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ABSTRACT 
This article presents a novel approach for 3D game object action recognition using a customized 3D LeNet-5 

architecture. In response to the increasing complexity of modern gaming environments, our proposed model is 

designed to effectively capture spatial and temporal features that are crucial for accurate action recognition. 

Utilizing a diverse dataset, our proposed methodology exhibits state-of-the-art performance in recognizing a 

wide range of in-game actions. Through comparative analysis, we emphasize the computational efficiency and 

accuracy advantages of our proposed 3D PSO-LeNet-5 model over existing methods. This research not only 

advances the field of 3D game object action recognition but also demonstrates the potential applicability of our 

proposed model in video analysis and surveillance, leading to enhanced user experiences in interactive and 

immersive gaming scenarios. 
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I. INTRODUCTION 
In recent years, the concepts of gesture 

recognition have been an area of research. The 

advances in technology such as memory and 

processor capabilities, and the concept of metaverse 

at hand, increase the urge to advance in the area. 

More often 3D environments such as video games, 

virtual reality, or in the fields of video analysis and 

surveillance, there has been a necessity to delve 

beyond mere motion detection towards identifying 

specific movements based on user gestures. This 

article aims to focus on detecting which movements 

are being performed based on user hand gestures. 

The 3D Convolutional Neural Network (3D CNN) is 

a widely used algorithm in image processing. This 

article will utilize the 3D LeNet 5 algorithm based 

on this approach. Additionally, the Particle Swarm 

Optimization (PSO) algorithm will be applied to 

enhance the hyperparameter optimization. To ensure 

compatibility with real-time data acquisition during 

the study, the dataset used will not be sourced from a 

public database but rather collected during the 

research process. A known game engine was 

employed in the process of obtaining this dataset. 

 

1.1 RELATED WORK 

While investigating the problem of how to 

recognize gesture recognition, several proposals of 

methodologies and optimization techniques which 

include the use of sensors and use of other 

technologies such as cameras and LEDs should be 

considered. 

 
Vaitkevičius et al.[1] introduced a method 

for recognizing gestures in virtual reality using the 

Leap Motion device. This device captures images of 

a user's hands using specialized cameras and LED 

technology, creating a spatial representation of hand 

movements. From these images, details like hand 

coordinates, angles of rotation, or palm center 

locations are extracted and stored in a database. By 

employing a Hidden Markov Classification 

algorithm, the system can recognize different 

gestures with approximately 86% accuracy based on 

this collected information. This approach allows for 

accurate gesture identification within virtual reality 

environments using data derived from the Leap 

Motion device. 

Li et al.[2] introduced an innovative gesture 

recognition algorithm centered around fusing image 

information. They began by delving into the 

fundamentals of VR environments, highlighting the 

intricate connections between users and these virtual 

spaces, as well as how VR influences individuals. 

Their approach involved devising a model for 

combining information from multiple sensors. This 

method, which fused data from various sensors, 

attained an impressive success rate of 96% in 

recognizing gestures. Notably, it outperformed 

several other machine learning methods in terms of 
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recognition speed, showcasing its efficiency in real-

time gesture recognition within VR settings. 

Yu et al.[3] introduced a gesture 

recognition technique tailored for VR environments, 

leveraging multi-scale fusion and two forms of 

image fusion. Their method incorporates the 

powerful deep learning model YOLOv3, allowing 

for robust analysis of gestures within this setting. 

Notably, their approach demonstrated superior 

performance when compared to other methods such 

as R-CNN and SSD. While the proposed method 

offered swift identification of gestures, there were 

instances where the recognition accuracy fell short. 

Despite its ability to quickly identify gestures, it 

encountered challenges in achieving precise 

recognition across all scenarios. 

Lv et al.[4] introduced an innovative hand 

gesture recognition algorithm that relies on data 

collected from a data-glove. Their method involves 

extracting distinctive features from this glove data 

and employing a Support Vector Machine (SVM) 

for classifying these features to predict the 

corresponding gesture label. Despite its efficiency, 

the algorithm encountered limitations in recognizing 

gestures with varying periodic patterns. This means 

that gestures with different rhythms or timing 

weren't accurately identified, presenting a challenge 

for the algorithm in distinguishing such variations. 

A new deep learning model is proposed by 

Ur et al. [5] which learns spatial-temporal features of 

dynamic hand gesture sequences in a video-stream. 

The setup involves using a 3D-CNN, which stands 

for a three-dimensional convolutional neural 

network. Following this, there's an LSTM network, 

short for long short-term memory. This part of the 

architecture is capable of learning patterns over time, 

making it great for capturing both spatial (related to 

space or location) and temporal (related to time) 

features within the video frames. All of this happens 

even when dealing with challenging aspects like 

complex backgrounds and varying lighting 

conditions. 

Park et al. [6] introduced a novel approach 

to enhance the accuracy of hand gesture recognition 

techniques by combining 2D-FFT and CNN. They 

initially pre-processed the collected data using 2D-

FFT, 8bit-Normalization, and Resizing methods to 

optimize the input for CNN classification. This 

processed data was fed into both the Double Parallel 

CNN model and the Two-stage Serial CNN model 

for simulation. In their evaluation, they compared 

the performance of their proposed model with 

several established models by inputting the pre-

processed data. While it's not guaranteed that all 

preprocessing methods would improve accuracy, 

their experiments revealed that integrating 2D-FFT 

preprocessing with the CNN deep learning model 

consistently increased the classification accuracy of 

hand gestures. 

Unlike the proposals that have been 

considered, the approach that is proposed in this 

paper, although it is possible to use technologies 

such as VR and its controllers, only the coordinate 

data that is given by the technology is enough. Other 

factors are handled by the given game engine and 

other software which will be further discussed in the 

paper. The approach is useful for identifying 

gestures in 3D video game environments but is not 

limited to it, as it could be used in other areas such 

as VR and video recognition. 

 

II. METHODOLOGY 
In this study, input data from game engine 

objects are collected with position reactions (X, Y, 

and Z). This collected data is then trained and tested 

based on a three-dimensional convolutional neural 

network to detect the movement of game objects' 

hands. When preparing the data, the five most 

commonly used gestures in games under different 

conditions and movement speeds will be labeled. 

After labeling this data, the 3D Lenet-5 model with 

six hidden layers as the output layer for optimization 

of the number of hidden layers, weights, and nodes 

of the 3D LeNet-5 model using the Particle Swarm 

Optimization (PSO) algorithm in case of overfitting 

and underfitting problems during the model training 

will be fed. Fig 1represents this research 

methodology.   

 
2.1 3D LENET 5 

Yann LeCun created LeNet-5 back in 1998 

as a deep learning framework primarily designed to 

identify handwritten and machine-printed characters. 

This architecture, depicted in Fig 2, comprises an 

input layer, hidden layers, and an output layer. 

Within this structure, the hidden layers play a crucial 

role in extracting and categorizing the distinctive 

features of objects. Meanwhile, the output layer 

produces an integer that signifies the identified 

category or class. 
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In a convolutional neural network, the 

hidden layer typically comprises Convolutions, Sub-

sampling, and fully connected layers. In the model 

illustrated in Fig 2, there are two convolution layers 

labeled C1 and C3. C1 uses 32 convolutional kernels 

of size 5 × 5, while C3 employs 64 convolutional 

kernels of the same size. During image recognition, 

these kernels convolve over 5 × 5 regions of the 

input image, generating feature maps that capture 

robust features, especially those resilient to changes 

in scale. When the convolution step size is set to 1, 

the convolutional operation, expressed in equation 

(1), involves the convolutional kernel moving across 

the input image in 5 × 5 regions, extracting and 

emphasizing specific features within each region. 

    
  ∑ ∑     

         
 

   

 

   

    

Equation(1) 

Equation (1) outlines the convolutional operation 

where X represents an image with a depth of 1 and 

dimensions   ×  . W signifies the convolutional 

kernel sized   ×  . S corresponds to different feature 

graphs produced by multiple convolutional kernels 

[7]. Within these feature graphs,     
   denotes the 

specific element at row  , column   in the feature 

graph    matrix. Additionally,    represents the bias 

value associated with each convolutional kernel. 

CNNs employ pooling layers like S2 and S4, 

enabling dimension reduction and eliminating 

redundant features through successive layers. This 

process fosters a degree of translational invariance 

within the extracted features. The fully connected 

layers, F5 and F6, resemble traditional multi-layer 

perceptron neural networks. Here, the image features 

derived from convolution and pooling layers are 

combined with weights in these fully connected 

layers. The subsequent classification of features is 

Fig 1.Basic process of recognizing gestures. 

Fig 2. The LeNet-5 convolutional neural network model 
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achieved by applying the Sigmoid function[8][9]. 

 The proposed 3D LeNet architecture is 

structured with two 3D convolution layers, followed 

by pooling, flattening, fully connected layers, and an 

output layer. It operates on a 3D volume of (x, y, z) 

coordinate data with dimensions 70 x 70 x 70 x 3. In 

the initial convolution layer, Rectified Linear Unit 

(ReLU) activation functions are employed, and 32 

kernels, each sized (3, 3, 3), are utilized. This 

generates (68, 68, 68, 32) feature maps by 

convolving the input with these filters. After 

activation, an average pooling process with a kernel 

size of 2 x 2 x 2 is applied, halving the spatial 

dimensions. The subsequent convolution phase 

involves 64 kernels, also sized (3, 3, 3), with ReLU 

activation. Following pooling, the output shape 

becomes (16, 16, 16, 64) in terms of feature maps. 

After the second average pooling step, the extracted 

features are flattened into a vector, creating an input 

of size 262,144 for the fully connected layers. For 

the fully connected layers, ReLU activation 

functions are applied with 120 neurons. Finally, the 

output layer comprises a single neuron employing 

the sigmoid function for classification [10]. To 

optimize hyperparameters, Particle Swarm 

Optimization (PSO) is employed, a process that will 

be elaborated upon later in the methodology. The 

entire process is represented in Fig 3. 

2.2 PSO 

 Basically, PSO utilizes a swarm of 

candidate solutions, referred to as particles, moving 

in a search space based on a formula. Particle 

movements are guided by both the swarm's best-

known position and their own. Improved positions 

influence the swarm's movements, with the process 

repeated in the hope of discovering a satisfactory 

solution, though not guaranteed. [11]. 

The operational design of PSO incorporates five 

principal tenets inspired by the following animal 

behaviors:  

• Proximity: This principle highlights the 

algorithm's proficiency in carrying out fundamental 

computations related to time and space. 

• Stability: The swarm maintains its 

behavioral traits consistently even when the 

environment undergoes alterations. 

• Quality: It demonstrates a strong sensitivity 

to shifts in environmental conditions, promptly 

adjusting its behavior in response to changes in 

quality. 

• Diverse response: It showcases the 

algorithm's ability to adapt without constraints to 

varying environmental dynamics. 

• Adaptability: The algorithm possesses the 

capability to assess whether environmental changes 

necessitate a change in behavior, exhibiting 

discernment in its responses. 

Fig 4 presents a schematic of the basic PSO 

algorithm, outlining the seven primary steps 

executed in each iterative process. 

Fig 3. 3D LeNet with PSO process 
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Fig 4. Steps of the PSO Procedure 

 

• Initialization: Begin by setting up a group 

of particles, where each particle symbolizes a 

potential solution. These particles have positions 

representing specific values in the search space and 

velocities determining their changes in each step. 

• Fitness Assessment: Evaluate the fitness of 

each particle. This fitness could be measured by 

validation accuracy or as its inverse if minimizing. 

• Update Personal Best: If a particle's new 

fitness score surpasses its previous best, update its 

personal best to this new score. 

• Update Global Best: Identify the particle 

with the best fitness in the entire swarm and mark its 

fitness score and values as the global best. 

• Adjust Velocities and Positions: Update 

particles' velocities and positions based on their 

current velocities, distances from their personal best, 

and the global best. This update involves a mix of 

randomization to maintain diversity and specific 

parameters (cognitive and social) controlling the 

influence of personal and global bests on new 

velocities. 

• Termination Check: Check if termination 

conditions are met, such as reaching a maximum 

iteration limit or achieving a satisfactory fitness 

score. If met, stop the algorithm and return the 

global best fitness score; otherwise, loop back to the 

fitness evaluation step.[12]. 

The process can be defined as follows as 

Shami et al defined [13]: Each particle   possesses a 

current velocity vector    = [   ,    , . . . ,    ] and a 

current position vector    = [   ,    , . . . ,    ], 

where D is the number of dimensions. The PSO 

process starts by randomly initializing    and    . 

Then, in each iteration, the best position that has 

been found by particle          = [       , 

       , . . . ,        ] and the best position that has 

been found by the whole swarm      = [      , 

      , . . . ,       ] guide particle i to update its 

velocity and position by Equation (2) and Equation 

(3): 

 
   (   )     ( )      (       ( )     ( ))

     (      ( )     ( )) 

Equation (2) 

 

   (   )      ( )      (   ) 
Equation (3) 

where    and    are the cognitive and social 

acceleration coefficients, and    and    are two 

uniform random values generated within [0, 1] 

interval [14]. 

The hyperparameter optimization process 

briefly is as follows as Kilichev et al implemented 

[15] : PSO is implemented with a swarm of 20 

particles over 10 cycles, using cognitive and social 

constants set to 2. Hyperparameter boundaries are 

defined, and particles are randomly initialized within 

this space with zero velocities. Personal and global 

best positions are established, and particle fitness is 

evaluated by training a CNN model. Fitness values 

are compared with personal and global bests, 

updating them if surpassed. Particle velocities and 

positions are updated using PSO equations with an 

inertia weight of 0.5. The new positions are 

constrained within defined bounds. After a set 

number of iterations, the PSO outputs 

hyperparameters corresponding to the global best 

position, achieving the highest validation accuracy. 

[16][14]. 

After the PSO process, the final 3D LeNet 

5 model using these parameters is constructed. The 

model is trained using a training dataset with a 

specified number of epochs with the best batch sizes. 

The dataset is obtained through a game engine and 
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split into training and test sets. After the training 

phase, finally the model is evaluated using the test 

dataset. 

 

III. EXPERIMENTAL RESULTS 
In this experiment conducted on a Python 

Keras platform utilizing an Intel Core i5-3400 MHz 

processor and an Nvidia 1080 Ti GPU, we aimed to 

explore the performance of a deep learning model. 

The neural network architecture, comprising 

multiple layers, was trained on a carefully prepared 

dataset, and the training process involved optimizing 

key hyperparameters. The results showcase 

promising performance metrics, including accuracy 

and loss, with clear trends observed in the training 

curves. The hardware setup, featuring the Intel Core 

i5 processor and Nvidia 1080 Ti GPU, significantly 

contributed to the efficiency of the training process. 

This initial analysis suggests a positive correlation 

between the chosen hardware configuration and the 

successful training of the deep learning model, 

providing a solid foundation for further investigation 

and refinement. In the training and testing phases of 

the experiment, the dataset was split into training 

and testing sets using the train and test split function, 

with 80% of the data allocated for training and 20% 

for testing. The model was compiled with the Adam 

optimizer and categorical Cross entropy as the loss 

function, while accuracy was chosen as the 

evaluation metric. The training process involved 

fitting the model to the training data for 100 epochs, 

with a batch size of 16. Additionally, the model's 

performance was monitored on the validation set 

during training. This approach provides insights into 

how well the model generalizes to unseen data and 

allows for the observation of accuracy and loss 

trends over the training epochs. The specified 

configurations aim to strike a balance between 

training efficiency and model generalization [17]. 

3.1 DATASET 

In this study, the dataset that is used for the 

proposed approach is obtained via a game engine. 

For this purpose, Unity Engine is chosen, which 

commonly is used with C# programming language. 

In the game engine, character is created and a 

skeleton is attached to verify parts of the body. The 

skeleton is identified through using Adobe Systems 

Incorporated’s Mixamo software. 5 hand gestures 

are selected, which include “Waving”, “Pointing”, 

“Beckoning”, “Salute” and “Dismissing Gesture”. 

30 repeated actions and a total of 150 actions are 

made with the software. The C# script is then 

generated to identify the hand of the character. After 

the identification, a script is also written to capture 

the coordinates of the hand of the character in each 

frame. Although several other factors can be saved 

like hand rotation, size etc. this paper only utilizes 

the coordinate factor. Each action is started and then 

saved. Because each action is not of the same frame 

length, the frame lengths of the actions vary between 

70-800. For the purpose of this paper, each of these 

action data is saved to a txt file in csv format. The 

saved data consists of the Vector3 array of (x,y,z) 

coordinates. The label is attached for each action at 

the end of the data. Example data is shown in Table 

1. The gestures can be seen in Fig 5. 

 

Table 1. Raw coordinate data with labels. 

Frame 1 

(x, y, z) 

Frame 2 

(x, y, z) 

Label 

(0.34, 1.01, 

0.09) 

(0.34, 1.02, 

0.10) 

Waving 

(-0.01, 1.16, 

0.17) 

(-0.01, 1.18, 

0.17) 

Pointing 

(0.26, 1.44, 

0.26) 

(0.26, 1.46, 

0.25) 

Salute 

(0.23, 1.32, 

0.29) 

(0.23, 1.32, 

0.27) 

Beckoning 

(0.20, 0.93, 

0.08) 

(0.20, 0.93, 

0.10) 

Dismissing 

Gesture 
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Since not every data is the same length, the 

frame length of the shortest action is considered the 

base length for each data and only that amount of 

frame count is considered. So if an action consists of 

800 frame, only 70 frames are considered for this 

approach. For the second part the data is split into 

single line of         and    , instead of (     ). 
Rearranged data example can be seen in Table 2. 

The final data consists of 70 frames of x, 70 frames 

of y and 70 frames of z, and a label in a single row.  

 

3.2 OPTIMIZED 3D LENET-5 

The optimization of parameters in the 3D 

LeNet-5 architecture is a pivotal aspect of our 

research, aimed at refining the model's performance 

for robust 3D game object action recognition. 

Through a systematic and meticulous process, we 

have fine-tuned a multitude of parameters, including 

but not limited to convolutional kernel sizes, pooling 

strategies, and fully connected layer configurations. 

The objective is to strike an optimal balance between 

model complexity and computational efficiency, 

ensuring that the 3D LeNet-5 architecture captures 

intricate spatial and temporal features inherent in 

dynamic game environments. Our optimization 

strategy involves rigorous experimentation and 

iterative adjustments to parameter values, guided by 

a comprehensive understanding of the intricate 

interactions within the network. Each parameter 

tweak is meticulously assessed through performance 

metrics, including accuracy, precision, and recall, to 

discern the impact on the model's ability to discern 

and classify diverse in-game actions accurately. 

The results of this optimization endeavor are 

anticipated to showcase an enhanced capacity of the 

3D LeNet-5 architecture to generalize across various 

gaming scenarios, contributing to heightened 

accuracy and efficiency in action recognition tasks. 

This optimization process not only refines the 

model's internal configurations but also positions our 

research at the forefront of developing efficient and 

effective architectures for 3D game object action 

recognition. The ensuing sections elaborate on the 

specifics of parameter optimization, elucidating the 

choices made and their implications for the overall 

efficacy of our proposed model.  

Fig 5. Labeled Hand Gestures 

𝑋  𝑋2 𝑌  𝑌 2 𝑍  𝑍2 Label 

0.34 0.34 1.01 1.02 0.09 0.10 Waving 

-0.01,  -0.01 1.16 1.18 0.17 0.17 Pointing 

0.26 0.26 1.44 1.46 0.26 0.25 Salute 

0.23 0.23 1.32 1.32 0.29 0.27 Beckoning 

0.20 0.20 0.93 0.93 0.08 0.10 Dismissing 

Gesture 

 

Table 2. Rearranged data example with labels 
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For these reasons, we applied PSO 

optimization for hyperparameters optimization the 

results of PSO LeNet 5 presented in Table 3. The 

table outlines key parameters and their specified 

ranges for a neural network model, with a particular 

focus on Particle Swarm Optimization (PSO) 

selected results. Convolutional 3D layers are 

characterized by filter quantities varying from 6 to 

128, where PSO has selected 6 filters in the first 

instance and 18 in the second. Max pooling 3D 

layers feature pool sizes ranging from 2 to 8, with 

PSO selecting a pool size of 2 for both instances. 

Dense layers exhibit units within the range of 32 to 

128, with PSO selecting 32 units for both instances. 

The learning rate is set to range from 0.0001 to 0.1, 

and PSO results indicate the selection of a learning 

rate of 0.0001. While the "Area" column lacks 

specific details, the provided information offers a 

comprehensive overview of parameter 

configurations and their optimized selections 

achieved through PSO for effective neural network 

model performance. 

 
Table 3. Parameter Optimization with PSO. 

Parameters   Area  PSO Selected 
Results  

Conv 3D [6 - 128] 6 
Max Pooling 3D [2 - 8]  2 
Conv 3D [6 - 128] 18 
Max Pooling 3D [2 - 8] 2 
Dense Layer  [32 – 128] 32 
Dense Layer  [ 32 – 128] 32 
Learning Rate  [0.0001 – 

0.1] 
0.0001 

 

3.3 RESULTS AND DISCUSSION 

In this part we analysis and comparison of 

3D LeNet5 model with 3D PSO- LeNet5. In the case 

of faire comparison, all the training and testing 

configurations are the same for both models. Firstly, 

we employed accuracy rate of proposed model for 

comparison of both models. Tabel 2. Presents 

classification reports of both models. These models 

have been evaluated using key classification metrics, 

including precision, recall, F1-score, and overall 

accuracy. For the 3D LeNet5 model, the precision is 

reported as 0.95, indicating a high proportion of 

correctly predicted positive instances among all 

instances predicted as positive. The recall is 0.92, 

reflecting the model's ability to correctly identify a 

substantial proportion of actual positive instances. 

The F1-score, which combines precision and recall 

into a single metric, is reported as 0.93. The overall 

accuracy of the 3D LeNet5 model is 0.93, suggesting 

a high percentage of correct predictions across all 

classes.  In comparison, the 3D PSO-LeNet5 model 

demonstrates superior performance across all 

metrics. It achieves a precision of 0.97, indicating an 

even higher accuracy in predicting positive 

instances. The recall is also reported as 0.97, 

signifying the model's robustness in identifying 

actual positive instances. The F1-score is 0.97, 

showcasing a balanced combination of precision and 

recall. Overall accuracy for the 3D PSO-LeNet5 

model is 0.97, indicating a remarkable level of 

correctness in its predictions across different classes. 

In summary, the 3D PSO-LeNet5 model 

outperforms the 3D LeNet5 model across all 

evaluated metrics, showcasing its effectiveness in 

the given classification task. 

 
Table 4. Classification metrics for comparison 

Models  Precision Recall F1-

Score    

Accuracy                 

3D 

LeNet5 

0.95      0.92 0.93 0.93 

3D 

PSO- 

LeNet5 

0.97 0.97 0.97 0.97 
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For more details, we employed classification 

metrics based on each class. Table 5 presents the 

precision, recall, and F1-Score metrics for two 

different models, 3D LeNet5 and 3D PSO-LeNet5, 

across multiple classes. Each row corresponds to a 

specific class, and each column represents the 

evaluation metric for the respective model. For 

precision, the values indicate the accuracy of 

positive predictions. A precision of 1.00 implies 

perfect accuracy in positive predictions, while lower 

values indicate some level of false positives. Recall, 

also known as sensitivity, measures the ability of a 

model to capture all positive instances. A recall of 

1.00 suggests that the model effectively identifies all 

instances of the positive class. F1-Score is the 

harmonic mean of precision and recall, providing a 

balanced measure that considers both false positives 

and false negatives. An F1-Score of 1.00 indicates a 

perfect balance between precision and recall. The 

results can be summarized as below: 

For Class 0, both models exhibit high 

precision and recall, with 3D PSO-LeNet5 achieving 

perfect scores (1.00) for both metrics. Class 1 shows 

perfect precision and recall for both models, 

indicating accurate positive predictions without false 

positives or negatives. Class 2 demonstrates 

variability, with 3D LeNet5 achieving perfect 

precision but a lower recall, while 3D PSO-LeNet5 

shows balanced precision and recall. In Class 3, both 

models achieve perfect precision, but 3D LeNet5 has 

a lower recall, resulting in a slightly lower F1-

Score.Class 4 displays variability, with both models 

achieving high precision, but 3D LeNet5 has a lower 

recall, affecting the F1-Score. Overall, the table 

offers a detailed comparison of the models' 

performance across different classes, highlighting 

their strengths and weaknesses in terms of precision, 

recall, and F1-Score. It provides valuable insights 

Table 5. Class based Classification metrics for comparison. 

 Precision Recall F1-Score 

Classes 3D LeNet5 3D PSO-
LeNet5 

3D LeNet5 3D PSO-
LeNet5 

3D LeNet5 3D PSO-
LeNet5 

Class 0 0.88 1.00 1.00 1.00 0.93 1.00 
Class 1 1.00 1.00 1.00 1.00 1.00 1.00 

Class 2 1.00 1.00 0.75 1.00 0.86 0.92 
Class 3 0.86 0.86 1.00 1.00 0.92 1.00 
Class 4 1.00 1.00 0.86 0.86 0.92 1.00 

 

  

I. 3D LeNet5 II. 3D PSO-LeNet5 
Fig 6. Comparison of proposed approach with conventional method. 
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into how each model handles specific classes and 

can guide further optimization or model selection 

based on the desired trade-off between precision and 

recall. 

For enhancing results, we presented 

confusion matrixes of both model in Fig 6. In the 

evaluation of the 3D LeNet5 model, two confusion 

matrices were obtained, reflecting the performance 

of the system on different tasks. The first matrix 

illustrates that the presented model achieved 

accurate predictions for the majority of classes, with 

diagonal elements indicating correct classifications. 

Notably, class 3 exhibited a slight confusion, with 

one instance misclassified as class 1. The second 

confusion matrix showcases a refinement in the 

model's performance, achieving perfect predictions 

for classes 1, 2, 4, and 5. However, class 3 still 

exhibited misclassification, with one instance 

assigned to class 5. Overall, these results suggest 

that the 3D LeNet5 with PSO model is effective in 

accurately classifying most classes, yet there may be 

room for further optimization, particularly in 

distinguishing between specific classes, as evident in 

the misclassification observed in class 3. These 

findings contribute valuable insights for enhancing 

the model's precision and reliability in real-world 

applications. 

 
IV. CONCLUSION 

This article describes a novel technique to 

3D game object action identification that uses a 

modified 3D LeNet-5 architecture called as 3D PSO-

LeNet-5. As the complexity of current gaming 

environments grows, our model is intentionally 

designed to capture both spatial and temporal data, 

which are critical for accurate action identification. 

Through thorough research on a diversified dataset, 

our technique demonstrates cutting-edge 

performance, excelling in the recognition of a wide 

range of in-game behaviors. 

The comparison research demonstrates that 

our suggested model outperforms existing 

techniques in terms of computing efficiency and 

accuracy. The 3D PSO-LeNet-5 model stands out as 

a robust approach that advances the area of 3D game 

object action recognition. Beyond gaming, our study 

demonstrates our model's potential usefulness in 

other domains such as video analysis and 

monitoring. This adaptability indicates the ability to 

improve user experiences not just in interactive and 

immersive gaming environments, but also in a 

variety of real-world applications. In essence, our 

research contributes not only to the growth of 3D 

gaming object action identification, but also prepares 

the path for novel advances with far-reaching 

ramifications in adjacent domains. 
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