooling
LJ’
IJ’

window, respectively. y5 and x o denote the
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elements of the output and input feature maps for
layers L and L', respectively.

2.1.4 Fully connected layer (FC)

The FC layer follows the convolutional
layers, integrating all locally learned features for
final classification by connecting each of its neurons
to every neuron in the previous layer. The neurons'
number in the output layer corresponds directly to
the number of target variable.

2.2 Long Short-Term Memory (LSTM)

As an advanced variant of RNNs, LSTM
networks were developed to model long-term
dependencies in sequential data, a task at which
conventional RNNs fail due to vanishing and
exploding gradients. While RNNs inherently process
sequences via internal feedback loops, their inability
to learn long-range context is a fundamental
drawback. LSTM architecture, pioneered by
Hochreiter & Schmidhuber [44], surmounts this
limitation by employing memory cells and a
multiplicative gating system. The input, forget, and
output gates collaboratively manage the cell state,
enabling precise control over which information is
retained, updated, or discarded over time. This
mechanism empowers LSTM networks to capture
long-term temporal relationships reliably. The
underlying algorithm is depicted in Fig. 2 and
formalized mathematically as follows [32]:

Fig. 2 Architecture of the LSTM network
The forget gate f; maintains the flow of information

by deciding what to remove from the cell state. It
computes this using the previous hidden state, hy_q,

and current input, x¢.

fe =o(w[x¢ hey 1+ by) (4)
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A candidate cell state, C/, containing potential new

information is first computed. The input gate, i;,
then determines the proportion of this candidate state
that is added to the network's long-term memory. It

learns to select relevant new data from the x, and

hy_q:
C, = tanh(we[ x4, he—1 1 + b.) (5)

ir = o(wilxy, hey 14 b)) (6)
The new cell state, €y, is computed from the
previous state, C;_;, and the new candidate cell
state C{, as follows:

Co=tp*Ci+fe*Cey (7)
The final step involves the output gate, Oy, which
filters the updated cell state, C;, to generate the
hidden state, h;. This output is calculated by

multiplying the output gate with a fanh of the current
cell state, C;, as follows:

0; = a(wolx, he—1]+ by) (8)

h; = O, = tanh (C;) (9)
where, h;_; represents the hidden state from the
previous time step,x; is the current input, o is

logistic sigmoid function, fanh is the hyperbolic
tangent function, wr,w;, w. and w, are the weight

matrices and by, b;, b, and b, are the bias vectors.

2.3 Proposed LSTM-CNN Network

This paper proposes a hybrid DL model for
PV power forecasting that synergistically combines
CNN and LSTM architectures. The model is
designed to leverage the complementary strengths of
each network: the LSTM is employed to model long-
range temporal dynamics via its unique gated
structure, while the CNN is utilized to identify
complex spatial patterns and local features from the
sequence.

The operational flowchart of the developed
model, illustrated in Fig. 3, begins with the input of
historical PV data into the LSTM layer. This stage
processes  sequential information, effectively
learning the temporal dynamics critical for
forecasting. The output from the LSTM, which
represents the extracted temporal features, is then
fed as input to the subsequent CNN layer. Then
CNN performs convolutional operations to extract
higher-level spatial hierarchies from the temporally
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enriched data. The final forecast output is generated
from this stage. To enhance the model's
generalization capability and mitigate overfitting, a
dropout layer is incorporated into the architecture.

III. EVALUATION INDICES

To evaluate the proposed hybrid LSTM-
CNN model, three error indices are considered.
These indices are mean absolute percentage error
(MAPE), Mean absolute error (MAE), and root
mean square error (RMSE). They are implemented
to evaluate the model performance according to
forecast results. The definitions of the three indices
are described as follow:

Select the required Datasets

Y
Normalize the Data

Y
Put Data on the required form at

Y
Initialize the Networks
parameters

| |

Temporal Feature | .

Max-Pocl-1 Loy HReLU

Comv-1+ReLU

Fig. 3 flowchart of the developed hybrid model
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e RMSE is the square root of the average squared

differences between actual values and
predicted values:
M _p.Z
RMSE — |2zt A4iP0)? (10)

M
e MAE quantifies the average magnitude of the

absolute errors between the observed values
and the predicted values:

N 14 - B
MAE =Z% (11)
j=1

e MAPE represents the average of the absolute
percentage errors, where each error is the
absolute difference between the actual
value and forecasted value, divided by the
actual value.

M

MAE = 1 Z
M

j=1

where F; is the predicted PV output power, and 4;

A —P
A;

X 100 (12)

the corresponding measured output over M datasets.
MAE provides a direct measure of the average
absolute difference between predictions and
observations. RMSE, however, is often more
sensitive to large errors because its calculation
involves squaring the deviations before averaging,
thereby emphasizing outliers. This makes RMSE a
valuable metric when large errors are particularly

undesirable.

IV. SIMULATION AND DISCUSSION

4.1. Dataset overview

The proposed forecasting models are
trained and tested for day-ahead PV power output
prediction using the following daily averaged
parameters: solar radiation (W/m?), wind speed
(m/s), ambient temperature (°C), relative humidity
(%), and PV power output (W). The original dataset,
comprising high-resolution (5-minute interval)
measurements from 2017 to 2018, was processed
into daily averages to align with the forecasting
horizon. The temporal patterns of these data are
visualized in Figures 3 through 6. A temporal split
was applied to the one-year dataset, allocating the
initial 270 days for model training and the remaining
95 days for performance evaluation.
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Fig. 3 Daily average solar radiation (W/m?)

4.2 Proposed LSTM-CNN construction

The optimal performance of the CNN is
achieved with a specific architecture comprising one
FC, two max-pooling, and two convolutional layers.
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Fig. 4 Daily average wind speed (m/s)
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Fig. 5 Daily average ambient temperature (°C)
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Fig. 6 Daily average PV power output power (W)

A dropout rate of 0.1 was applied as a
regularization technique to mitigate overfitting and
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improve model generalization. This method
randomly excludes 10% of neurons from training
during each iteration. The model was trained over
100 epochs with a batch size of 512 and a learning
rate of 0.001, using the Adam (Adaptive Moment
Estimation) optimizer due to its effectiveness for
deep learning tasks. The first convolutional layer
employs 386 filters with a 64x64 kernel size, while
the second uses 98 filters of size 32x32. The
subsequent max-pooling layers have sizes of 32x32
and 16x16, respectively, with the first employing a
stride of [2, 2] and zero padding. The FC segment
consists of 652 neurons with ReLU activation,
followed by a layer of 384 neurons using a TRelu
activation function. The final output layer consists of
single neuron with a SoftMax activation function to
predict the PV output power. The proposed model
utilizes a two-layer LSTM architecture. The first
layer contains 64 neurons, designed to learn primary,
lower-level temporal patterns from the input
sequence. The second, deeper layer with 128
neurons builds upon these initial features to capture
more complex, long-term dependencies. Both layers
employ the TRelu activation function to introduce
non-linearity while mitigating the vanishing gradient
problem, facilitating more effective learning of the
time-series data.

4.3. Performance evaluation

This  section provides a  detailed
performance evaluation of the proposed hybrid
LSTM-CNN model. To demonstrate its superiority,
the model is compared against several benchmarks:
a standalone CNN, a standalone LSTM, and a CNN-
LSTM model. The evaluation is based on the annual
performance of day-ahead PV output power
forecasting. The analysis of model performance
clearly demonstrates the advantage of hybrid deep
learning architectures over single-model approaches
for PV power forecasting. Among all evaluated
models, the LSTM-CNN hybrid emerged as the most
accurate, registering the lowest error scores across
all key metrics: MAE, RMSE, and MAPE. This
superior performance is evident when comparing the
two hybrid models directly. The LSTM-CNN model
showed a notable improvement over the CNN-
LSTM model, with its error rates being significantly
lower. Furthermore, both hybrid models (CNN-
LSTM and LSTM-CNN) provided a more robust
and reliable forecasting capability than the single
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CNN or LSTM models, which exhibited
considerably higher errors. A visual comparison of
the forecasting trends over a 92-day period across
different seasons confirms these quantitative
findings. While all models generally followed the
actual pattern of PV power output, the hybrid
models, particularly the LSTM-CNN, demonstrated
a much higher degree of similarity to the actual
values, with its forecasted line being the closest to
the observed data.

The forecasting performance of the
evaluated models is summarized in Table 1. The
results indicate that hybrid models consistently
outperform  their  single-model  counterparts.
Specifically, the @ LSTM-CNN architecture
demonstrates superior accuracy, achieving the
lowest error rates across all metrics: an MAE of
0.231, RMSE of 0.624, and MAPE of 0.041. This
represents a significant improvement over the CNN-
LSTM model, with reductions of 0.056 in MAE,
0.068 in RMSE, and 0.002 in MAPE. Moreover, the
integration of architectures in hybrid models (CNN-
LSTM and LSTM-CNN) results in a more robust
forecasting performance than using standalone
LSTM or CNN models. The low MAE (0.231) for
LSTM-CNN indicates that its forecasts are, on
average, very close to the actual values. While
the low RMSE (0.624), which is more sensitive to
large errors, confirms that the model rarely produces
drastic forecasting mistakes. Finally, the very low
MAPE (0.041 or 4.1%) signifies a high degree of
forecasting accuracy in percentage terms, which is
highly valuable for practical energy management
and grid integration.

Table 1 performance results of the models

Results Models
CNN | LSTM CNN-LSTM LSTM-CNN
MAE 0.298 0.301 0.287 0.231
MAPE | 0.044 0.512 0.043 0.041
RMSE | 0.795 0.796 0.692 0.624

Figure 7 presents the PV power forecasting
results of the proposed model compared to other
models across different seasons (a 92-day period).
The core finding is that combining architectural
strengths leads to better performance. Single models
like CNN (good at extracting spatial features) or
LSTM (good at learning temporal dependencies)
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have limitations. Hybrid models like CNN-LSTM
and LSTM-CNN likely combine these strengths,
allowing them to capture both the spatial patterns in
weather data and the temporal sequences in power
generation more effectively.

1200 —e - Actual oo CNN LSTM - - - LSTM-CNN
Eooo
=
[
2800
°
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+600
2
5
3400
e
200
0
0 20 40 pay 60 80

Fig. 7. Comparison of day ahead forecast PV output power
based on the LSTM and other models.

V. CONCLUSION

This research successfully demonstrates
that hybrid deep learning models significantly
enhance the accuracy of photovoltaic power
forecasting. The core finding is that combining
architectural strengths leads to better performance.
Single models like CNN (good at extracting spatial
features) or LSTM (good at learning temporal
dependencies) have limitations. Hybrid models like
CNN-LSTM and LSTM-CNN likely combine these
strengths, allowing them to capture both the spatial
patterns in weather data and the temporal sequences
in power generation more effectively. Moreover, the
sequence of integration is critical, the LSTM-CNN
model achieves the highest accuracy, with error
metrics (MAE=0.231, RMSE=0.624, MAPE=0.041)
that are notably lower than those of the CNN-LSTM
model (MAE=0.287, RMSE=0.692, MAPE=0.043).
This suggests that initially capturing temporal
dependencies with LSTM before extracting spatial
features with CNN is a more effective strategy for
this task. This model's robust performance, validated
both numerically and visually, positions it as a
superior tool for improving the reliability and
efficiency of solar power integration into the energy
grid.
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