Dr.Sudha H.Thimmaiah, et. al. International Journal of Engineering Research and Applications www.iiera.com ISSN: 2248-9622, Vol. 14, Issue 3, March, 2024, pp: 104-112

### **RESEARCH ARTICLE**

**OPEN ACCESS** 

## Estimation of Error Minimization of Anchor Nodes in WSNs **Using Range Based Method**

## Dr.Sudha H.Thimmaiah and Dr.Vidya Honguntikar

Dept. of Electronics & Telecommunication Engineering, Dr.Ambedkar Institute of technology, Malhathahalli, Bengaluru-560056, Karnataka, India.

Corresponding Author Email ID: <a href="mailto:sudha.tce.ait@gmail.com">sudha.tce.ait@gmail.com</a>

## ABSTRACT

The broad spectrum of applications- such as surveillance, monitoring and controlling has resulted in Wireless Sensor Networks (WSNs) as one amongst the leading technologies of research interest in recent years. One of the basic challenges of WSNs is the localization of sensor nodes in the network. Localization or positions of nodes in the network significantly influences the performance of the network. The effective efficiency of a WSN system is influenced by the performance of its parameters - Node density, Anchor Nodes and Communication Range. Many factors influence the node position or localization of anchor nodes which significantly impacts errors in the network. Subsequently, it is very essential to minimize localization errors. RMSE can be computed to estimate error minimization of anchor nodes by computing ranges between the various nodes. In this research paper, simulation analysis for determination of range estimates and RMSE for Anchor nodes using Range based - RSSI method is computed using MATLAB.

Keywords-WSNs-Wireless Sensor Networks, NN-Number of Nodes, AN-Anchor Nodes, CR-Communication Range, RSSI-Received Strength Signal Indicator, RMSE-Root Mean Square Error.

| Date of Submission: 13-03-2024 | Date of acceptance: 27-03-2024 |
|--------------------------------|--------------------------------|
|                                |                                |

#### I. **INTRODUCTION**

A Wireless Sensor Network (WSN) is formed when small devices called wireless sensor nodes are deployed in a given area (indoors or outdoors). Recent MEMS technological advances have led to the development of very small and lowcost sensor devices which are capable of functions such as- computation, communication processing and data storage [1]. The environment in the network is monitored by sensor nodes which are equipped with an onboard processor. The deployed sensors in the network are connected to the Base Station which acts as a processing unit in the WSN System. Base Station in a WSN System is connected through the Internet to share data [2]. WSNs are a very promising tool for monitoring events and are used in many fields - such as agriculture, environmental monitoring of air-water pollution, greenhouse, health monitoring, structural monitoring etc.

Since the advent of WSN technology, a number of localization algorithms have been proposed. To mention a few, based on the methods of computation and ranging measurements, we have-

Distributed and Centralized - Distributed algorithms - Computing is equally distributed

among all the sensor network nodes. Here, location information is received by each node from its neighboring node, performs computation, and retransmits the obtained results to other nodes. In the Centralized approach, Computing is performed by a single centralized node and all nodes broadcast localization information to a single computer. Centralization is much more complex than a distributed setting.

Range based and Range free - Rangebased [3] techniques require ranging information that can be used to estimate the distance between two neighboring nodes. Therefore, range measurements such as time of arrival (ToA), angle of arrival (AoA), received signal strength indicator (RSSI), and time difference of arrival (TDoA) are used to measure the distances between the nodes in order to estimate the location of the sensors. Rangefree [4] techniques use connectivity information between neighboring nodes to estimate the nodes' position, also, do not require any additional hardware and use proximity information to estimate the location of the nodes in a WSN, and thus have limited precision. Some of the range-free localization algorithm includes: Centroid, Appropriate Point in Triangle (APIT) and DV-HOP.

Dr.Sudha H.Thimmaiah, et. al. International Journal of Engineering Research and Applications www.ijera.com ISSN: 2248-9622, Vol. 14, Issue 3, March, 2024, pp: 104-112

In this research paper, Received Signal Strength Indicator (RSSI) - a range based method is considered for sensor node localization. Mathematical models are used to measure range in the above mentioned methods [5]. A localization algorithm. Adaptive Information Estimation Strategy (AIES) is proposed in which, the unknown sensors are localized by an estimator that includes pair-wise measurements between all the sensors in the network. The range estimates computed using the AIES model is plotted against the RMSE (Root Mean Square Error) [6]. In this paper, analysis of anchor nodes is performed.

#### Stages in Localization of Sensor Nodes

To determine the exact position of sensor node, there are three different stages –

I-Stage: Distance/angle estimation between the nodes - Distance/Angle estimation is the prerequisite for remaining two phases of localization. This refers to the measurement of distance or angle between the transmitter and receiver node. The different techniques for distance/angle estimation include - Time of Arrival (ToA), Time Difference of Arrival (TDoA), Received Signal Strength Indicator (RSSI) and Angle of Arrival (AoA).

II-Stage: Position computation of a single node -GPS (Global Positioning System) cannot be used for the localization of wireless sensor nodes due to various constraints Once the initial calculation of a nodes distance or angle is estimated, the nodes position can be computed using any one of the following methods - trilateration, multilateration, triangulation, probabilistic approaches etc. [7].

III-Stage: Localization Algorithm - The most important and last stage of localization is the choice of localization algorithm which is used for localization of whole network [8]. Here, at each stage, different techniques with varying accuracy and complexity exist. The information collected in previous two stages is utilized to localize sensor nodes cooperatively. Mostly, accuracy of this stage is affected by the ranging method, deployed environment, and the relative geometry of unknown nodes to the anchor nodes.

#### **II. METHODOLOGY**

Range-based-RSSI The proposed Algorithm is implemented in this research paper. AIES-RSSI Algorithm- In the Adaptive Information Estimation Strategy methodology, pairwise measurements between peer-to-peer sensors are computed by an estimator. The pair-wise distance measurements are estimated by a statistical model. The distance error is computed n the basis of the model AIES-RSSI. statistical Measurements between any pairs of sensors aids the location estimates and enhances the accuracy of the localization system.

The AIES-RSSI implementation is as follows.

1.1. WSN Deployment

1.2. AIES-RSSI statistical model

#### 2.1. WSN deployment

The number of anchor nodes and unknown nodes are specified and the coordinates of each node is generated randomly. To form a subset of nodes in the WSN, the communication range between nodes is defined. The following procedure was followed

• The total number of nodes-anchor and unknown are defined.

• Random coordinate values (i,j) are generated for the defined number of nodes.

• Communication Range between peer-topeer nodes is defined

• Selection of subset of nodes based on communication range defined.

• Connection between nodes is established.

# 2.2. AIES-RSSI Statistical Model Implementation.

RSSI is a distance related measurement technique which estimates the distances between peer-to-peer sensors from the received signal strength measurements [9]-[13]. These techniques are based on a standard feature found in most wireless devices, a received signal strength indicator (RSSI). RSSI estimates the distance covered by a signal to the receiver by measuring the power of received signal. Decrease in transmitted power at the receiver can be calculated and translated into an estimated distance. Let us denote  $d_{ij}$  as the estimated distance between two peer nodes i and j, then maximum likelihood estimate is a biased estimate of the true distance and is represented as equation – (1) Dr.Sudha H.Thimmaiah, et. al. International Journal of Engineering Research and Applications www.ijera.com ISSN: 2248-9622, Vol. 14, Issue 3, March, 2024, pp: 104-112

$$\hat{d}_{ij} = d_0 \left(\frac{P_{ij}}{P_0(d_0)}\right)^{-1/n_p}$$
(1)

Also, an unbiased estimate is given by equation -(2)

$$\hat{d}_{ij} = d_0 \left(\frac{P_{ij}}{P_0(d_0)}\right)^{-1/n_p} e^{-\frac{\sigma^2}{2n^2 n_p^2}}$$
(2)

Where  $P_0$  (d<sub>0</sub>) [dBm] is a known reference power value in dB milliwatts at a reference distance d<sub>0</sub> from the transmitter, n<sub>p</sub> is the path loss exponent that measures the rate at which the RSSI decreases with distance and the value of n<sub>p</sub> depends on the specific propagation environment,  $\sigma$  is the standard deviation for a zero mean Gaussian distributed random variable, and accounts for the random effect of shadowing.

This implies that the distance is modelled as Gaussian and is represented as above. Lastly, the localization performance of the algorithm is evaluated by computing RMSE by using the below equation -(3)

AIES-RSSI Algorithm :

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (Loc_{real}^{i} - Loc_{est}^{i})^{2}}{n}}$$
(3)

Step 1: Deployment of Sensor nodes and selection of subset

Step 3:Representation of distance using RSSI model

Step 3: Estimation of distances are determined

Step 4: Calculation of Fisher Information Submatrices

Step 5: Merge Submatrices to form the FIM

Step 6: Invert FIM to obtain variance of the estimators.

Step 7: Compute RMSE

#### III. SIMULATION RESULTS.

The parameters that affect localization are -

#### 3.1. NODE DENSITY (NN)

These are the total number of nodes in a network, and in this simulation study they are varied from 10 to 1000 nodes.

#### 3.2. ANCHOR NODES (AN)

These are the nodes whose location is known and are deployed grid-wise; they are varied from 3 to 20.

#### **3.3.** COMMUNICATION RANGE (C-R)

This is the range or the propagation distance to the rest of the nodes. It is varied from 5 to 50.

To determine the range estimates, simulation using MATLAB is considered by varying the network parameters that affect the localization error - RMSE. In this experiment, considering AN (Anchor Nodes) - a parameter which affects localization, a set of graphs - No. of ANs Vs RMSE are plotted-by varying AN in the range 3 to 20 and keeping the NNs and CRs as constants. Variations in the above parameters are considered as cases-1,2,3,4,&5. The consolidated tabled and figures are as shown below.

#### Case1: NN=50 and CR=5,25,50

| S1.     | NN=50 |          | RMSE      |           |
|---------|-------|----------|-----------|-----------|
| No<br>• | AN    | CR=5     | CR=25     | CR=50     |
| 1.      | 3     | 5.953151 | 19.237482 | 39.129616 |
| 2.      | 4     | 2.821747 | 13.054180 | 34.520252 |
| 3.      | 5     | 2.960957 | 14.273794 | 24.936982 |
| 4.      | 6     | 2.529759 | 12.673054 | 19.029242 |
| 5.      | 7     | 2.221645 | 12.554039 | 24.874602 |
| 6.      | 8     | 1.831013 | 9.8252602 | 19.707457 |
| 7.      | 9     | 1.749731 | 10.124067 | 16.467896 |
| 8.      | 10    | 1.731917 | 7.6047113 | 19.676095 |
| 9.      | 11    | 1.591006 | 8.0925991 | 14.064001 |
| 10.     | 12    | 1.471185 | 7.4848085 | 15.732999 |
| 11.     | 13    | 1.409603 | 6.4893224 | 12.474892 |
| 12.     | 14    | 1.467092 | 6.5513547 | 11.278426 |
| 13.     | 15    | 1.235257 | 5.6402730 | 11.508468 |
| 14.     | 16    | 1.106057 | 5.3301373 | 11.508598 |
| 15.     | 17    | 1.128837 | 6.4173051 | 10.520264 |
| 16.     | 18    | 1.238771 | 6.0623485 | 10.269173 |
| 17.     | 19    | 1.168544 | 5.6512137 | 11.425952 |
| 18.     | 20    | 1.048601 | 6.2204672 | 10.807859 |

Table 1: Consolidated values for No. of Nodes=50



Figure 1: Consolidated graph for No. of Nodes=50

#### Case2: NN=250 and CR=5,25,50

| S1. | NN=250 |          | RMSE      |           |
|-----|--------|----------|-----------|-----------|
| No. | AN     | CR=5     | CR=25     | CR=50     |
| 1.  | 3      | 5.469887 | 18.887724 | 42.210198 |
| 2.  | 4      | 2.969398 | 16.348247 | 25.373395 |
| 3.  | 5      | 2.678434 | 11.962529 | 29.161686 |
| 4.  | 6      | 2.915172 | 12.815085 | 39.299021 |
| 5.  | 7      | 2.484314 | 11.294445 | 24.492242 |
| 6.  | 8      | 1.540445 | 9.7150053 | 19.144082 |
| 7.  | 9      | 1.868511 | 9.7975768 | 17.090378 |
| 8.  | 10     | 1.520942 | 9.9703692 | 15.663573 |
| 9.  | 11     | 1.910027 | 7.5177194 | 14.940916 |
| 10. | 12     | 1.505874 | 8.7630835 | 13.843758 |
| 11. | 13     | 1.497459 | 6.8789024 | 12.669319 |
| 12. | 14     | 1.355693 | 6.1845539 | 12.990643 |
| 13. | 15     | 1.153480 | 5.6029495 | 13.279041 |
| 14. | 16     | 1.164862 | 5.7375851 | 12.119469 |
| 15. | 17     | 1.377347 | 6.4081805 | 11.105274 |
| 16. | 18     | 1.033796 | 6.1760776 | 12.199137 |
| 17. | 19     | 1.106654 | 5.3317257 | 10.110061 |
| 18. | 20     | 1.010895 | 5.0180784 | 11.865234 |

Table 2: Consolidated values for No. of Nodes=250



Figure 2: Consolidated graph for No. of Nodes=250

#### Case3: NN=500 and CR=5,25,50

| S1. | NN=500 |          | RMSE      |           |
|-----|--------|----------|-----------|-----------|
| No. | AN     | CR=5     | CR=25     | CR=50     |
| 1.  | 3      | 4.053435 | 22.834505 | 48.893794 |
| 2.  | 4      | 2.506675 | 16.304542 | 30.473704 |
| 3.  | 5      | 2.774731 | 14.449380 | 26.467303 |
| 4.  | 6      | 2.027185 | 12.133174 | 23.505441 |
| 5.  | 7      | 2.291052 | 10.376762 | 21.619731 |
| 6.  | 8      | 1.829499 | 10.804111 | 19.779065 |
| 7.  | 9      | 1.763275 | 9.105011  | 19.396379 |
| 8.  | 10     | 1.701512 | 7.914542  | 17.410193 |
| 9.  | 11     | 1.730952 | 8.155664  | 16.153580 |
| 10. | 12     | 1.972270 | 7.450414  | 13.842163 |
| 11. | 13     | 1.538088 | 6.984029  | 12.686838 |
| 12. | 14     | 1.353770 | 5.895079  | 11.920846 |
| 13. | 15     | 1.175870 | 6.068707  | 11.646154 |
| 14. | 16     | 1.325148 | 6.335636  | 12.191633 |
| 15. | 17     | 1.147423 | 5.734063  | 10.813564 |
| 16. | 18     | 1.122070 | 5.869960  | 11.062036 |
| 17. | 19     | 1.148408 | 5.440799  | 13.147904 |
| 18. | 20     | 0.997436 | 6.006958  | 12.675135 |

Table 3: Consolidated values for No. of Nodes=500



Figure 3: Consolidated graph for No. of Nodes=500

#### Case4: NN=750 and CR=5,25,50

| S1. | NN=750 |          | RMSE         |           |
|-----|--------|----------|--------------|-----------|
| No. | AN     | CR=5     | <b>CR=25</b> | CR=50     |
| 1.  | 3      | 4.445773 | 16.289826    | 39.747897 |
| 2.  | 4      | 3.036321 | 15.276661    | 26.818578 |
| 3.  | 5      | 2.375317 | 11.023839    | 22.458803 |
| 4.  | 6      | 2.393269 | 12.088473    | 23.934686 |
| 5.  | 7      | 2.361574 | 10.024851    | 23.426724 |
| 6.  | 8      | 2.375838 | 11.040459    | 20.474875 |
| 7.  | 9      | 1.820939 | 8.416435     | 19.279944 |
| 8.  | 10     | 1.526815 | 8.940496     | 16.472266 |
| 9.  | 11     | 1.987013 | 6.757975     | 17.412086 |
| 10. | 12     | 1.378258 | 7.973612     | 14.434348 |
| 11. | 13     | 1.591728 | 6.802360     | 14.536231 |
| 12. | 14     | 1.422004 | 6.868210     | 13.813995 |
| 13. | 15     | 1.526186 | 6.194133     | 12.028522 |
| 14. | 16     | 1.258398 | 5.752659     | 12.029386 |
| 15. | 17     | 1.332766 | 5.845070     | 11.069651 |
| 16. | 18     | 1.160508 | 6.271100     | 10.915484 |
| 17. | 19     | 1.255101 | 5.176991     | 10.778057 |
| 18. | 20     | 1.127895 | 5.465581     | 10.822220 |

Table 4: Consolidated values for No. of Nodes=750



Figure 4: Consolidated graph for No. of Nodes=750

#### Case5: NN=1000 and CR=5,25,50

| S1. | NN=1000 |          | RMSE         |              |
|-----|---------|----------|--------------|--------------|
| No. | AN      | CR=5     | <b>CR=25</b> | <b>CR=50</b> |
| 1.  | 3       | 4.603400 | 20.425433    | 45.742669    |
| 2.  | 4       | 2.901249 | 16.626924    | 25.902546    |
| 3.  | 5       | 2.996322 | 15.855265    | 24.012465    |
| 4.  | 6       | 3.284794 | 11.064289    | 25.292532    |
| 5.  | 7       | 1.967711 | 12.255649    | 25.320004    |
| 6.  | 8       | 1.977211 | 8.781587     | 19.249915    |
| 7.  | 9       | 1.745496 | 8.950027     | 18.465921    |
| 8.  | 10      | 2.113757 | 8.943440     | 19.460651    |
| 9.  | 11      | 1.651553 | 8.964781     | 13.207915    |
| 10. | 12      | 1.388125 | 8.380448     | 15.864717    |
| 11. | 13      | 1.248265 | 6.971479     | 13.993947    |
| 12. | 14      | 1.265031 | 6.848232     | 13.971161    |
| 13. | 15      | 1.200075 | 5.573475     | 12.510094    |
| 14. | 16      | 1.199988 | 5.382378     | 12.301735    |
| 15. | 17      | 1.200669 | 5.271338     | 11.239638    |
| 16. | 18      | 1.134805 | 5.677820     | 12.015889    |
| 17. | 19      | 1.076268 | 6.014278     | 9.956138     |
| 18. | 20      | 1.230248 | 6.037522     | 10.743483    |

Table 5: Consolidated values for No. of Nodes=1000



Figure 5: Consolidated graph for No. of Nodes=1000

From the above figures, it is observed that as the number of anchor nodes increase, for different communication ranges, the RMSE values decreases, which is the desired result. Also, as the communication range increases, the corresponding RMSE values increase due to the random deployment of both Anchor Nodes and Number of Nodes.

#### **IV. CONCLUSION**

The localization parameters which were considered for the evaluation of localization errors,

for the range based technique RSSI are - number of nodes to be deployed, number of anchor nodes and the communication range. Using the statistical RSSI model based on the pairwise measurements, distances are estimated. Case studies- for different values of NNs and C-Rs, graphs for ANs versus RMSE are plotted. MATLAB was used as the simulation tool, the metric RMSE was computed, which represents the localization error.The simulation results using MATLAB indicate an optimization of ANs to maintain an average RMSE error for different scenarios, to determine range Dr.Sudha H.Thimmaiah, et. al. International Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 14, Issue 3, March, 2024, pp: 104-112

estimates using RSSI. This implies minimization in localization errors of the sensor nodes used in the wireless sensor network.

## REFERENCES

- [1]. Yick, J, Mukherjee B. and Ghosal, D. Wireless sensor network survey, Computer Networks Journal., 2008, 52, pp.2292-2330.
- [2]. Cheng, L, Wu, C, Zhang, Y, Wu, H, Li, M. and Maple, C. A survey of localization in wireless sensor network. International Journal of Distributed Sensor Networks, 2012, 2012, Article ID 962523, pp.1-12. doi.10.1155/2012/962523
- [3]. Li, X, Shi, H. and Shang, Y. A Partial-Range-Aware Localization Algorithm for Ad-hoc Wireless Sensor Networks. Proceedings of the 29<sup>th</sup> Annual IEEE International Conference on Local Computer Networks, LCN'04, 2004. pp.1-7. doi:10.1109/LCN.2004.8
- [4]. Wang, Y, Wang, X, Wang, D. and Agrawal, DP. Range-Free Localization Using Expected Hop Progress In Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems, 2009, 20(10):1540-1552. <u>doi:10.1109/TPDS.2008.239</u>
- [5]. Patwari, N, Ash, JN, Kyperountas, S, Hero, AO, Moses, RL. and Correal, NS. Locating the nodes: Cooperative localization in wireless sensor networks. IEEE Signal Processing Magazine. 2005, 22(4):54-69. doi.10.1109/MSP.2005.1458287
- [6]. Ruz, ML, Garrido, J, Jimenez, J, Virrankoski, R. and Vazquez, F. Simulation tool for the analysis of cooperative localization algorithms for wireless sensor networks. Sensors, 2019, 19(13):2866. doi:10.3390/s19132866
- [7]. Boukerche, A, Oliveira, HABF, Nakamura, EF. and Loureiro, AAF. Localization systems for wireless sensor networks. IEEE Wireless Communications, 2007,14(6):6-12.
- [8]. Amitangshu Pal. Localization algorithms in wireless sensor networks: Current approaches and future challenges. Network Protocols and Algorithms, 2010, 2(1):45-73.
- [9]. Ewa Niewiadomska-Szynkiewicz. Localization in wireless sensor networks: Classification and evaluation of techniques. International Journal of Applied Mathematics and Computer Science, 2012, 22(2):281-297. doi.10.2478/v10006-012-0021-x
- [10]. Niculescu, D. and Nath, B. Localized positioning in ad-hoc networks. Proceedings of the 1<sup>st</sup> IEEE International Workshop on

Sensor Network Protocols and Applications, Anchorage, AK, USA. 2003b, pp.42-50. doi.10.1109/SNPA.2003.1203355

- [11]. Pandey, S. and Varma, S. A range based localization system in multihop wireless sensor networks: A distributed cooperative approach. Wireless Personal Communications. 2016, 86:615-634.doi.10.1007/s11277-015-2948-3
- [12]. Paul, AK. and Sato, T. Localization in wireless sensor networks: A survey on algorithms, measurement techniques, applications and challenges. Journal of Sensor and Actuator Networks. 2017, 6(4):24. doi:10.3390/jsan6040024
- [13]. Rasool, I. and Kemp, AH. Statistical analysis of wireless sensor network Gaussian range estimation errors. IET Wireless Sensor Systems, 2013, 3(1):57-68. doi.10.1049/iet-wss.2012.0073
- [14]. Bulusu, N, Heidemann, J. and Estrin, D. GPS-less low cost outdoor localization for very small devices. IEEE Pers. Commun. Mag. 2000, 7:28-34.
- [15]. Bahl, P. and Padmanabhan, V. RADAR: An In-Building RF-Based User Location and Tracking System. In Proceedings of the IEEE International Conference on Computer Communications (INFOCOM), Tel Aviv, Israel. 2000, pp.775-784.
- [16]. Alippi, C. and Vanini, G. Wireless Sensor Networks and Radio Localization: A Metrological Analysis of MICA2 Received Signal Strength Indicator. In Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks, Tampa, FL, USA. 2004, pp.579-580.