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ABSTRACT 
The article examines the use of fuzzy arithmetic in the problems of classification and cluster analysis based on 

the representation of data in the form of fuzzy gradations proposed by the author. The advantages of the 

proposed approach are analyzed. This approach allows us to expand the range of solvable problems, to increase 

the reliability of the distribution of objects by classes and reduce the ambiguity of the distribution of objects by 

clusters and levels of order. It makes possible to substantiate the choice of a measure of similarity between 

objects, to smooth the influence of errors associated with data inconsistency; at the same time, the complexity of 

analysis and calculations is significantly reduced. Examples are considered to illustrate the application of the 

proposed approach.  
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I. Introduction 
A large number of works are devoted to 

various aspects of classification and cluster analysis 

problems, due to their importance for obtaining, 

intelligent analysis, presentation and processing of 

data and knowledge in various fields, in particular, 

in biology, medicine, psychology, sociology, 

economics, etc. [1 – 6]. Currently, various methods 

of classification and cluster analysis have been 

developed, for example, hierarchical algorithms, 

grid methods, partitioning-based technique, density 

based method, etc. The most advanced are statistical 

methods of classification and cluster analysis [2]. 

However, their application requires a large amount 

of data, which is not always possible in practice. In 

this case, fuzzy models are applied [1, 3]. The use of 

fuzzy classification models and cluster analysis in 

solving diagnostic problems is considered in [1, 3 –

 5]. A comparative analysis of clustering methods is 

given in [6]. Fuzzy clustering methods contain fuzzy 

C-Shell clustering algorithms [7], Mountain method 

[8], Gustafson Kessel and Fuzzy-C-means [9]. 

There is a tendency towards complication of 

methods, in particular, the use of genetic algorithms 

[10], artificial intelligence methods [11, 12], neural 

networks [13, 14]. However, the complication of 

methods does not lead to an increase in the accuracy 

and reliability of the results, since the methods of 

fuzzy classification and clustering are based on the 

Zadeh generalization principle and the definition of 

the membership function. Various forms of cluster 

analysis have the following disadvantages and 

limitations. 1). The use only quantitative values of 

criteria and statistical methods of data processing. 

2). Strong dependence of the analysis results on the 

choice of the measure of similarity between objects. 

3). The use as a measure of similarity between 

objects the mean or root-mean-square distance and 

the approximation of "nearest neighbors" with 

subsequent averaging over the combined objects, 

which leads to the loss of useful information and 

unreasonable conclusions about the number and 

composition of clusters and levels of order. 4). 

Analysis errors caused by using a nontransitive 

resemblance relation instead of a transitive 

similarity relation.  

The purpose of this article is to study fuzzy 

classification and cluster analysis models based on 

the approach proposed by the author using fuzzy 

gradations [15, 16], which eliminates the limitations 

noted above, simplifies calculations and makes their 

results more understandable.  

The article is organized as follows. First, 

we briefly consider the rules of fuzzy arithmetic and 

the evaluation of the reliability of the results. The 

classification algorithm is generalized for the case of 

data representation in the form of fuzzy gradations. 

The advantages of the proposed approach to the 

classification problem are shown using an example. 

Further, a generalization of the cluster analysis 

algorithm based on fuzzy gradations and an example 
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of its application are given. The influence of the 

choice of the measure of similarity between objects 

on the results of classification and cluster analysis is 

investigated. Finally, we discuss the obtained results 

and give recommendations for their application. 

 

II. Arithmetic operations on fuzzy 

gradations  
To describe the object area we use the 

fuzzy gradations in the range VL…VH. The range 

includes gradations VL – very low value, (VL-L) – 

between very low and low, L – low, (L-M) – 

between low and middle, M – middle (medium), 

(M-H) – between middle and high, H – high, (H-

VH) – between high and very high, VH – very high. 

Boundary gradations out of range are also known, 

namely VVL (lowest value) and VVH (highest 

value). Depending on condition of the task gradation 

VVL can be interpreted as zero, lower bound, exact 

lower bound etc. and gradation VVH – as unit, 

infinity, upper bound, exact upper bound, etc. On 

the set of fuzzy gradations, a relation of a non-strict 

order (preference relation) is established, which has 

the properties of reflexivity, antisymmetry and 

transitivity. Fuzzy gradations form an ordinal scale 

in which an admissible transformation is arbitrary 

monotone function that does not change the order of 

gradations. In particular, all gradations can be 

simultaneously multiplied or divided, as well as 

increased or decreased by the same number. The 

summation and multiplication operations on fuzzy 

gradations are performed in the same way as in 

ordinary arithmetic. For instance, for summation we 

have VL + VL = (VL-L), (VL-L) + VL = L, etc., 

(H-VH) + VL = VH, VH + VL = VVH. Similarly, 

summation is performed for other fuzzy gradations. 

For multiplication operation we have VL * VL = 

VVL, VL * (VL-L) = VVL, etc., VL * M = VL, 

etc., VL * VH = VL. Similarly, multiplication is 

performed for other fuzzy gradations. Note that 

operation of multiplication belong to Archimedean 

operations and the summation operation within the 

range under consideration belongs to nilpotent 

operations. Fuzzy gradations form an Abelian 

addition group and an Abelian semigroup for 

multiplication. In calculations, it makes no sense to 

introduce small gradation shares, and rounding 

should be used towards the nearest gradation, since 

this does not affect the accuracy of the final results. 

When the number of factors (summands) is more 

than two, the result is determined similarly. The 

process quickly converges as the number of 

components (factors or summands) increases; so for 

three to four components, the extreme limits of the 

range are reached. We can also determine the results 

for inverse operations (subtraction and division). 

When performing calculations, multiplication or 

division by an integer or rational number are defined 

using the summation operation. Subtraction and 

division operations are defined through the 

operations of addition and multiplication, 

respectively. The exponentiation and root extraction 

operations are defined through the multiplication 

operation. Calculations can be performed directly in 

fuzzy gradations or using modal values 

corresponding to fuzzy gradations, with the 

subsequent representation of the numerical results in 

the form of fuzzy gradations. Calculations on fuzzy 

gradations are greatly simplified if all gradations are 

expressed in terms of the smallest gradation (VL), 

namely, (VL-L) = 2VL, L = 3VL, etc., VH = 9VL, 

VVH = 10VL. This representation makes it possible 

to extend calculations formally outside the range 0 

... 1. When weighting factors are taken into account, 

normalization to 1 is not required. In calculations, 

each gradation is considered as a whole. If 

necessary, we can introduce a gradation structure 

using the membership function, but this is not 

required for the tasks under consideration.  

We use this technique in subsequent 

calculations. The initial quantitative and qualitative 

information about objects and criteria, obtained 

using measurements and expert methods, is 

transformed into fuzzy gradations as follows. Each 

named variable is assigned a standardized 

(normalized) variable, varying in the interval [0, 1]. 

Then a fuzzy gradation is assigned to the 

standardized variable. In this case, the value 0 

corresponds to the gradation VVL (the lowest 

value), and the value 1 corresponds to the gradation 

VVH (the highest value). A value of 0.1 

corresponds to the modal value of the VL gradation 

(very low value); similarly a value of 0.3 – 

gradation of L (low value); a value of 0.5 – 

gradation M (middle value); the value of 0.7 – 

gradation H (high value), the value of 0.9 – 

gradation VH (very high value). The transition from 

physical to standardized variable is determined by 

the ratio x = (z – zmin)/(zmax – zmin) ± 0.1, where the 

plus sign corresponds to the value of zmin, and the 

minus sign to the value of zmax. Here x is a 

standardized variable from the interval (0, 1); z is a 

"physical" variable, determined by measurement or 

expert method, which takes values in the interval 

[zmin, zmax]. Named numbers or dimensionless 

estimates represent values of z. 

 

III. Classification problem 
The problem is formulated as follows. We designate 

a set of objects as 1{ ,..., }mX x x , a set of fuzzy 

criteria used to describe objects and their states as 

1{ ,..., }nK K , a set of standards represented by 
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fuzzy criteria as 01 0{ ,..., }lY y y  and a set of 

classes as 
1{ ,..., }pZ z z characterized by the 

range of values of criteria in a fuzzy form 

1{ },...,{ }z zpK K . It is required to determine the 

belonging of objects to classes. It should be borne in 

mind that several standards can correspond to one 

class, and the classes themselves are distributed over 

a certain range of criteria values. All criteria are 

given by fuzzy gradations in the range [VL, VH]. 

Without loss of generality, it can be assumed that 

the criteria are measured in a direct scale, and the 

solution closest to the standard is considered as the 

best. The case of specifying the critical area can be 

considered similarly. The degree of agreement 
j  of the 

object ux with the standard 0vy by criterion j is determined 

using the correspondence matrix (see table 1). In particular, 

VHj   if  
ujK  is equal to 

0vjK ; H-VHj   if 

ujK  and 
0vjK  differ by one gradation in one direction or 

another, and so on. When determining the critical area, it is 

more convenient to use the distance measure between the 

object and the standard 
j jd  . We assume VLjd   

if VHj  , i.e. 
ujK  is equal to 

0vjK , etc.  

 

Table 1 

Correspondence matrix 

fuzzy 

gradations 

x , y 

VL VL-L L L-M M M-H H H-VH VH 

( , )x y  

VL VH H-VH H M-H M L-M L VL-L VL 

VL-L  VH H-VH H M-H M L-M L VL-L 

L   VH H-VH H M-H M L-M L 

L-M    VH H-VH H M-H M L-M 

M     VH H-VH H M-H M 

M-H      VH H-VH H M-H 

H       VH H-VH H 

H-VH        VH H-VH 

VH         VH 

Note. Since ( , ) ( , )x y y x  , only the values above the main diagonal are given in the table. 

To determine the degree of agreement between objects and standards and between standards and classes, we use three types of 

functions: function by the greatest difference, the Hamming function and Euclidean function. When using the measure by the greatest 

difference, the degree of agreement of the object ux  with the standard 0vy  by all criteria is given by the ratio 

0( , ) minuv u v j
j

x y    .         (1) 

For Hamming function, we have 

1
uv j

jn
   ,           (2a) 

where n is the number of criteria. For the Euclidean function, we have 

21
uv

j
j

n
   .          (2b) 
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For the degree of consistency between the standard 0vy  and the class wz , we have a similar relationships. We 

define the standard 0vy  , with which the object ux  is most consistent, by the expression 

maxuv uv
v

              (3) 

We define class wz  , with which the standard 0vy   is most consistent, by the expression 

maxv w v w
w

               (4) 

Class wz   is also the class with which object ux  is most consistent. The degree of agreement of the object ux  

with the class wz   is determined by the expression 

min( , )uw uv v w                (5) 

Thus, solving the fuzzy classification problem establishes a hierarchical relationship between the external level 

(classes), the system level (standards), and the subsystem level (objects and facts). We now estimate the 

reliability of the solution to the fuzzy classification problem. We determine the reliability of correspondence of 

the object ux  to the standard 0vy  by the ratio 

uv uv   ,            (6) 

where uv  is the fuzziness index, determined by the expression 

(min min( , ),max min( , ))uv j j j j
j j

             (7) 

We define the reliability of correspondence of the standard 0vy  to the class wz  by the similar relation 

 vw vw   ,            (8) 

where vw  is determined by the expression 

0 0 0 0(min min( , ),max min( , ))vw j vw j vw j vw j vw
j j

           (9) 

Thus, the indices of fuzziness are distributed over a certain area bounded by fuzzy gradations. We consider that 

the correspondence of object ux  to class wz  is reliable if both inequalities (6) and (8) are simultaneously 

satisfied.  

 

III. Example of study for classification 

problem 
Consider the diagnostic problem as an 

example of a fuzzy classification. The set of objects 

consists of six elements 1 6{ ,..., }X x x , each of 

which is described by criteria in the form of fuzzy 

gradations 1 8{ ,..., }K K . The type of object is not 

specified; it can be a technical system, a person, a 

firm, a social system, or a mixed-type system. The 

set of representative standards consists of nine 

elements 01 09{ ,..., }Y y y , evaluated by the 

same criteria as objects. The set of classes consists 

of three classes 1 2 3{ , , }Z z z z , interpreted 

depending on the subject area. We assume that 1z  

corresponds to the normal state of objects (suitable 

for use, healthy, etc.), 2z  corresponds to a risk 

group (requires prevention, observation, rest, etc.), 

3z  corresponds to an abnormal group (emergency 

state, breakdown, illness, crisis, etc.). Each class is 

characterized by a distributed range of values of 

fuzzy criteria. The choice of criteria depends on the 

subject area. We use the following groups of 

criteria: functional, technical and economic, 

ergonomic, social. The criteria take into account 

both objective and subjective factors, for example, 

well-being, prejudice, prestige, personal or group 

benefit, etc. It is required to determine the 

belonging of objects to classes. The initial data are 

given in table 2. It should be borne in mind that the 

belonging of the standards to the classes is 

indicated presumably and should be checked in the 

process of solving the problem. The initial data are 

selected in such a way as to explore the 

possibilities of our approach in solving the problem 

of fuzzy classification. The data are contradictory, 

and objects, standards and classes overlap, so it is 

difficult to determine the solution, and in the 

classical formulation, the problem is unsolvable; its 

solution using membership functions is also very 

difficult.  
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Table 2 

Initial data for the classification example 

Objects Criteria 

1K  
2K  

3K  
4K  

5K  
6K  

7K  
8K  

1x  
VH  H M M H M-H  M L 

2x  
M M M H H M M M 

3x  
M L M H M-H L H M 

4x  
M H L-M L M M VH VL 

5x  
H L-M M H H M M H 

6x  H M M L H M H H 

Standards Criteria 

1K  2K  3K  4K  5K  6K  7K  8K  

01 1( )y z  
VH VH H H M M VH H 

02 1( )y z  
H M VH M VH H H M 

03 1( )y z  
M H M VH H VH H M 

04 2( )y z  
H H M M L L H M 

05 2( )y z  
M L H L H M M L 

06 2( )y z  
L M L H M H M L 

07 3( )y z  
M M L L VL VL M L 

08 3( )y z  
L VL M VL M L L VL 

09 3( )y z  
VL L VL M L M L VL 

Classes Criteria 

1zK  2zK  3zK  4zK  5zK  6zK  7zK  8zK  

1z  
VH, H or M 

2z  
H, M or L 

3z  
M, L or VL 

 

First, we use the measure of the greatest 

difference. Below are the results of calculations in 

an abbreviated form; detailed calculations are 

shown only for typical cases to make the 

conclusions clear. When determining the belonging 

of objects to standards and standards to classes 

should take into account the most distant 

gradations, which allows us to determine the degree 
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of agreement without tedious calculations. For the 

object 
1x , we have from the relation (1): 

1 01( , )x y  = 
1 02( , )x y  = 1 03( , )x y  = 

1 04( , )x y  = 1 05( , )x y  = M ; 
1 06( , )x y  = 

1 07( , )x y = 1 08( , )x y  = L ; 

1 09( , ) VLx y  . It is seen that the object 
1x  has 

the maximum degree of agreement with the 

standards 01y , 02y , 03y , 04y , 05y . Now we 

define the agreement of these standards with 

classes. From relation (1) we similarly obtain 

02 1( , ) VH H My z    , 

02 2( , ) H M Ly z    , 

02 3( , ) M L VLy z    . Here and below, the 

sign   means "or". The same estimates are 

obtained for the standards 01y  and 03y . From 

relation (5) it follows that according to the 

standards 01y , 02y , 03y  the degree of agreement 

of the object 1x  with the class 1z  is middle. We 

have 1 1( , ) min (M,VH H M) = M.x z     

For the standard 05y  we have 

05 1( , ) H M Ly z    , 

05 2( , ) VH H My z    ,

05 3( , ) H M Ly z    . The same estimates 

are obtained for the standards 04y  and 06y . It 

follows that according to the standards 04y  and 

05y 1 2( , ) min (M,VH H M) = Mx z    b

ut according to the standard 06y we 

have 1 2( , ) min (L,VH H M) = Lx z    . 

Therefore, object 1x  agrees with both class 1z  and 

class 2z  to the same degree. However, the 

agreement according to the standard 02y  is more 

reliable, since it is confirmed by two other 

standards 01y  and 03y . The agreement according 

to standard 05y  is confirmed by only one standard 

04y . Therefore, we conclude that the object 1x  

belongs to the class 1z . Calculations for other 

objects are performed in the same way. The results 

are given in tables 3, 4. We summarize the results 

of fuzzy classification using the measure of the 

greatest difference: the object 1x  belongs to the 

class 1z , objects 2x , 3x , 4x , 5x and 6x   belong to 

the class 2z . The class 3z  is empty. We evaluate 

the reliability of classification. The calculation of 

the fuzzy index according to (7), (9) shows that it is 

distributed in the interval (VL,M)   both 

when comparing objects with standards, and when 

comparing standards with classes; therefore, the 

results of classification are reliable. Estimates show 

that the center of the distribution of the fuzzy index 

is near the gradation VL. In particular, when 

comparing the group of standards 01y , 02y , 03y
 

with the class 1z , the center of distribution is to the 

left of the gradation L (less than L); when 

comparing this group with the class 2z  it is equal 

to L, and when comparing this group with the class 

3z  it is to the right of L (more than L). 

Consequently, the most reliable is the agreement of 

this group of standards with the class 1z . When 

comparing the group of standards 04y , 05y , 06y
 

with the class 1z , the center of distribution of the 

fuzzy index is equal to L, with the class 2z   –  it is 

less than L, with the class 3z   – it is more than L. 

When comparing the group of standards 

07y , 08y , 09y  with the class 1z , the center of 

distribution of the fuzzy index is more than L, with 

the class 2z  – it is equal to L, and with the class 3z  

– it is less than L. When comparing objects with 

standards, we obtain the following results. For 

objects 1x ,
 2x , the center of distribution of the 

fuzzy index when compared with 06y  is equal to 

(VL-L), and when compared with other standards it 

is equal to L. For the object 3x , when compared 

with 04y , the center of distribution of the fuzzy 

index is less than L, and when compared with other 

standards it is equal to L. For the object 4x , the 

center of distribution of the fuzzy index is (VL-L) 

at comparison with 08y , it is equal to (L-M) when 

compared with 02y , and when compared with 

other standards it is equal to L. For objects 5x , 6x , 

when compared with all standards, the center of 

distribution of the fuzzy index is L. Comparison of 

the estimates obtained with the results given in 

tables 3 and 4 confirms the correctness of the 

assignment of standards to classes and objects to 

standards, and also makes it possible to increase the 
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reliability of the classification results and identify 

errors in the initial data. If we use the softer 

measures of Hemming and Euclid to assess the 

degree of agreement, then the calculations 

according to the rules of fuzzy arithmetic (see 

above) show that in this case the boundaries of 

intersection of objects with standards and standards 

with classes become more vague. The results are 

given in tables 5, 6. From relation (5) we determine 

the belonging of objects to classes. The object 1x  

should be attributed to the class 2z  (although 

according to Hamming's measure it can also be 

attributed to a class 1z ); objects 2x , 3x , 4x , 5x , 

6x  belong to the class 2z  (although according to 

Hamming's measure, the object 5x  can also be 

attributed to the class 1z ). Classes 1z  and 3z  are 

empty. As we can see, the classification results for 

different choice of fuzzy measures are close. The 

measure of greatest difference allows us to 

determine quickly the "critical area", i.e. classes in 

which the object obviously does not belong. The 

Hemming and Euclid measures make it possible to 

specify the classification results. In the case of 

ambiguous classification results, when making a 

final decision on the belonging of objects to 

classes, external goals (priorities) must be taken 

into account. In particular, in our example, when an 

object is assigned to the class 2z  and, moreover, to 

the class 3z , direct costs (operating costs) increase, 

and when an object is assigned to the class 1z , 

indirect costs (consequences of a sudden failure) 

increase. 

 

Table 3 
The degree of agreement of objects with standards according to (1) 

Standards Objects 

1x  2x  3x  4x  5x  6x  

01y  
M M L L L-M M 

02y  
M M M L-M M M 

03y  
M M L L M L 

04y  
M M M M M M 

05y  
M M M M M M 

06y  
L H M M M M 

07y  
L L L-M M L L 

08y  
L L L L L L 

09y
 

VL M M L L L 

 

Table 4 
The degree of agreement of standards with classes according to (1) 

Standards Classes and range of values of criteria  

1z  

VH H M   

2z  

H M L   

3z  

M L VL   

01y , 02y , 03y  
VH H M   H M L   M L VL   

04y , 05y , 06y  
H M L   VH H M   H M L   
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07y , 08y , 09y  
M L VL   H M L   VH H M   

Note. The order of the gradation in the table cells corresponds to the order of the gradation in the classes.   –

 "or" sign, which means that the values are distributed over the given area.  

 

Table 5 

The degree of agreement of objects with the standards according to (2a), (2b) 

 

Standards Objects 

1x  2x  3x  4x  5x  6x  

01y  
H H H H H H 

02y  
H H H M-H H H (H-VH) 

03y  
H H-VH H (H-VH) H H H 

04y  
H 

(HH-VH) 

 

H H-VH H H H H-VH 

(H-VH) 

05y  
H 

(HH-VH) 

 

H-VH H 

(HH-VH) 

 

H H 

(HH-VH) 

 

H H-VH 

(H-VH) 

06y  
H H-VH H H H H 

(M-H H) 

 

07y  
M-H 

(M-HH) 

 

H H H M-H M-H H 

(H) 

08y  
M-H M-H H H M-H M-H 

09y
 

M-H M-H M-H M-H M-H MM-H 

Note. The values for the Euclidean function are shown in parentheses. If the values for the Hamming and 

Euclidean functions are the same, then only one value is specified. 

 

Table 6 
The degree of agreement of standards with classes according to (2a), (2b) 

 

Standards Classes and range of values of criteria 

1z  

VH H M   

2z  

H M L   

3z  

M L VL   

01y , 02y , 03y  
H H-VH H   H-VH H M   H M L   

04y , 05y , 06y  
M H H-VH   H H-VH H   H-VH H M   

07y , 08y , 09y  
L M H   M H H-VH   H H-VH H   

Note. The results for the Euclidean function coincide within a quarter of the basic gradation with the results for 

the Hamming function, so the difference is not significant. 
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IV. Cluster analysis 
Cluster analysis is a kind of classification 

problem when there is no information about a set of 

standards. It consists in combining objects into 

groups (clusters) depending on the degree of 

similarity, determined by a number of criteria 

(features, properties). The task is formulated as 

follows. A set of objects X = {x1,…, xm} are given, 

evaluated by a set of criteria K1,…, Kn, represented 

by fuzzy gradations in the range [VL, VH]. It is 

required to distribute objects into clusters and order 

levels. The algorithm for solving the problem 

includes the following steps: 

1. The initial quantitative and qualitative 

information about objects and criteria, obtained by 

measurements and expert methods, is transformed 

into fuzzy gradations in the same way as in the 

classification problem (see above). 

2. The measure of proximity 
l

ij  between objects 

xi and xj by the criterion Kl is determined in the 

same way as in the classification problem, using 

the correspondence matrix (table 1). The distance 
l

ijd  that determines the degree of difference 

between the objects xi, xj by the criterion Kl is the 

reciprocal (opposite) of the proximity measure 
l

ij , 

namely, 
l l

ij ijd  . 

3. The degree of proximity of objects is determined 

by all criteria. To do this, it is necessary to 

aggregate the results for each criterion using a 

suitable decision-making model, which should be 

chosen to take into account the small values of the 

degrees of proximity. The use of averages 

(Hamming and Euclidean functions), which, 

generally speaking, do not satisfy this requirement, 

leads to the loss of useful information and the 

ambiguity of combining objects into clusters. To 

preserve all the useful information and to minimize 

the ambiguity of combining objects into clusters, 

we use the measure of proximity by the greatest 

difference 

min l

ij ij
l

  .     (10)

     

   

From (10) it follows that the degree of proximity 

ij  of objects xi, xj for all criteria is determined by 

the smallest value of the measure of proximity of 

these objects according to individual criteria. Such 

an assessment is the most reliable and allows us to 

reduce the influence of the inadequacy of the 

decision-making model on the analysis results. 

Sometimes it is convenient to use distances, then 

(10) is written in the form 

max l

ij ij
l

d d .    (10a)

     

     

4. The result of the analysis is the unification of 

objects into clusters, distributed over the levels of 

order, in accordance with the values of the fuzzy 

measure of proximity. 

5. If for a group of homogeneous objects the results 

of the analysis turn out to be the same, then to 

separate the objects, we can use the Hamming 

function, as it is most convenient for calculations. 

Its use is correct for objects of the same level. In 

this case, we have 

1/ l

ij ij
l

n   .    (11)

     

     

V. Example of study for cluster analysis 
Consider the problem of determining the quality of 

objects as an example of cluster analysis. In this 

case, depending on the subject area, the objects can 

be solution methods, strategies, software or 

hardware, knowledge bases, treatment methods, 

drugs, etc. To evaluate objects, we use the same 

groups of criteria as in the classification problem. 

The initial data for the example are given in table 7. 

 

Table 7 

Initial data for the example of cluster analysis 

Objects 
Criteria 

K1 K2 K3 K4 K5 

x1 M L-M M L L-M 

x2 M L H-VH VL L-M 

x3 M-H L-M VL L-M L-M 

x4 L M-H VH L-M VL 

x5 H VL H L L-M 

x6 VL-L M-H H L-M L 

x7 VL H VL VL-L H 

x8 VL VH VL L-M VL 
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x9 VL H-VH VL VL-L L 

x10 VH VL H H VL-L 

x11 H-VH VL M-H VH L-M 

x12 VH VL H L-M L-M 

x13 M VL H L-M VH 

x14 VL-L M-H H M-H L 

 

As can be seen from table 7, the initial data are heterogeneous, and their estimates by the criteria are not 

consistent, which corresponds to the real situation. First, we determine the value of the measure of proximity of 

objects for each criterion, using table 1 and table 7. Then we determine the degree of proximity between objects 

for our example by all criteria from relation (10). The results are given in table 8. 

 

Table 8 
The degree of proximity of objects by all criteria, determined from (10) 

Objects x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 

x1 VH M-

H 

M M M-

H 

M-

H 

M L-M M M L M L-M M-H 

x2  VH VL-

L 

M-

H 

H M-

H 

VL-

L 

VL-

L 

VL-

L 

L VL M L-M L-M 

x3   VH VL L L L-M L-M L-M L L-M L L L 

x4    VH L-

M 

H VL VL VL L L-M L VL H 

x5     VH L-

M 

L VL VL-

L 

С L H L-M L-M 

x6      VH L L L VL-

L 

L VL-

L 

L H 

x7       VH L С VL VL-

L 

VL L L 

x8        VH H VL VL VL VL L 

x9         VH VL VL-

L 

VL VL-

L 

L 

x10          VH H M-H VL-

L 

VL-

L 

x11           VH L-M L-M L 

x12            VH L-M VL-

L 

x13             VH L 

x14              VH 

 

From the data in table 8, we determine the 

sequence of combining objects into clusters and 

their distribution by order levels. The results are 

given in table 9. The results of the analysis at the 

levels VH and H-VH can be specified using the 

Hamming function (11). This procedure is correct, 

since it is applied to objects of the same level 

{x5, x12}, {x4, x6, x14}, {x8, x9}, {x10, x11} with the 

same smallest degree of proximity H in each 

cluster. The degree of proximity of these objects by 

criteria, determined using the data from tables 1 

and 7, is given in table 10. From the data of table 

10, we determine the degree of proximity of objects 

by all criteria according to relation (11), using the 

rules of fuzzy arithmetic. We show how the 

calculations are performed. For i = 6, j = 14 we 

have ij  = 1/5(VH + VH + VH + H + VH) = VH. 

For i = 5, j = 12 we have ij  = 1/5(H + 

VH + VH + H-VH + VH) = 1/5(7VL + 9VL + 9VL 

+ 8VL + 9VL) = 42/5VL = 8,4VL = H-VH (with 

rounding). The rest of the calculations are 

performed similarly. For example, for i = 4, j = 14 

we obtain ij  = 1/5((H-VH) + VH + H + H + 

H) = 1/5(8VL + 9VL + 7VL + 7VL + 

7VL) = 38/5VL = 7,6VL= H-VH (with rounding) 

and so on.  
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The results for the levels of VH and H-VH are 

given in table 11. Thus, using the Hamming 

measure, it is possible to determine clusters at 

higher order levels (VH and H-VH), although these 

results are less reliable than for the measure of the 

greatest difference. 

 

Table 9 

Results of cluster analysis 
Degree of objects 

proximity 

Number of 

clusters 

Composition (structure) of clusters 

VH 0 All objects are separated from each other 

H-VH 0 All objects are separated from each other 

H 4 {x5, x12}, {x4, x6, x14}, {x8, x9}, {x10, x11} 

M-H 5 {x1, x2}, {x5, x12}, {x4, x6, x14}, {x8, x9}, {x10, x11} 

M 4 {x1, x2, x5, x12}, {x4, x6, x14}, {x8, x9}, {x10, x11} 

L-M 4 {x1, x2, x5, x12, x13}, {x4, x6, x14}, {x3, x8, x9}, {x10, x11} 

L 4 {x1, x2, x5, x12, x13}, {x4, x6, x14}, {x3, x8, x9, x7}, {x10, x11} 

VL-L 3 {x1, x2, x5, x12, x13}, {x4, x6, x14, x10, x11}, {x3, x8, x9, x7}  

VL 1 All objects are combined into one cluster 

Note. A cluster is a subset consisting of at least two objects. Clusters are in braces. 

 

Table 10 

Degree of proximity 
l

ij  of objects {x5, x12}, {x4, x6, x14}, {x8, x9}, {x10, x11} 

i j l = 1 l = 2 l = 3 l = 4 l = 5 

6 14 VH VH VH VH VH 

5 12 H VH VH H-VH VH 

8 9 VH H-VH VH H H 

10 11 H-VH VH H-VH H H 

4 6 H-VH VH H VH H 

4 14 H-VH VH H H H 

 

Table 11 

Results of cluster analysis at the levels VH and H-VH according to (11) 

Degree of 

objects 

proximity 

Number of 

clusters 

Composition (structure) of clusters 

VH 1 {x6, x14} 

H-VH 4 {x4, x6, x14}, {x5, x12}, {x8, x9}, {x10, x11} 

 

VI. Discussion of the results 
The results obtained show a certain 

analogy between cluster analysis and connectivity 

analysis (topological analysis), the application of 

which to complexes of object differences can be 

useful, although it requires additional efforts. 

Calculations carried out using a numerical measure 

of proximity determined by the Euclidean function 

and the nearest-neighbor approximation show that 

the results are similar but not identical. In 

particular, there is an increase in the number of 

order levels up to 13 (instead of 9 in our analysis), 

and the difference between these additional levels 

is less than 0.01 (the relative difference ranges 

from 0.7% to 1.5%), i.e. does not exceed the error 

of the initial data. The appearance of such 

additional levels is difficult to justify and interpret. 

 

VII. Conclusion 
Thus, the study confirmed by calculations, 

shows that the proposed approach to the 

classification problem allows us to expand the area 

of solvable problems, increase the reliability of the 

solution and reduce the complexity of calculations. 
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The noted advantages are especially perceptible 

when applying the approach to classification 

problems in large systems. The application of the 

proposed approach in cluster analysis allows to 

reduce errors and ambiguity in combining objects 

into clusters, makes it more reasonable to 

determine the levels of order and number of 

clusters at each level in comparison with the 

analysis using an exact numerical measure of 

similarity or membership function. In addition, the 

complexity of the analysis is significantly reduced. 
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