
K. Sai Likhith Reddy, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 11, November 2023, pp 70-75

www.ijera.com DOI: 10.9790/9622-13117075 70 | Page

A Complete Study of Systematic Test Design Techniques

throughout Software Development Life Cycle (SDLC)

K. Sai Likhith Reddy*, Dr. K. Sai Prasad Reddy**, Prof. K. Nagabhushan

Raju***
*(4th Year B.Tech(CSE), Department of Computer Science, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam-

690525, India. Email: ksailikhithreddy08@gmail.com)

**(Mentor, Centre for Skill Development, Entrepreneurship & Incubation, Sri Krishnadevaraya University –

515003, India, Email: sai.electronics@skuniversity.ac.in)

*** (Director, Centre for Skill Development, Entrepreneurship & Incubation, Sri Krishnadevaraya University –

515003, India, Email: knrbhushan@skuniversity.ac.in)

ABSTRACT

Software testing is an assured element of the Software Development Lifecycle. Testing is one of the most

important and most widely used approaches for verification and validation. In this paper some of testing

procedures and techniques are discussed. This paper focuses on the state of the art in testing techniques. These

test design techniques plays vital role in success of testing process. Software Development Team and Software

Testing team will implement all applicable test design techniques in order to evaluate the software successfully.

By implementing test design techniques Software Development Team & Software Testing Team will design Test

Cases. The common two testing methods, White Box Testing & Black Box Testing and their repeatedly used

techniques are used in Software Testing Process.

Keywords – Dynamic Testing, Dynamic Test Design Techniques, Static Analysis, Static Testing, Static Test

Design Techniques,
--- ----------

Date of Submission: 04-11-2023 Date of acceptance: 17-11-2023

--- ----------

I. INTRODUCTION

Software testing is a procedure which

assess the system. Software testing is a union of

Static Testing and Dynamic Testing. Static Testing

includes inspection and structured peer reviews of

requirements, design, and code. Dynamic Testing is

performed manually or by automatic means. It

helps in verifying that the system satisfies the

specified requirements [1]. It also helps in

identifying differences between expected and

actual results. Measure Quality results in collection

of lot of useful data and information about quality

of the software, which helps the organizations to

make informed decisions about releasing the

software. Some of the reasons to test the Software

are 1.Software is likely to have faults. 2. To assess

the reliability of the software. 3. Failures can be

very high expensive. 4. Helps in avoiding sued by

customers. 5. To stay in business. This paper

focuses on Test design techniques of both Static

and Dynamic testing which are popularly and most

commonly implemented in testing process.

II. STATIC TEST DESIGN

TECHNIQUES

Static Testing consists of the following Test

Techniques. These techniques are widely used

during Static Testing of the Software[2].

2.1 Reviews

Review is an activity carried out to verify the

programming code or documents at different stages

in software development process for its

completeness, correctness & consistency. This

verification is done w.r.t to previous documents in

the SDLC or with respect to established standards

or norms that have been agreed upon.

General classification of Reviews

Informal Review: Generally it is one to one

meeting between the author of a work product and

the team peer, initiated as a request of input

regarding a particular artifact or problem.

RESEARCH ARTICLE OPEN ACCESS

mailto:knrbhushan@skuniversity.ac.in

K. Sai Likhith Reddy, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 11, November 2023, pp 70-75

www.ijera.com DOI: 10.9790/9622-13117075 71 | Page

Semiformal Review: It is facilitated by the author

of the work product being reviewed. During

Semiformal review comments are made at the end

or all through. The review comments raised during

Semiformal review are captured and published in a

review report which is distributed to the

participants

Formal Review: Formal Reviews are facilitated

by a knowledgeable individual who is called as a

moderator. This moderator should not be a project

team member or the author of the work product

which is under review process. During the formal

review the raised issues are captured and published

in a formal report and distributed to all participants

and Management.

Fig.1 Formal Review Process

Fig.2: Test Design Techniques

Planning: Awareness of company policies, product

requirements and project plans are required for a

review to take place. Definition of Entry & Exit

criteria and personnel selection is done at this

stage.

Kick-off: Moderator make sure that the item is

ready for review and distributed. The Moderator

also briefs the attendees on their roles and

responsibilities.

Preparation: Reviewers will examine the item to be

reviewed and also checks for deviation from the

standards.

Meeting: Discussions should not be deviated from

agenda and checklist. Results will be noted by the

scribe. Review comments are raised at the review

item.

Re-Work: Scribe prepares document with findings

in a Review Summary and submits to Manager.

This document contains the defects found and

actions of follow-up work to be carried out.

Follow-up: The Moderator ensures that all

additional work by the author is checked for

completeness and correctness. An additional

review may be required; dependant on the

amount/complexity of re-works undertaken.

Exit Criteria: It can take the form of ensuring that

all actions are completed, or that any uncorrected

Planning Kick-Off Preparation Meeting Rework Follow-up Exit Criteria

K. Sai Likhith Reddy, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 11, November 2023, pp 70-75

www.ijera.com DOI: 10.9790/9622-13117075 72 | Page

items are properly documented, possibly in a defect

tracking system.

Advantages of Review

 Reviews are almost 70 percent efficient in

finding defect in comparison to testing.

 As defects are identified by the review process

in the earlier part of life cycle, they are less

expensive to correct.

 Reviews are an efficient method of educating a

large number of people on a specific

product/project in a relatively short period of

time.

Goals of Review

To identify the defects in the early stage of the

Software Development Life Cycle i.e in Software

requirements stage if self so that defects

multiplications can be avoided and defects will not

carry forward for the next stages of Soft

Development. This is called to as “Phase

containment”.

2.2 Walk- through

It’s an informal verification process by which some

inputs given, that may or may not be considered

for any changes.This is basically carried for

obtaining a second person view on the activity

carried out. Basically walk–through is done for the

source codes

Some sample criteria for Code walk-through

 Minimize or eliminate use of global variables.

 Use descriptive function and method names

 Use both upper and lower case, avoid

abbreviations

 Use descriptive variable names

 Use both upper and lower case, avoid

abbreviations

 Organize code for readability.

 Use white space generously vertically and

horizontally

 Each line of code should contain 80 characters

max.

 One code statement per line. Etc,.

2.3 Inspections

Inspection: A formal assessment of a work product

conducted by one or more qualified independent

reviewers to detect defects, violation of

development standards, etc. Inspection will identify

defects will not try to correct the defects.

Iindividual and group checking uses standards, as

per generic and specific rules and checklists by by

means of entry and exit criteria. Inspection can able

to detect deep-seated faults[3].

2.4 Desk Check

Desk Check is confirmation technique

performed by the creator of the project artifact to

authenticate the completeness. Desk checking is an

casual manual test that programmers can use to

verify coding and algorithm logic before a program

launch. This allows them to mark errors that may

stop a program from working as it should. Desk

checking is also known as hand tracing that implies

the technique of testing an algorithm's logic and

nput/output variables by the programmer. Desk

check is executes physically by walking through

every line in a pseudo-code to recognize the bugs

in logic and to make sure if the algorithm works as

proposed. Desk checking helps in locating the bugs

or issues in an algorithm before the actual coding

and ensures that the code performs as expected. It

reduces the time for evaluating the logic while

implementing an algorithm to program as the

programmer himself checks the logic or syntax

errors before moving to later stages.

2.5 Static Analysis

What can static analysis do?

Checks for violations of standards and Checks for

things which may be a fault. Descended from

compiler technology. A Compiler statically

analyses code, and knows a lot about it, e.g.

variable usage & finds syntax faults.Static analysis

tools can find unreachable code, undeclared

variables, parameter type mis-matches, uncalled

functions & procedures, array bound violations,

etc. Static analysis can find defects without

executing the software being examined by the tool.

Locates defects that are hard to find in dynamic

testing. Developers will use Static Analysis Tools

Before and during component and integration

testing and When checking-in code to

configuration management tools. Designers will

use Static Analysis Tools during software

modeling.

K. Sai Likhith Reddy, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 11, November 2023, pp 70-75

www.ijera.com DOI: 10.9790/9622-13117075 73 | Page

III. DYNAMIC TEST DESIGN

TECHNIQUES

Structural Testing

3.1 Statement Coverage

• Statement coverage is normally measured by a

software tool

• In component testing, statement coverage is

the assessment of the percentage of executable

statements that have been exercised by a test

case suite [4].

• The statement testing technique derives test

cases to execute specific statements, normally

to increase statement coverage

Statement Coverage =

Number of statements exercised

 Total number of statements

Example:

Program has 100 statements

Tests exercise 92 statements

Statement coverage = 92%

Example of statement coverage

1 read(m)

2 IF m > 6 THEN

3 n = m

4 ENDIF

5 print n

Statement Numbers

 As all 5 statements are ‘covered’ by this test case,

achieved 100% statement coverage

3.2 Decision Coverage

• Decision coverage, related to branch testing, is

the assessment of the percentage of decision

outcomes (e.g., the True and False options of

an IF statement) that have been exercised by a

test case suite[6]

• The decision testing technique derives test

cases to execute specific decision outcomes

• Branches form decision points in the code

Decision Coverage =

Number of Decision out comes exercised

 Total number of Decision outcomes

Example

Program has 80 decision outcomes

Tests exercise 60 decision outcomes

Decision coverage = 75%

3.3 Performance Testing

Performance Testing is done to test the

performance of software in the defined conditions.

A program/system may have requirements to meet

certain levels of performance. For a program, this

could be the speed of which it can process a given

task. For a networking device, it could mean the

throughput of network traffic rate[5]. Often,

Performance Testing is designed to be negative, i.e.

prove that the system does not meet its required

level of performance. The focus of performance

testing is on Responsiveness and Scalability.

Behavioral Testing

3.4 Equivalence Class partitioning[7]

• Equivalence class is a subset of data that is

representative of a larger class

• Divide input domain into equivalence classes

• Attempt to cover classes of errors

• One test case per equivalence class, to reduce

total number of test cases needed

• Input data and output results often fall into

different classes where all members of a class

are related

• Each of these classes is an equivalence

partition where the program behaves in an

equivalent way for each class member

• Test cases should be chosen from each

partition

Example

A program which accepts credit limits with a given

range Say, $10,000 – $15,000

This would have three equivalence classes

1. Less than $10,000 (Invalid)

2. Between $10,000 and $15,000 (Valid)

3. Greater than $15,000 (Invalid)

Test Case Input
Expected

Output

1 7 7

× 100%

× 100%

K. Sai Likhith Reddy, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 11, November 2023, pp 70-75

www.ijera.com DOI: 10.9790/9622-13117075 74 | Page

Program specification states that the system will

accept between 4 and 10 inputs which are 5-digit

integers. Partition system inputs and outputs into

equivalence sets. If input is a 5-digit integer

between 10000 ad 99999, equivalence partitions

are <10000, 10000-99999 and >10000

3.5 Boundary Value Analysis

A technique that consists of developing test cases

and data that focus on the input and output

boundaries of a given function

• Complements equivalence partitioning , selects

the test cases at the “edge” of equivalence

classes.

• In practice, more errors found at boundaries of

equivalence classes than within the classes

• Divide input domain into equivalence classes

Example

The boundary analysis would test

1. low boundary plus or minus one ($ 9,999 and

$10,001)

2. On the boundary ($10,000 and $15000)

3. Upper boundary plus or minus one ($14999 and

$15001)

Range of Boundary Values

• Value immediately below range

• First value of range

• Second value of range

• Value immediately below last value of range

• Last value of range

• Value immediately above range

Faults tend to lurk near boundaries. Boundaries

are good place to find faults. Test values on both

sides of boundaries[8]

3.6 State Transition Testing

• State Transition diagrams, like decision tables,

are another excellent tool to capture certain

types of system requirements and to document

internal system design[9]

• State Transition diagrams document the events

that come into and are processed by a system

as well as the system’s responses. They specify

very little in terms of processing rules

• When a system must remember something

about what has happened before or when valid

and invalid orders of operations exist, state

transition diagrams are excellent tools to

record this information

• These diagrams are also vital tools in the

tester’s personal toolbox

• State-transition diagrams information can

easily be used to create test cases. Four

different levels of coverage can be defined[10].

• Create a set of test cases such that all paths are

executed at least once under test. While this

level is the most preferred because of its level

of coverage, it may not be feasible. If the state-

transition diagram has loops, then the number

of possible paths may be infinite [11].

For example, given a system with two states, A and

B, where A transition to B and B transitions to A.

A few of the possible paths are:

A B

A B A

A B A B A B

A B A B A B A

A B A B A B B A B

and so on forever.

Testing of loops such as this can be important

if they may result in accumulating

computational errors or resource loss.

IV. CONCLUSION

This paper has focuses and presented some

of Test design techniques related to Static Testing

and Dynamic Testing which will be implemented

throughout Software Development Life Cycle.

These techniques will be implemented by Software

Development Team and Software Testing Team.

The importance and advantages of Test design

techniques with examples are presented in this

paper. For better understanding Test design

techniques are presented with examples and

pictorial diagrams. Based on the above presentation

a number of general conclusions in the context of

Less than

10000

Between

12000 -

15000

More than

15000

4527 13591 18360

K. Sai Likhith Reddy, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 13, Issue 11, November 2023, pp 70-75

www.ijera.com DOI: 10.9790/9622-13117075 75 | Page

applying Test design techniques at various stages

of Software are presented.

REFERENCES

[1]. J. A. Whittaker, “What is Software Testing?

And Why Is It So Hard?” IEEE Software,

2000, pp. 70-79.

[2]. Luo, Lu, and Carnegie, "Software Testing

Techniques-Technology Maturation and

Research Strategies’, Institute for Software

Research International-Carnegie Mellon

University, Pittsburgh, Technical Report,

2010.

[3]. Everett et al., “Software testing: testing

across the entire software development life

cycle”. John Wiley & Sons, 2007.

[4]. J.Irena. “Software Testing Methods and

Techniques”, 2008, pp.30-35.

[5]. P. Ron. Software testing. Vol. 2.

Indianapolis: Sam’s, 2001

[6]. C. Michael, “Generating software test data

by evolution ,Software Engineering”, IEEE

Transaction, Volume: 27, 2001.

[7]. R. Ramler, S. Biffl, and P. Grünbacher,

"Value-based management of software

testing," in Value-Based Software

Engineering. Springer Science Business

Media, 2006, pp. 225–244.

[8]. Frankl P. and Weyuker E. A formal analysis

of the fault-detecting ability of testing

methods. Software Engineering, IEEE

Transactions. 1993.

[9]. Frankl P. Hamlet D. Littelewood B. and

Strigini L., Choosing a testing method to

deliver reliability. 19th International

conference on Software Engineering, ACM,

1997

[10]. Victor R. Basili and Richard W. Selby.

Comparing the effectiveness of software

testing techniques. IEEE Transactions on

Software Engineering, 13(12):1278–1296,

December 1987.

[11]. K. Vijaya Sai Rachana et al., International

Journal of Advanced Research in Computer

Science and Software Engineering 6(6),

June- 2016, pp. 376-380

