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Abstract

In this present study, the analysis of free vibration and stability of axially functionally graded non-uniform fluid-
conveying pipes and resting on a two-parameter foundation, such as Pasternak foundation under various sets of
boundary conditions namely Clamped-clamped, Clamped-pinned, Pinned-pinned is carried out. An approach
known as Variational Iteration Method (VIM) is used to carry out the analysis. The present study assumes that
each of the Young modulus, material density, cross sectional area, moment of inertia of the pipe and foundation
parameters varies along the pipe axis. Natural frequencies and critical flow velocities are obtained for various
classical end conditions. Also, influence of various parameters namely mass ratio, foundation stifnesses, non-
uniformity terms and non-homogeneous materials on the natural frequencies and critical flow velocities of the
present work is examined and the findings are presented. The obtained solutions are compared with some
available results in the literature and very good agreements are observed. These new results will also serve as a
benchmark for subsequent researchers. Keywords: Axially Fuctionally Graded Materials (AFGMs), Critical
velocity, Free Vibration, Natural Frequency, Variational Iteration Method (VIM), Non-uniform, Non-Winkler
foundation
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1 INTRODUCTION withstand high-temperature, low density and
high toughness while maintaining structural

A class of materials known as integrity [1]. In addition, it is remarked
functionally graded materials  (FGMs) at this juncture that the corresponding
may be defined as a group of composite Young modulus and density of such materials
materials possessing different material (FGMs) are not constant. It is reported in
properties from one surface to another. 2] that studies involving functionally graded
These materials have certain structural beam (FGB) structures have become a
performance requirements and they are fertile area of research since beam structures
useful in many areas of application such have been widely used in various fields
as aerospace, transportation, biomedical which involve significant requirement of
installations, automobile sector, and defense material properties.  [3] investigated the
industries. In particular, researchers have effect of material distribution, velocity of
shown great interest in this broad range the moving load and excitation frequency
of applications due to the fact that such on the dynamic response of beams. [t was
materials have the benefit of being able to assumed that the material properties of the
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beam vary continuously in the thickness
direction according to the power law. Free
vibration analysis of functionally graded
beams (FGBs’) with simply supported edges
was presented in [4]. Different higher order
shear deformation theories and classical
beam theories are used in the analysis.
Natural frequencies and some mode shapes
are also obtained for different material
properties and slenderness ratio.

It is of good note that studies on
pipeline conveying fluid have also been
continuously carried out in the past decades.
Indeed, vibration and stability of pipes
conveying fluid have been studied for more
than six decades both theoretically and
experimentally in the field of fluid structure
interaction,[5]. To suppress or avoid the
instability of low-induced vibrations of pipes
conveying fluid, several control methods
have been proposed. The available control
methods for pipes conveying fluid may be
grouped into two: the passive methods and
active methods [6].

Non-uniform (non-prismatic) pipes are
tubular structure or hollow cylinder of
metal, wood or other material usually having
variable cross-sectional area and moment
of mertia, used for the convevance of
either liquid, gaseous substances or their
mixtures. Non-uniform pipes transporting
fluid have received wast attraction over
the past decades due to their applicability
of fluid flowing through them from one
place to another.
applications could be found in wvarious
engineering and medical fields such as oil
and gas exploration, hydropower, nuclear
reactor, exhaust pipes, heat exchanger,
agricultural irrigation, marine risers, blood
flowing through human/animal arteries and
flow wvia pulmonary and urinary systems.
Furthermore
using non-uniform pipes in industries may
be less costly, especially in situation where

Several of these

it 18 hereby remarked that
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good stiffness and light-weight structures are
taken into consideration [7]. Mathematically
speaking and unlike prismatic pipes, the
partial differential equation governing the
motion of non-uniform pipes is usually
made up of variable coefficients.  This
makes the governing equation amenable
to direct integration only in some special
cases. Otherwise, it is solved using either
an approximate technique or a numerical
method. Hence, a dynamical problem
involving both functionally graded materials
and non-uniform property such as the present
case is in general complicated since the
number of variable coefficient increases.
Examples of previous works in this direction
includes the work in [8] where the lateral
vibration of uniform pipes conveying fluid
made of FGMs using Simpletic method
is investigated. It was found that for
a clamped-clamped FGM pipe conveying
fluid, the dimensionless critical flow velocity
for first mode divergence and the critical
coupled-mode flutter were obtained. [9]
also investigated the dynamic behaviour
of Axially Functionally Graded (AFG)
clamped-clamped  pipes  conveying fluid
using the Generalized Integral Transform
Technique (GITT). The effects of Young's
modulus  variation, material distribution
and flow wvelocity on natural frequencies
and vibration amplitude of pipes conveying
flmid were analyzed. However, the pipe
considered was a uniform one. [6] studied
the dynamics of AFG clamped free uniform
pipes conveying fuid using Differential
Quadrature Method (DQM). [10] examined
the dynamic behaviour of cracked uniform
functionally graded (FG) material pipe
conveying flmd using Galerkin  Method.
The associated natural frequencies and
stability of the system were determined.
[11] studied the vibration of pipes conveying
fluid with variable cross section (that is,
non-uniform pipes) employing Galerkin
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technique. The influence of the flow
velocity and wvariable cross-section on the
natural frequencies, critical flow velocity
and system stability were discussed. It is
noted however, that the materials involved
in this work were not functionally graded.
Recently, [12] studied the dynamic response
of axially functionally graded conical pipes
(a non-uniform structure) conveying fluid.
It was found that the natural frequency
and critical velocity increase with increasing
volume fraction index.

It 1s remarked at this juncture, however,
that in all the above previous studies, no
consideration 1s given to the effect of elastic
subgrades on the natural frequencies or
critical velocity of the dynamics of pipes
conveving fluid. For practical applications,
it 15 relevant and useful to consider
fluid-conveying pipes resting on an elastic
foundation. For instance, in real life, long
pipelines transporting fluid (petrolenm, gas,
water etc.) are usually supported on elastic
foundation like soil made up of various
types of terrain. The governing equation of

motion for this type of system must therefore
contain a model describing the characteristics
of such a soil The most
and simplest of such a model is known
as Winkler foundation having foundation
constant K [13]. Some of the works that
dealt with dynamics of pipes conveying
fluid resting on Winkler foundation, only
includes the works in [13] | [14] and [15].
However, since the characteristic feature
of this well-known foundation model 1s
the discontinuous behaviour of the axial
displacements [16] while, in practice, the
axial displacements continue beyond the
force axis, a more realistic elastic foundation
model called Pasternak foundation (i.e a
non-Winkler foundation) model is considered
in this present work. Such a model is
characterized with two foundation constants
namely spring constant & and shear modulus

COTNITION
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G. [17] examined the critical velocity of a
fluid flowing in a pipeline and resting on
Pasternak foundation. [18] investigated the
effect of Pasternak foundation on vibrations
of fluid-conveying pipes. Also, [19] applied
Galerkin Finite Element Method to analyze
the dynamic behaviour of a fluid-conveying
pipe resting on Pasternak foundation. Later,
[20] examined the dynamics and stability of
multi-span pipe conveying fluid embedded
i Pasternak foundation. Notwithstanding,
1t 18 hereby remarked that all the above
previous work on either Winkler or Pasternak
foundation do not take into consideration
the functionally graded and non-uniformity
properties of the pipe.  Several techniques
have been adopted for wibration and
stability analysis of pipes conveying flind.
Various approximate solutions are available
in literature for vibrational characteristics
of pipes as mentioned above. Additional
instances include the following; Fourth Order
Runge-Kutta Method (4th Order RKM) was
used in [21] to study the effect of open crack
and a moving mass on the dynamic behaviour
_of a_simply supported pipe with moving
mass, Generalized Differential Quadrature
Method (GDQM) was applied in [22] to
determine the eritical flow speed of pipes,
Generalized Integral Transform Technique
(GITT) was also employed in [23] to
examine the dynamic behaviour of pipes
conveying fluid, Adomian Decomposition
Method (ADM) and Differential Transform
Method (DTM) were used in [24] to
mvestigate the wvibrational behaviour of
fluid conveying Timoshenko pipeline, Central
Difference Method (CDM) was used in
[25] to examine the dynamic analysis of a
cantilevered pipe conveying fluid, [26] used
Complex Mode Technique to investigate the
Frequency analysis of Functionally Graded
Curved Pipes Conveying Fluid and Harmonic
Differential Quadrature Method was later
used by [27] to examine the dynamics of
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AFG conical pipes conveying fluid. For pipes,
however, where higher modes are required,
it is difficult to compute the necessary
results employing the above listed methods
[28]. Notwithstanding, higher mode results
from practical point of view are essential,
especially, in the design of AFG pipes [28].
Hence, a reliable and efficient approach
such as Variational Iteration Method (VIM)
is introduced in this work.  According
to [28], this method has been shown to
handle high mode natural frequency problem
efficiently. This method was first proposed
by [29] to solve various linear and non-linear
differential equations. This method was first
used to solve vibrational problem mvolving
conveying fluid pipes in [30].

article almed, at determining the dynamic
characteristics of functionally graded (FG),
non-uniform fluid-conveying pipes resting
on variable Pasternak foundation subjected
to wvarious classical boundary conditions
using Variational Iteration Method (VIM).
This problem, to the best of the author’s
knowledge has mnot been investigated.
Emphatically speaking, this work has
appropriately extended the works in
[Chellapeilla (2007 and 2008), and Jiya et.al.
(2018)] by including the effect of functionally
graded materials, non-uniformity of both
the pipe and foundation on the dynamic
systemi. Interesting results for varying
values of functionally graded materials,
non-uniformity and foundation parameters

In the above context, the current are obtained and presented.

IT FORMULATION OF THE PROBLEM

According to the Euler-Bernoulli theory which takes no account of shear deformation and
rotatory inertia, the governing equation of motion for free vibration of axially functionally
graded (AFG), non uniform fluid-conveying pipes resting on variable two parameter elastic
foundation is expressed as: [12] and [18]

o2 0w T ,_.-,@2 Wz, t & N, i 0% T 1
w I:E(.l]f{r)% =+ m_rlv‘ ”%2) + me % + [-jn.f +P{I)‘4(i‘-}] %
Hhe(olu(z, 0+ g3 [bole) 52| =0, 0<z<D)

(1)

where w(x,t) is the transverse deflection of the pipe at position = along the axial coordinate
and time ¢, p(x) A(7) is the variable mass of the pipe per unit length which depends on both the
material density p(z) and the cross sectional area A(x). my is the mass of the fluid, V' is the
Auid flow velocity, ky(x) and ky(x) is defined as the variable Winkler foundation’s coefficient
and the second Pasternak foundation’s coefficient, respectively. E(x)I(z) is the variable flexural
rigidity depending on both Young’s modulus E(x) and the area moment of inertia I(x) of the
pipe while L is the length of the pipe.

The equation of motion may be subjected to various sets of boundary conditions. However,
the present study considers the following three various tvpes of boundary conditions namely;
Simply-supported pipe, Clamped-clamped pipe and Clamped-pinned pipe.

For Simply-Supported pipe
at x = 0;
9%w(0, 1)

w(0,t) =0, 52

=0 (2)
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at x = L:
w(L,t
w(L,t) =0, % —0
Clamped-Clamped pipe
at x = (; ,
w(0,£) =0, {?ier(U._t) _0
dx
at x = L;
w(Lt) =0, 2Lt _
Oz
Clamped-Pinned pipe
at x = (;
w(0,4) = 0, O"wr(ﬂ._t) _0
' O
at x = L:
w(L,t
w(L,t) =0, % —0

Assuming that equation (1) is harmonic, so that

w(z,t) = W(x)e™

(6)

(7)

(8)

It follows, therefore, that equation (1) reduces to the following ordinary differential equation:

d? W S 2W dW .
e [E( o) {z)—— = } + ?HJ‘VEW + 2'???—;'!:[&;L;E — [my + plz) A(z)] *W
d dW
+ho ()W () + kp(z)—| =0
' dr dr
where w 1s the natural frequency of the vibrating system and i = /—1
For simplicity, the following dimensionless parameters are introduced:
_ W _ =z . E(x)(x) _ my .
W=, T=7, D@ = R "\ |P@RL VL,
— my+p@)Alx) (ms + podo) LA (10)
PF)=—"F——+——+~ W= Gkt L ook il .
(I) 'IT?J’ + podp “ FEoly
() o Bplz) . my
o =TT TE=ET =

where 3 1s the mass ratio, @ is the dimensionless frequency parameter and © is the dimensionless
flow velocity, Eply is the flexural rigidity at T = 0, ppAp 1s the mass per unit length at T = 0,
Ky 1s the Winkler foundation stiffness at T = 0 and K, is the Pasternak foundation stiffness
at T =10

Substituting equation (10) into equation (9) leads to:

dW D)W DT LW W du
= + e = + D) g + v g +2n.u,\/_D

(9)

P@ oy, F@ e g I@EW o T@AW (b
- D@ D(T) Y DE) & "D(F) dT
where K, = }j,“”f : : K, = }j””;.
0f0 ¢ 040
For simplicity, it 1s noteworthy to define the following coeflicients:
Qi(@) = 2%5-? Q@) =55 6@ =\ U@ =53
Q@) =551, Q@ =18, @ =710
In view of the above seven functions, equation (11) becomes
AW W W W AW
e+ 20 oy + Qo) 2y + 70 + 2 BQu(E) )
— W — dW '

— QuTEW + Q5(F) KW — Qs(T)K, Tz - Q:(T)K,— p= =0
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The associated set of dimensionless boundary conditions, in view of equations (2)- (8) are as
follows:

(1) Simply-Supported: at T =0

o SWo)
W0y =0 F_D_[] (13)
at T = |
sy SWa) y
Wi(l)=0 ?—D—U (14)
(i1) Clamped-Clamped: at T =0
T dW(0) o
W(0) =0, = 0=0 (15)
at T =1
= daw(1y .
W(l) =0, = =0=0 (16)
(i11) Clamped-Pinned: at T =0
o AW (0) o
W(0) =0, = =0=0 (17)
at T =1
_ 2T (1)
W{il)=0, ——=0=10 18
m=o (19)

Furthermore and following [28], the breadth of the pipe i1s assumed to vary linearly, so that both
the cross-sectional area A(x) and moment of inertia I(z) along the pipe axis can be expressed
as:

A@) = Ay(1 — aF) (19)
I@) = Io(1 — a7) (20)

where Ap, Iy are the cross-sectional area and moment of mertia at T = 0 respectively and o 1s
the breadth non-uniformity parameter.

Also, the linear variation of both the Winkler foundation stiffness K, (x) and Pasternak foundation
stiffness K,(x) can be written as

Ky(T) = Kuy (1 — 7T) (21)
Kp(T) = Kpo(1 — 77) (22)

where 7 1s the non-uniformity foundation stiffness parameter.

Furthermore, in this present work, the material properties Young modulus E(z) and mass
density p(x) along the pipe axis were assumed to be constant, varying linearly or parabolically
[28]. In particular,

For the constant case:

Ey and pg are the Young modulus and material density of the pipe at T = 0, respectively.

For the linearly varying case:

E@) = E(l+73) (23)
p(T) = po(1 +7) (24)
For the parabolic case:
EZ) = E(1+T+7T) (25)
p(@) = p(1+T+7°) (26)

The dimensionless equation of motion in (12) is further simplified by inserting appropriate
equations out of those in equations (19-26)
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IIT METHOD OF SOLUTION

A semi-analytical method known as Variational Iteration Method (VIM) is applied in this
research work to obtain the natural frequencies and critical flow velocities of AFG tapered pipes
resting on variable Pasternak foundation.

To illustrate the basic 1dea of VIM, a general non-linear differential equation can be considered

LU(%) + NU(%) = ¢(%) (27)

where L is the linear operator, N is the non-linear operator and g(z) is the continuous function.
Thus. the correctional functional can be constructed in the form:

Upi1(F) = Un (@ / ALUn(7) + NT(7) — g(7)]dr (28)

where A 1s a Lagrange multiplier which can be determined optimally via the variational theory,
U, is a restricted variation which means U, = 0 and "m” is the mth approximation

By making use of equation (28), the correctional functional for the dimensionless governing
equation (12) can be written as:

Wit (T) = Won(Z) + / AT T (7) + 204 (7)1 (7) + Qa(r)WA (7)

+ W (1) + 2iv7/ BQs(T )W, (T) — Qu(T)w W (7)
+Q ( )k W ) Q'G( )kpli m(ﬂ _Q'T(.T)kpl'rm(r‘—)]

The following condition is obtained when the correction functional 1s taken mto consideration:

(29)

W 1= N +2XQ,

+2N'Q; + 22Q) + 2N Q — TN + E N Qs (30)
+ T AQ + 2T/ BN Qs — T \Qs |-z = 0
W, 0 N —2NQ) + NQy + QoA + M0 — TpAQglrz = 0 (31)
Wy =N +22Qi]5=10 (32)
Wi Arer=0 (33)

- T
f OWm(7) : / AP —2X"Qp — 22X Q) — 2N'Qy — 2N QY
K J0
—22Q) +AQ) — N Q)+ NQ1 + X"
—NQh + TN + Quu X — Qskuw) — Qakp\”
— QRN — QRN — QU — it /BAQs
— Wi/ BN Qs + QN + NepQLldr = 0

In order to satisfy the equation (30) - (34), the lagrange multiplier can be obtained as:

(34)

3!

Substituting equation (35) into (29), an iteration procedure can be achieved:

T —-F 3 i — —
Woas() @) + [ T W) + 21 W) + Qulr) W (7)

+ W (7) 4 2007/ BQ3(T)wW oy (T) — Qa(7)w W (7)

+ Qs(T)kuWmn(r) — Qo(T)ky (T) = Qr(7)kp Wy (7)]dr

(36)
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If m =0,1,2,3,....k, one can obtain the following successive iteration formula based on the
proposed method:

) E i i

Wi(z) :Wo(f)ffurh%wo( ) +2Q1(r)Wy (1)
+ QoAT)Wy(7) + T W (7) + 2T/ BQa(T)wWo(7)
—Q4(7) NQWD(T) + Qs (”}Wﬂ(”)
— Qul(T)IWo(71) — Q?( E,Wo(7)]dr

Wo(T) = T71(F) + / G [W‘f'(ﬂ +2Q1W’|”(T)
+ Qo)W (7) i_” +2n\/_Q3 (7)
— Qu(r)w u,(—r) Qs (DT (7) (37)

- QG(T} oWV 1(7) — Q(7) W;(T)]dr

W) =W 1(T) +/ u[W " () £ 20 W, (7)

+ Qo(T)W, (7)) + T2W,_4(7) + 200/ BQa(T)wW), ,(7)
— Q) Wit (7) + Qs(T )k Wi_1 (7)
— QD)W (7) — Qe(r)E, W, (7)]dr

where Wy (T) is denoted to be an initial approximation to start the iteration process. This can
be in the form:

" "
— — — W0),_, W0
Wol(T) = W(0)+ W (0)F + 2!( )f‘ + 3!( ) 7 (38)
where W(0), wo ,WH(_ 0) and Wm(_ 0) are Selecting infinity is 1mpossible for the
unknown constants to be determined while iteration process, so a large number "m” 1s
applying the above dimensionless boundary chosen and substituted into equation (39) on
condition the basis of accuracy required.
After obtaining W,(Z), the solution for the _ .
dimensionless equation can be expressed as: W(F) = Wn(T) (40)
W(F) = kli_m Wi(T) (39)

For clarity, equation (40) is then substituted into four boundary conditions which gives four
systems of simultaneous equation expressed in a matrix form as follows:

(
{(PE@™},., ;% =0 (y,2=1.234) (41)
(

P;,cz are evaluated polynomial of the eigenvalue @ with respect to the superscript &, (&) is the
ith estimated dimensionless natural frequency corresponding to m and also W (0), W (0), W (0}
and Wm(_ 0) are the column vector of the unknown coefficient. Dimensionless natural frequencies
of AFG tapered pipes resting on variable elastic foundation were obtained when considering a
non-trivial solution such that determinant of the coefficient matrix are set to zero. Therefore,
the characteristics root of the determinant are solutions to the problem. However, if the fluid
velocity reaches a certain value T,, the natural frequency becomes zero [17]. That is, if we set
wi= 0 in the dimensionless equation, the critical ow velocity will be obtained.

Testing the convergence provides us a condition that the absolute value of € must be less than
or equal to 1 x 1075, However, if the convergence criterion is not satisfied, the procedure will
be repeated by increasing the number of iteration until the convergence is realized. This can
only be obtained when

i —wn T < e (42)
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IV NUMERICAL RESULT
AND DISCUSSION

For the purpose of verifying the accuracy
and efficiency of the method used, several
numerical examples are considered and
results are presented in tabular and graphical
form in this section. In particular,
the wvibration and stability characteristics
of axially functionally graded (AFG)
non-uniform fluid-conveying pipes resting
on variable elastic foundation is numerically
mvestigated. A computer software known
as "Mathematica” was used to compute the
numerical results using VIM. The modulus
of elasticity E, and pipe mass density p
are assumed to, be constants, vary linearly,
or parabolically, respectively, for all given
examples except otherwise stated.  The
first example is devoted to examining the
vibration of uniform pipes with (3 =0, 7 =0,
1.e no fluid, no flow pipes - beam) resting on
a uniform Winkler foundation. In this case,
the non-umformity parameter o is set to
zero while the foundation stiffness variation
parameter 7 = 0 and also the effect of axially
Functionally Graded Materials (AFGMs) as
well as the Pasternak foundation stiffness
K, are neglected. The results for the first
four natural frequencies when the pipes
are subjected to different sets of boundary
conditions are presented in Table 1. By
comparison, it is found that the numerical
results give an excellent agreement with those
obtained in [31], [32] and [33] for which
methods different from VIM are used. All
the partially empty boxes in Table 1 imply

that corresponding article does not provide
the pertinent results.

Table 2 presents the
frequency of non umform no fluid, no flow
pipes (1. non-uniform beams) subjected
to Pinned-Pinned and Clamped- Pinned
boundary conditions. This second example
neglects the effect of Fp. K,. effect of

fundamental

material properties, Huid velocity and
mass ratio. The computed results were
therefore validated by comparing them

with those obtained in [35], and a good
agreement was observed.
Table 2. that for the Clamped-pinned case,
the fundamental frequencies increase as a
mmcreases, while when the Pinned-pinned
vibrating configuration 1s considered, an
mcrease in o leads to a decrease in the

It 1s seen from

fundamental frequencies. In this context, it
might be remarked that the natural vibration
behaviour of the non-prismatic, non axially
functionally graded pipe with no flud 1s
unpredictable [35]. The third example deals
with the results of first four dimensionless
natural frequencies of non-uniform pipes
with no fluid resting on Winkler Foundation
as illustrated in Tables 3-5. Each of the
Tables contains the results for the three
vibrating (Pinned-pinned,
Clamped-pinned and Clamped-clamped,
respectively). This analysis ignores the
impact of AFGMs, 3, K, , ¥ and n on
vibration of pipes resting on an elastic
foundation. However, various values of «
and a fixed value of K, were used. Present
VIM results are compared with those of [31]
and [34] and excellent agreement is obtained.

configurations

Table 1: Natural frequencies of uniform no fluid, no flow (beams) and non-functionally graded
Note that DQEM

pipes with varions boundary conditions resting on Winkler foundation.
denotes Differntial Quadrature Element Method

End conditions Method wi Wy ws wy
Present. 0.02014 | 39.4911 | 88.8321 | 157.9168
Pinned_pinned ADM [31] | 9.92014 | 30.4911 | 88.8321 | 157.9168
) DTM [32] | 9.92014 | 39.4011 | 88.8321
DQEM [33] | 9.92014 | 39.4913 | 89.4002
Present 15.4506 | 49.9749 | 104.253 178.273
Clamped.Pinned ADM [31] | 15.4506 | 40.9749 | 104.2525 | 178.2725
DTM [32]
DQEM [33]
Present. 22,3956 | 61.6809 12.908 199.862
Clamped.Clamped ADM [31] | 22.3956 | 61.6809 12.908 199.862
DTM [32] | 22.3733 | 61.6728 | 120.903 199.859
DQEM [33] | 22.3956 | 61.6811 | 120.910 199.885
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Tables 6 and 7 present fundamental
frequencies of uniform no fluid pipes resting
on Winkler Pasternak foundation subjected
to Clamped-Clamped and Simply-Supported
boundary conditions for various values of
foundation stiffness parameters (i.e K, and

K,)witht=0;3=0,p=0and a =0. It

1s also remarked that this particular example
neglects the effects of functionally graded
materials on vibration response of the pipes.
From the results obtained using VIM, good

agreement can be observed with those of [18]
and [35].

Table 2: Fundamental frequencies for various wvalues of non-uniform parameter o under
Clamped-Pinned and Pinned-Pinned conditions. Note that PSM denotes Power Series Method

Boundary Conditions | « Method w
, | PSM/RRM [35] | 15.527
0.1

Present 15.5274

; . PSM [35] 15.768

Clamped-Pinned 0.3 Prosent 15,7686

05 PSM [35] 16.044

’ Present 16.0444

0.1 PSM/RRM [34] | 9.868

’ Present 0.86853

. . PSM [35] 9.860

Pinned-Pinned 0.3 Prosent 0.85741

0.5 PSM [35] 6.825

’ Present 9.82537
Table 8 presents the wvalues of the to zero while 7 = 2. In order to examine
fundamental frequency parameter of a the accuracy of the obtained results, the

prismatic pipe conveving flmd resting on
two parameter foundation for different sets
[18] employed the
Fourier Series Techniques to calculate the
fundamental frequencies for this example.
This special case assumes the pipe’s cross
section to be uniform but with
values of K,,, and K, for  and o being set

of boundary conditions.

different

present work was compared with the results
gotten from the reference work as reported
i Table 8. It 1s observed that the present
results show good agreement with those of
the previous literature. Also as the values of
A_’p increases, for various fixed values of K,
the fundamental frequencies increase.

Table 3: Vibration characteristics of non-uniform Pinned-pinned pipes with no fluid resting on

Winkler elastic foundation

End Condition | « Method wy W wa wy
Present | 9.92173 | 39.4928 | 88.834 | 157.9189
0.1 | ADM [31] | 9.9217 | 39.4928 | 88.834 | 157.9189
HPM [34] | 9.9217 | 39.4928 | 88.834 | 157.9189
Present | 9.91701 | 39.5047 | 88.8511 | 157.935
Pinned-pinned | 0.3 | ADM [31] | 9.9170 | 39.5047 | 88.8511 | 157.9389
HPM [34] | 9.9170 | 39.5047 | 88.8511 | 157.9389
Present | 9.80358 | 39.5344 | 88.8086 | 157.996
0.5 | ADM [31] | 9.8932 | 39.5340 | 88.8086 | 157.9966
HPM [34] | 9.8032 | 39.5340 | 88.8986 | 157.9966
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Table 4: Vibration characteristics of non-uniform Clamped-pinned pipes with no fluid resting

on Winkler elastic foundation

End Condition o Method w o Wy Wy
Present | 15.5615 | 50.0781 | 104.356 | 178.376
0.1 | ADM [31] | 15.5615 | 50.0781 | 104.3556 | 178.3756
HPM [34] | 15.5615 | 50.0781 | 104.3556 | 178.3756
Present | 15.8069 | 50.3052 | 104.584 | 178.604
Clamped-pinned | 0.3 | ADM [31] | 15.8069 | 50.3052 | 104.5836 | 178.6036
HPM [34] | 15.8069 | 50.3052 | 104.5836 | 178.6036
Present | 16.0882 | 50.569 | 104.855 | 178.878
0.5 | ADM [31] | 16.0879 | 50.5685 | 104.8544 | 178.8785
HPM [34] | 16.0879 | 50.5685 | 104.8544 | 178.8785

Table 5: Vibration characteristics of non-uniform Clamped-clamped pipes with no resting on

Winkler elastic foundation

End Condition ¥

Method

wy W Wy Wy
Present | 22.30922 | 61.6751 | 120.901 | 199.855
0.1 | ADM [31] | 22.3922 | 61.6752 | 120.9009 | 199.8549
HPM [34] | 22.3922 | 61.6752 | 120.9009 | 199.8549
Present | 22.3477 | 61.6114 | 120.83 1990.78
Clamped-Clamped | 0.3 | ADM [31] | 22.3477 | 61.6114 | 120.8302 | 199.7803
HPM [34] | 22.3477 | 61.6114 | 120.8302 | 199.7803
Present | 22.213 | 61.419 | 120.615 | 199.551
0.5 | ADM [31] | 22.2120 | 61.4183 | 120.6114 | 199.5512
HPM [34] | 22.2120 | 61.4183 | 120.6114 | 199.5512
Table 6. lFurldmnenta]. fr(.'qll(?n(.‘u.\s Table T: Fundamental frequencies
of uniform Pined-Pinned . . .
. ; ) of uniform Clamped-Clamped
non-functionally graded pipes (not " ) . L
, . ) non-functionally  graded  pipes (not
conveying fluid) with respect to onvevine fuid) wi S . A
) conveying flmd) with respect to Pasternak
Pasternak elastic parameters. Note elastic foundation parameters
that FST denotes Fourier Series
Technique % | Method K.
- ip ethods 0 102 ik
K, | Methods i 'l{J"ﬂl T Present | 4.867 | 5.071 | 10.137
Drosent | 3.961 | 10.036 | 31550 0.5| FST [18] | 4.916 | 5.114 | 10.142
0.5 | FST [18] | 3.960 | 10.036 | 31.623 DQM [36] | 4.869 | 5.071 | 10.137
DQM [36] | 3.960 | 10.036 | 31.623 Present | 4.003 | 5.182 | 10.152
Present | 4.144 | 10.048 | 31.542 1.0 | FST [18] | 5.083 | 5.264 | 10.162
1.0 | FST [18] | 4.143 | 10.048 | 31.625 DQM [36] | 4.994 | 5.182 | 10.152
DQM [36] | 4.143 | 10.048 | 31.622 Present | 5.318 | 5.477 | 10.194
Present | 4.582 | 10.084 | 31.621 25| FST [18] 5505 | 5.649 | 10,292
2.5 | FST [18] | 4.582 | 10.084 | 31.623 ’ _ . U .
DQM [36] | 4.582 | 10.083 | 31.625 DQM [36] | 5.320 | 5.477 | 10.194
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Next, Tables 9 - 11 illustrates the effect
of axially Functionally Graded Materials
(FGMs’) on the first four dimensionless
natural frequencies of nonuniform pipes

example. They are the homogeneous
type (i.e both E and p are assumed
constants), homogeneous/nonhomogeous
type (i.e only one of E and p is, constant
while the other varies either lnearly or
parabolically) and Non-homogeneous type
(i.e when each of E and p varies linearly or
parabolically). It is observed that the values
of natural frequencies for the Homogeneous
Materials (HMs) are higher than those of
nonhomogeneous material for all boundary
conditions considered.

conveying fluid and resting on Pasternak
elastic  foundation. Three different
boundary conditions (Pinned-pinned,
Clamped-clamped and Clamped-pinned)
and the following fixed values of pertinent
parameters (K, = 10, K, = 2.5, n =
02, a = 02, v=2 and 3 = 0.5) were
considered.  Following [28], three types
of material models were also used in this

Table 8: Fundamental frequency values for uniform pipes conveying fiuid versus various values
of K, and K. for n =0, a =0 and 5 = 0.5 for various vibrating configurations

= | &= Pinned-pinned Clamped-pinned Clamped-clamped
B ¥ | Chellapilla [18] | Present | Chellapilla [18] | Present | Chellapilla [18] | Present
0.01 7.52 7.52 13.66 13.66 20.99 20.99
0.01 | 0.50 7.55 7.55 13.68 13.68 21.00 21.00
2.50 7.68 7.68 13.75 13.75 21.05 21.04
0.01 10.37 10.17 15.82 15.64 22.70 22.52
0.5 | 0.50 10.40 10.20 15.84 15.72 22.71 22.60
2.50 10.49 10.30 15.90 15.80 22,76 22.68
0.01 12.80 12.40 17.86 17.78 24.40 24.23
1.0 | 0.50 12.82 12.53 17.87 17.80 24.41 24.31
2.50 12.90 12.78 17.93 17.86 24.45 25.37
0.01 18.78 18.70 23.33 23.21 30.22 30.15
2.5 | 0.50 18.80 18.72 23.34 23.24 30.23 30.19
2.50 18.86 18.75 23.39 23.28 30.27 30.22
0.01 40.39 40.21 45.63 45.34 52.21 52.13
10.0 | 0.50 40.40 40.23 45.64 45.36 52.22 52.14
2.50 40.45 40.31 45.68 45.43 52.26 52.19
Moreover, tapered fuid-conveying Tables 12 - 14 depict the effect of

pipes comprising of constant modulus of
elasticity and parabolically varving mass
per unit volume produce the least natural
frequencies for all the boundary conditions
considered while non-uniform AFG pipes
having parabolically wvarying modulus of
elasticity with constant material mass
density wyield the highest frequencies (1) for
both Clamped-clamped and pinned-pinned
vibrating configurations. (2) However, for
Clamped-pinned end condition, the highest
natural frequency comes from non-uniform
AFG pipes, for which E varies linearly while
pis a constant. Hence, the impact of material
properties plays a key role in the designs of
tapered pipes conveving fluid and resting
on a two-parameter elastic foundation.
Furthermore, it i1s hereby remarked that
Table 9 1s for the clamped-clamped boundary
condition, Table 10 is for the clamped-pinned
boundary condition, while Table 11 is for the
pinned-pinned boundary condition.

WWw.ijera.com

K, and K, on the natural frequencies of
AFG tapered fluid-conveying pipes resting
on a variable two-parameter foundation. In
this case, the data used for the analysis
were 7 = 02, o = 02, 7T=2 and
B = 0.5, while the three boundary
conditions were considered. This example
assumes that the material properties of the
pipe FE(z) and p(x) wvaries linearly and
parabolically, respectively, as expressed in
equations (23) and (26). We observed
that the natural frequencies increase with
the mcrease of Winkler foundation stiffness

parameter K, for wvarious fixed wvalues of
. This trend holds for each of the
three vibrating configurations considered (see
Tables 12-14) However, frequencies become
minimum for Pinned pinned AFG pipes
compared to Clamped clamped and Clamped
pinned pipes. Similarly, the free vibration
characteristics of AFG tapered pipes carrving
fluid are sensitive to Pasternak foundation
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stiffness parameter K,. It is hereby remarked
that the first four natural frequencies increase
significantly with increasing K,. From the
observed numerical results, it can however
be concluded that K, has a greater effect
than K, on vibrational frequencies of AFG

frequencies for axially functionally graded
(AFG) pipes resting on variable Pasternak
elastic foundation with wvarious values of
non-uniformity parameter o and nonuniform
foundation stiffness parameter 7 are
calculated using VIM, and the results are

tabulated in Tables 15 - 17. Each of the three
vibrating configurations is used per Table.

nonuniform Huid-conveying pipes.
The first four

dimensionless natural

Table 9: Effect of non-homogeneous material on natural frequencies of AFG non-uniform
clamped-clamped fluid-conveying pipes resting on Pasternak foundation (K, = 10, K, = 2.5,
n=02 a=027=2and 3=0.5)

E iy wh W W Ly
Constant | 21.829 | 61.3076 | 120.552 | 199.528
Constant Linear 17.9 50175 | O8.8387 | 190.144
Parabolic | 16.4733 | 46.0214 | 90.5882 | 172.313
Constant | 25.9189 | 73.1171 | 143.234 | 236.176
Linear Linear 21.456 | GO.7885 | 120.056 | 199.065
Parabolic | 19.7978 | 55.6666 | 100.491 | 181.101
Constant | 28.0528 | 80.7929 | 160.233 | 266.66
Parabolic Linear 23.4413 | 66.0071 | 129.699 | 214.209
Parabolic | 21.7706 | 61.2746 | 120.684 | 199.797
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Examining the numerical results critically, it can be seen that the natural frequencies
decrease slightly with increasing non-uniformity parameter o for Clamped- Clamped pipe (see
Table 17). This same report also applies for stiffness variation coefficient parameter . The
vibration frequencies of AFG uniform pipes conveying fluid and lying on two parameter uniform
elastic foundation, (i.e for @ = 0 and 1 = 0) have higher values than those of the non-uniform
AFG fllid-conveying pipes resting on variable two-parameter elastic foundation. In the case
of Pinned-pinned boundary condition, increasing values of a leads to a small rise in the first
mode, but the presence of 1 decelerates the natural frequency when o are 0, 0.2, 0.4 and
0.6, respectively. For Clamped-pinned boundary condition, an increasing trend of variation of
natural frequencies with respect to o 1s observed. We can as well see that the increasing value
of 7 leads to a decline in the values of the computed frequency parameter for all the boundary
conditions considered.
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Table 12: Effect of K, and K, on natural frequencies of AFG non-uniform clamped-pinned
fluid-conveying pipes resting on variable Pasternak foundation ( 7 = 0.2, a = 0.2, 7=2 and

8=05)
K, I{p W wo Wy Ly

0.1 ] 12.0034 | 43.5566 | 92.7312 | 168.5250

0.5 1 10 | 14.3765 | 46.3202 | 95.7050 | 173.9220
50 | 21.4084 | 56.1160 | 106.8700 | 174.738

0.1 ] 12,1072 | 43.5885 | 92.7465 | 168.5250

5 | 10 | 144637 | 46.3501 | 95.7199 | 173.9225

50 | 21,4678 | 56.1362 | 106.8830 | 174.7460

0.1 ] 12,2216 | 43.6240 | 92.7635 | 168.5260

10 | 10 | 14.5599 | 46.3834 | 95.7363 | 173.9230

50 | 21.5335 | 56.1635 | 106.8980 | 174.7550

0.1 | 14.1207 | 44.2576 | 93.0693 | 168.5350

100 10 | 16.1939 | 46.9783 | 96.0323 | 173.9330

50 | 22,6837 | 56.6529 | 107.1620 | 174.9180

Based on the computed results in Tables
15-17, 1t 1s remarked that the non-uniformity
parameter « and variation foundation
stiffness  parameter 5 have remarkable
influence on vibration of AFG non-uniform
fluid-conveying pipes resting on variable
elastic foundation. Hence, it ascertains that
the present work 1s efficient and reliable for
structural design.

The influence of mass ratio § and

presented in Tables 18 - 20, where (K,
=10, K, = 25, o = 02 and =
0.2).  Specifically, the computed results
of the natural frequencies with respect to
various values of # and T for (i) AFG
tapered clamped-clamped pipes resting on
a variable Pasternak foundation, (1) AFG
tapered clamped-pinned pipes resting on a
variable Pasternak foundation, and (ii1) AFG
tapered pinned-pinned pipes resting on a
variable Pasternak foundation are presented

velocity T on transverse vibration of AFG respectively in each of the three Tables 18,

tapered pipes transporting fluid and resting 19, and 20. It can be seen that the effect

on varliable Pasternak elastic foundation 1s

Table 13: Effect of K, and K, on natural frequencies of AFG non-uniform pinned-pinned

fluid-conveving pipes resting on variable Pasternak foundation (n = 0.2, o = 0.2, 7=2 and
g=05)
K, I{p wh W Wy Wy
0.1 | 7.0855 | 34.3489 | 79.1266 | 141.6850
0.5 | 10 | 10.4405 | 37.7169 | 82.5388 | 145.1190
50 | 18.4705 | 48.9735 | 95.1377 | 158.345
0.1 7.1924 | 344879 | 79.2006 | 141.8660
5 1 10 | 104667 | 37.8214 | 82.6854 | 145.2900
50 | 18.5422 | 49.0025 | 95.1528 | 158.3540
0.1 7.3944 | 34.5340 | 79.3108 | 141.877
10 | 10 | 10.6066 | 37.8634 | 82.7048 | 145.3010
50 | 18.6216 | 49.0348 | 95.1696 | 158.3640
0.1 | 10.3743 | 35.3550 | 79.6737 | 142.0810
100 | 10 [ 12.8638 | 38.6121 | 83.0527 | 147.8560
50 | 19.9952 | 49.6115 | 954719 | 158.5470
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of mass ratio 3 decreases the first frequency
parameter, while each of the second, third
and fourth frequencies increases as the value
of the mass ratio increases for various fixed
values of @. It i1s also noteworthy to
point out the dependency of the first four
frequencies on the fluid flow wvelocity of
the AFG non-uniform fluid-conveying pipes.
It 18 observed that the natural frequencies
decrease with increasing wvelocity, and the
reduction tends to be more noticeable with
higher velocity for the three Tables. Based
on this outcome, 1t is hereby remarked that
the flud fow wvelocity plays a vital role on
the natural frequencies of the AFG tapered
pipes.

The stability of the present system was
also studied by computing the relevant
critical flow welocities and then examining
the effect of various relevant parameters on

that when the fluid velocity 1s smaller than
the critical fluid velocity 77 (e T < Tg),
then the system 1s stable, while instability
sets in at ¥ = T,. Thus, it is important to
predict the critical Hlow wvelocities of pipes
transporting fluid systems. Therefore, the
following examples were considered. Table
21 presents the values of critical velocities of
non-AFG uniform flud-conveying pipe not
resting on Pasternak foundation. It can be
found that the present results agree with the
numerical results obtained by [5].

As disclosed in [5], two types of instability
can take place in dynamics of luid-conveying
piping system, mnamely; Instability by
divergence/buckling, and Instability by
flutter. These type of instability is wholly
dependent on higher flow velocity involved in
the piping system. Based on this, Table 22
illustrates a form of instability that occurred,

while,

of non-uniform AFG fuid-conveying pipes
resting on variable Pasternak foundation.
The wvalues of the critical velocity for the
clamped clamped condition are the highest
whil the lowest are those of Pinned pinned
boundary condition. Computed results

critical flow wvelocities of the AFG tapered examining Critical flow wvelocities
fluid-conveying pipes resting on wvariable
Pasternak elastic foundations under different
To this end, it is

noted that there exists a critical fluid velocity

boundary conditions.

near which the natural frequency of a system
tends to zero [17]. It 1s worthy to also note

Comparative studies show that satisfactory
agreement between the results in [13], [17]
and the present ones were found. Although,
there exist slight differences in the results
most especially for higher values of Winkler
parameter K, obtained with those of [17]
using Galerkin approach.

for critical flow wvelocity of umform pipe
with various values of Winkler foundation
parameter used in [13] and [18] are tabulated
i Tables 23-24 for the three vibrating
configurations. For this numerical example,
B =01, 53 =0 a=0 K,

and assumed that the effect of

we  set
= 0,

functionally graded materials is also ignored.

Table 14: Effect of K, and K, on natural frequencies of AFG non-uniform clamped-clamped
fluid-conveying pipes resting on variable Pasternak foundation ( 7 = 0.2, & = 0.2, 7 = 2 and
g=05)

K—w h_rp w o Wy Ly
0.1 19.1726 | 54.9834 | 108.7680 | 180.3500
0.5 | 10 | 20,9634 | 57.4140 | 111.4720 | 183.2150
50 | 26.9124 | 66.2755 | 121.7650 [ 194.352
0.1 19.2424 | 55.0089 | 108.7810 | 180.3580
5 | 10 | 21.0272 | 57.4384 | 111.4840 | 183.2230
50 | 26.9621 | 66.2066 | 121.7770 | 194.3590
0.1 19.3196 | 55.0372 | 108.7950 | 180.3660
10 | 10 | 21.0979 | 57.4655 | 111.4990 | 183.2320
50 | 27.0173 | 66.3200 | 121.7900 | 194.3680
0.1 20,6594 | 55.5447 | 109.0560 | 180.5250
100 | 10 | 22,3315 | 57.9514 | 111.7530 | 183.3880
50 | 27.9915 | 66.7405 | 122.0230 | 194.5140
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Table 15: Effect of 5 and a on natural frequencies of AFG non-uniform clamped-pinned
fluid-conveying pipes resting on variable Pasternak foundation (K, = 10, K, = 2.5, 7 = 2
and 3 =0.5)

n ¥ ] W g iy
0 | 124693 | 44.0167 | 93.2194 | 160.2430
0.2 | 12.7679 | 44.2573 | 93.4455 | 160.4600
0.4 ] 13.1268 | 44.5508 | 93.7206 | 160.7240
0.6 | 13.5686 | 44.9316 | 94.0858 | 161.0790
0 | 124235 | 43.9824 | 93,1876 | 160.2120
21127162 | 44.2173 | 93.4079 | 160.4240
0.4 | 13.0677 | 44.5030 | 93.6754 | 160.6800
6 | 13.4990 | 44.8723 | 94.0829 | 161.0230
0 | 12.3314 | 43.9139 | 93.1238 | 160.1500
2| 12,6123 | 44.1372 | 93.3327 | 160.3510
0.4 129484 | 44,4074 | 93.5848 | 160.5920
6 | 13.3585 | 44.7535 | 93.9150 | 160.9110
0 | 12.2385 | 43.8452 | 93.0601 | 16(
(
(
(

0.1

0.3

0.2 | 12,5075 | 44.0570 | 93.2575 | 16
0.4 | 12.8279 | 44.3116 | 93.4941 | 160.5030
0.6 | 13.2162 | 44.6344 | 93.8010 | 160.7990

Table 16: Effect of 17 and @ on natural frequencies of AFG non-uniform pinned-pinned pipes
resting on variable Pasternak foundation (K,, = 10, K, =25, 7 =2and 3=10.5)

n @ | Wa iy Wy
0 | 8.1954 | 35.3495 | 80.1498 | 142.7320
0 0.2 | 8.3387 | 35.4159 | 80.1953 | 142.7660
0.4 | 8.5087 | 35.5208 | 80.2800 | 142.8390
0.6 | 8.7125 | 35.6950 | 80.4429 | 142.9950
0 ] 81393 | 353131 | 80,1171 | 142.7010
01 0.2 | 8.2764 | 35.3737 | 80,1568 | 142.7290
T 04 | 84387 | 354707 | 80.2338 | 142.7950
0.6 | 8.6323 | 35.6333 | 80.3851 | 142.9380
0 | 8.0250 | 35.2402 | 80.0516 | 142.6380
0.3 0.2 8.15(]!? 35.2892 | 80.0798 | 142.6550
T 0.4 | 8.2068 | 35.3704 | 80.1413 | 142.7050
0.6 | 8.46092 | 35.5007 | 80.2692 | 142.8550
0 | 7.9100 | 35,1672 | 79.9861 | 142.5750
05 0.2 ] 8.0224 | 35.2024 | 80.0028 | 142.5810
T 04 [ 8.1522 | 35.26098 | 80.0488 | 142.6150
0.6 | 8.3025 | 35.3855 | 80.1532 | 142.7120
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Table 17: Effect of p and « on natural frequencies of AFG non-uniform clamped-clamped pipes
resting on variable Pasternak foundation (K, = 10, K, =25, 7 =2 and 3 =0.5)

7 faf w1 wa w3 Wi
0 | 19.8778 | 55.7371 | 109.5640 | 181.7700
0 0.2 | 19.8614 | 55.7333 | 109.5580 | 181.1700
0.4 | 19.7885 | 55.6570 | 109.4730 | 181.0790
0.6 | 19.5964 | 55.4174 | 109.2030 | 180.7910
0 | 19.8494 | 55.7076 | 109.5340 | 181.1470
0.1 0.2 | 19.8206 | 55.6999 | 109.5250 | 181.1360
T 0.4 19.7521 | 55.6184 | 109.4340 | 181.0390
0.6 | 19.5535 | 55.3710 | 109.1550 | 180.7420
0 | 19.7924 | 55.6485 | 109.4750 | 181.0880
0.3 0.2 | 19.7659 | 55.6332 [ 109.4570 | 181.0670
T 0.4 19.6793 | 55.5410 | 109.3540 | 180.9580
0.6 | 19.4673 | 55.2780 [ 109.0580 | 180.6430
0 | 19.7352 | 55.5804 | 109.4160 | 181.0290
05 0.2 | 19.7020 | 55.5663 | 109.3890 | 180.9990
T 0.4 ) 19.6061 | 55.4636 | 109.2750 | 180.8780
0.6 | 19.3507 | 55.1847 | 108.9620 | 180.5440

Table 18: Effect of 8 and ¥ on natural frequencies of AFG tapered clamped-clamped pipes
resting on variable Pasternak foundation (K, = 10, K, = 25, a =02 and n=10.2)

B |v wi W wa Wy
0] 209731 | 56.9731 | 110.8130 | 182.4530
0.1 1| 209714 | 56.5012 | 110.4480 | 182.0720
| 2] 19.9157 | 55.5716 | 109.3460 | 180.9230
3| 18.5080 | 53.8323 | 107.4850 | 178.9940
0] 20.9731 | 56.9731 | 110.8130 | 182.4530
03 1 '20.695(_] 56.5086 | 110.4620 | 182.0900
T 2] 19.8408 | 55.0646 | 109.4020 | 180.9950
3| 18.3433 | 53.9204 | 107.6180 | 179.1580
0] 209731 | 56.9731 | 110.8130 | 182.4530
05 1 QU.G?G% 56.6059 | 110.4750 | 182.1070
T 2] 19.7668 | 55.5363 | 109.4570 | 181.0650
3| 181831 | 54.0017 | 107.7480 | 179.3220
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Table 19: Effect of 7 and ¥ on natural frequencies of AFG tapered clamped-pinned pipes resting
on variable Pasternak foundation (K, = 10, K, = 2.5, & = 0.2 and n=02)

g |w wi Wy wa Wy
0| 14.3462 | 45.7837 | 94.9755 | 161.9900
0.1 1| 14.0070 | 45.4036 | 94.5780 | 161.5830
T 2] 12,9369 | 44.2456 | 93.3760 | 160.3570
3| 10.9258 | 42.2511 | 91.3402 | 157.2920
0| 14.3462 | 45.7837 | 94.9755 | 161.9900
0.3 1] 13.9927 | 454107 | 94.5921 | 161.6010
T2 12,8822 | 44.2778 | 93.4348 | 160.4310
3| 10.8147 | 42.3389 | 91.4810 | 158.4660
0| 14.3462 | 45.7837 | 94.9755 | 161.9900
05 1] 13.9785 | 45.4177 | 94.6062 | 161.6990
T 2] 12,8281 | 44.3088 | 93.4930 | 160.5050
3 | 10.7070 | 42,4203 | 91.6191 | 158.6360

Table 20: Effect of 7 and ¥ on natural frequencies of AFG tapered pinned-pinned pipes resting

on variable Pasternak foundation (K, = 10, K, =25, a =02 and n =02 )

B |7 W ) wa Wy
0| 10.1846 | 37.0686 | 81.7810 | 144.3160
0.1 1] 9.7630 | 36.6204 | 81.3405 | 143.8750
2| 8.3784 | 35.2811 | 80.0054 | 142.5460
3] 5.3642 | 32,9193 | 77.7325 | 140.3050
0| 10.1846 | 37.0686 | 81.7810 | 144.3160
0.3 1] 9.7504 | 36.6394 | 81.3576 | 143.8960
2| 8.3326 | 35.3266 | 80.0766 | 142.6310
3] 5.2013 | 33.0439 | 77.9039 | 140.5020
0| 10.1846 | 37.0686 | 81.7810 | 144.3160
05 1| 9.7378 | 36.6493 | 8§1.3746 | 143.9170
Tl 2 82876 | 353705 | 80.1471 | 142.7150
3] 5.2213 | 33,1508 | 78.0717 | 140.6970

It 18 found that the values for critical velocity increase as the Winkler parameter increases.
It simply implies that higher values of K, leads to higher critical velocity T,. Tables 25 -26
present variation in critical velocity of uniform fluid-conveying pipes resting on two-parameter
elastic foundation for Pinned-pinned and Clamped-clamped cases. It is observed that higher
rise exists in the critical velocity when h_’p > 100, whereas the effect of K, Increases the critical
velocity. Nevertheless, satisfactory agreement 1s found between the present results and those of
[17]. According to this observation, it can be said that the values of the critical velocity for K
are greater than those of K.

Table 21: Dimensionless Critical velocity of uniform fluid-conveying pipes without resting on

Pasternak foundation ( a = 0, 5 =0, K,, =0, K, = 0)

Boundary conditions | 3 | DTM [5] | Present | Form of Instability
Pinned-pinned 0.1] 3.1416 | 3.1416 Divergence
Clamped-pinned 0.5 4.4934 | 4.4934 Divergence
Clamped-clamped | 0.5 | 6.2832 | 6.2832 Divergence
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Table 22: Critical velocities of AFG non-uniform fluid-conveying pipes resting on variable

Pasternak foundation (K, = 2.5, K, =1,n=0.1,and 3 =0.1)

Boundary Conditions | « T, Form of Instability
0.2 | 6.3138 Divergence
Clamped-Clamped | 0.4 | 6.2632 Divergence
0.6 | 6.1966 Divergence
0.2 | 4.4453 Divergence
Clamped-Pinned 0.4 [ 4.5335 Divergence
0.6 | 4.6559 Divergence
0.2 3.3004 Divergence
Pinned-Pinned 0.4 ] 3.3165 Divergence
0.6 | 3.3380 Divergence

Table 23: Dimensionless Critical velocity for various values of Winkler foundation parameters

for the uniform Pinned-Pinned case (§ = 0.1, o« = 0, K, = 0)

K, | Doare and de Langre [13] | Chellapilla [17] | Present
1 3.1577 3.15768 3.15768
10 3.2089 3.20801 3.20801

100 4.47233 4.47233 4.47233

800 7.7293 7.72034 7.72034
700 9.0851 9.08515 0.08536

3500 11.3196 11.31965 11.3196

4500 11.8105 12.38809 11.8105

6000 12.505 13.83691 12.5049

7000 12.9473 14.72381 12.9472

Table 24: Dimensionless Critical velocity for various values of Winkler foundation parameters

for the uniform Clamped-Clamped pipe (7 = 0.1, o = 0, K, = 0)

K,, | Doare and de Langre [13] | Chellapilla [17] | Present
1 6.2802 6.38505 6.28023
10 6.3434 6.44208 6.34331

100 6.8613 6.98684 6.85614

800 8.9447 0.9984 9.856
700 10.7415 10.93215 10.7338

3500 12.323 12.59364 12.2449

4500 13.1194 13.42815 13.3804

6000 13.9649 14.5907 13.9646

7000 14.3231 15.31678 14.3197
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Table 25: Critical velocity for various values of foundation stiffness parameters (K, and K,)
with o« = 0 and 7 = 0.1 for the uniform Pinned-Pinned end condition

o K, =10 K, =101
P | Present | Galerkin [17] | Present | Galerkin [17]
10F | 3.29801 3.2089 17.1109 17.1108
10-* | 3.29803 3.2050 17.1109 17.1108
1 3.44715 17.1401
10 4.4560 4.45586 17.4006 17.4006
100 | 10.5301 10.4823 19.8187 19.8187
1000 | 31.6528 317786 30.0646 39.0552
5000 | TLOGTE T0.7875 73.006 T2.751
10000 | 100.967 100.054 102.782 101.4533

Table 26: critical velocity for various values of foundation stiffness parameters (K, and K,)
with o = 0 and 5 = 0.1 for the uniform Clamped-Clamped end condition

. K, =10 K, =101
Ky Present | Galerkin [17] | Present | Galerkin [17]
107" ] 6.34331 6.4420 17.33 17.3133
10~ | 6.34332 6.4420 17.33 17.3133

1 6.42165 17.41

10 7.0875 7.1763 17.5812 17.5997
100 | 11.8422 11.895 19.8236 19.9937
1000 | 32.2955 32.2722 36.0519 36.0520
5000 | 71.694 71.0035 72.79 72.7993

10000 | 100.831 100.207 101.492 101.487

Tables 27-20 give numerical results obtained for critical flow velocities of AFG tapered pipe
conveying fluid subjected to the three boundary conditions under consideration, and lying on
two parameter variable elastic foundation. Based on those results with 5 = 0.1 and 5 = 0.1, the
effect of K, and K, on critical flow velocity of the pipe was investigated. It can be observed that
for a fixed value of K, there is, in general, a sharp increase in the values of the critical flow
velocities when K, > 10 for Pinned-Pinned, Clamped-Pinned, and Clamped-clamped cases.
For the three boundary conditions considered, the eritical flow velocity increases when K, and
K, increases. Thus, it can be concluded that each of the foundation stiffnesses has significant
effect on the critical velocity of the system considered.

CONVERGENCE OF FIRST FOUR NATURAL FREQUENCIES
UNDER CLAMPED PINNED BOUNDARY CONDITIONS
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Figure 1: Convergence of the first dimensionless natural frequency for Clamped-Pinned pipe
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CONVERGENCE OF FIRST FOUR NATURAL FREQUENCY UNDER
CLAMPED CLAMPED BOUNDARY CONDITIONS
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Figure 3: Convergence of the first dimensionless natural frequency for Pinned-Pinned pipe

Next, the impact of non-uniformity K, and K, in the case of the first and second

parameter o on the critical How velocities of
the non-uniform AFG fluid-conveying pipes
resting on variable Pasternak foundation
is investigated. The corresponding results
for Clamped-Pinned, Pinned-pinned, and
Clamped-Clamped conditions are presented
in Tables 27-29, respectively. It is vividly
noticed that the ecritical flow wvelocities
increase with increasing a for fixed values of

boundary condition (See Tables 27 and 28).
On the other hand for Clamped-Clamped end
condition, it is found that the values of the
critical flow velocities decrease as o increases
when when E < 1. Though, there exists a
little discrepancy in the values of the critical
flow velocities as « increases, especially, when

K, > 10. (See Table 29).

Table 27: Effect of various values of @, K, and K, on critical flow velocity of AFG

Clamped-pinned pipes
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Ky
a | K, | 1078 107! 1 10 100
1 | 4.3590 | 4.3667 | 4.4356 | 5.0729 | 9.2854
0.2 10 | 4.4179 | 4.4255 | 4.4934 | 5.1234 | 9.3122
T 50 | 4.6690 | 4.6762 | 4.7404 | 5.3406 | 9.4295
100 | 4.9614 | 4.9691 | 5.0286 | 5.5970 | 9.5722
1 | 4.4352 | 4.4440 | 4.5225 | 5.2437 | 9.8955
04 10 | 4.5016 | 4.5103 | 4.5877 | 5.2999 | 9.9251
| 50 | 4.7838 | 47920 | 4.8649 | 5.5414 | 10.0548
100 | 5.1107 | 5.1183 | 5.1866 | 5.8256 | 11.9474
1 | 4.5398 | 4.5503 | 4.6431 | 5.4856 | 10.7321
0.6 10 | 4.6173 | 4.6276 | 4.7190 | 5.5503 | 10.7665
| 50 | 4.9455 | 49551 | 5.0407 | 5.8275 | 10.9180
100 | 5.3235 | 5.3324 | 5.4122 | 6.1533 | 11.1040

Furthermore, the present numerical small terms are chosen.

analysis is also carried out to include an
examination of the convergence of the
natural frequencies of AFG non-uniform
fAuid-conveying pipes resting on variable
Pasternak elastic foundation. To this
end, the convergence of the first four
dimensionless natural frequencies of the said
system for the case of § = 0.1, @ = 0.3,
K, =25, K, = 10 and 7 =2 were plotted
in Fig. 1 - 3 for the three end conditions.
It 18 found that, for the three boundary
conditions, the first four natural frequencies
converge after n = 10 where n is the iteration
steps used to analyze the convergence study.
The dimensionless wy, converges faster as the
number of iteration steps decreases. Higher
mode frequencies might be obtained if the
iteration steps increases. The convergence of
lower order frequencies can be guaranteed if

WWw.ijera.com

Results are also presented in Fig. 4-6
to illustrate the effect of functionally graded
materials on the frequency of AFG tapered
fluid-conveying pipes resting on variable
Pasternak elastic foundation with various
values of K, and 7 for Clamped-Pinned,
Pinned-Pinned, and Clamped-Clamped end
conditions. It can be seen that the
vibration frequency and velocity increase as
the Winkler foundation parameter increases
for various material models considered in
this work (ie constant, linear and parabolic
type). However, the presence of functionally
graded materials decreases significantly the
frequency and flow velocity values, with K,
=100, K,,=500 and K,, =1000. These results
also holds for K, = 10, 8 =05, n =05,
and a =0.4. Similar behaviour can also be
remarked for all the boundary conditions.
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Figure 6: Frequency @ variation against 7 with various values of K, corresponding to different
material distribution for Clamped-clamped pipes conveying fluid, (K, = 10, n =0.5, a =0.4, 3

—0.5)

Finally, the critical flow velocities of pipes
conveying fluid and resting on Pasternak
elastic foundation were caleulated as a
function of functionally graded materials
property. The corresponding results
generated can be seen in Table 30.  For
Pinned-pinned and Clamped-pinned pipes, it
can be observed that the parabolic variation
of elastic modulus corresponding to the
constant, linear and parabolic variations
of mass density gives the smallest critical
flow welocity but highest critical velocity

1s obtained when the elastic modulus is
constant and mass density varles in a
constant, linearly and parabolic manner.
However, maximum ecritical flow velocity
was obtained when E/(x) varies parabolically
with constant, linear and parabolic variation
of mass density p(z), for clamped-clamped
boundary this
observation, the material properties may be
sald to have significant effect on the stability
of the AFG tapered pipes conveying fluid.

conditions. Based on

Table 28: Effect of various values of @, K, and K, on critical flow velocity of AFG Pinned-pinned

pipes
%,
o | K, | 10°° 1077 1 10 100
1 | 3.1722 | 3.1835 | 3.2838 | 4.1532 | B.9873
0.2 10 | 3.2742 | 3.2852 | 3.3824 | 4.2319 | 9.0220
| 50 | 3.6937 | 3.7034 | 3.7879 | 4.5631 | 9.1741
100 | 4.1587 | 4.1673 | 4.2442 | 4.9457 | 9.3501
1| 3.1730 | 3.1860 | 3.2979 | 4.2597 | 9.5100
04 10 | 3.2871 | 3.2004 | 3.4078 | 4.3453 | 9.5480
T B0 | 3.7525 | 3.7632 | 3.8586 | 4.7069 | 9.7152
100 | 4.2633 | 4.2728 | 4.3570 | 5.1230 | 9.9195
1 | 3.1737 | 3.1883 | 3.3168 | 4.3996 | 10.1407
0.6 10 | 3.3185 | 3.3044 | 3.4421 | 4.4947 | 10.1823
| 50 | 3.8318 | 3.8439 | 3.9511 | 4.8054 | 10.3651
100 | 4.4029 | 44135 | 4.5071 | 5.3542 | 10.5802
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Table 29: Effect of various values of a, K, and K, on critical flow velocity of AFG
Clamped-clamped pipes

K,
a | Ky | 10°° 1071 1 10 100
1 | 6.2509 | 6.2566 | 6.3073 | 6.7936 | 10.4671
0.2 10 | 6.2003 | 6.2959 | 6.3463 | 6.8208 | 10.4908
| 50 [ 6.4618 | 6.4673 | 6.5164 | 6.9883 | 10.5952
100 | 6.6690 | 6.6744 | 6.7220 | 7.1805 | 10.7239
1 | 6.1926 | 6.1990 | 6.2550 | 6.7992 | 10.8183
0.4 10 | 6.2367 | 6.2430 | 6.2995 | 6.8303 | 10.8435
| 50 [ 6.4282 | 6.4343 | 6.4892 | 7.0144 | 10.9544
100 | 6.6583 | 6.6642 | 6.7172 | 7.2258 | 11.0906
1 | 6.1149 | 6.1222 | 6.1881 | 6.8126 | 11.3049
0.6 10 | 6.1661 | 6.1734 | 6.2388 | 6.8586 | 11.3329
| 50 [ 6.3879 | 6.3949 | 6.4581 | 7.0587 | 11.4558
100 | 6.6527 | 6.6594 | 6.7021 | 7.2993 | 11.6067

Table 30: Effect of non-homogeneous material on critical velocity of AFG tapered
fluid-conveying pipes resting on variable Pasternak foundation (K, = 10, K, = 2.5, n = 0.2,

a=02and 3=05)

£ p pinned-pinned | clamped-clamped | clamped-pinned
Ve Ve Ue

Constant 3.6587 6.5380 4.9226

Constant Linear 3.6587 6.5380 4.9226
Parabolic 3.6587 6.5380 4.9226

Constant 3.5202 6.4200 4.5882

Linear Linear 3.5202 6.4200 4.5882
Parabaolic 3.5202 6.4200 4.5882

Constant 3.4861 6.5604 4.4790

Parabolic Linear 3.4861 6.5694 4.4790
Parabolic 3.4861 6.5694 4.4790

V CONCLUSION Pinned-Pinned were considered.  Natural

frequencies and critical How velocities of the

This article. the free vibration and flmid-conveying pipes under consideration

stability analysis of axally functionally
graded (AFG) tapered fluid-conveying pipes
resting on variable two-parameter elastic
foundation under various end conditions

has been investigated. In particular,

for the said three end conditions were
computed. The semi-analytical method
known as Variational Iteration Method
(VIM) is used to obtain the desired solutions.
The efficiency and accuracy of this method

. - are well demonstrated.
three typical end conditions, namely,

Clamped-Clamped, Clamped-Pinned and The main findings are as follows:
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(1)

(iii)

For the purpose of wvalidating the
present. formulation, results obtained
for the present analysis are compared
with those of the available published
articles for the cases considered under
various end conditions, and good
agreement 1s found.

The influence of non-uniformity
parameter « on the critical flow
velocities  of  the  non-umniform
AFG  fluid-conveying pipes resting
on variable Pasternak foundation
s Investigated. Results
Clamped-Pinned, Pinned-pinned and
Clamped-Clamped end conditions are
obtained. It is noted that the critical
Aow velocities increase with increasing
v for fixed values of K, and E in the
case of the first and second boundary
conditions. On the other hand for
Clamped-Clamped end condition, 1t 1s
found that the critical flow velocities
decrease as o increases.

for

Results are obtained for the impact of
both the mass ratio 3, and velocity
7 on the frequency of the system
under consideration for the three
vibrating configuration. It 1s found
that the influence of 5 decreases the
fundamental frequency @p, while, each
of Wy, @3 and Wy increases as the values
of 3 increases for fixed values of the
fluid velocity 7.

decreases
and the

Moreover,the  frequency

with increasing velocity 7,

reduction 18 more noticeable with
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