
Mohit Sharma, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 12, Issue 4, (Series-IV) April 2022, pp. 58-65

www.ijera.com DOI: 10.9790/9622-1204045865 58 | P a g e

Decentralized Machine Learning Models with

Cryptographic Techniques

Mohit Sharma*, Sanchita Shirur**, Anurag Singh***, Prof Preeti Satao****
* (Department of Computer Engineering, MCTs Rajiv Gandhi Institute of Technology, India

**(Department of Computer Engineering, MCTs Rajiv Gandhi Institute of Technology, India

***(Department of Computer Engineering, MCTs Rajiv Gandhi Institute of Technology, India

***(Department of Computer Engineering, MCTs Rajiv Gandhi Institute of Technology, India

ABSTRACT

Everything from medical screening to disease outbreak detection could benefit from machine learning models
trained on sensitive real-world data. And, thanks to the widespread use of mobile devices, even more detailed—

and sensitive—information is becoming available. Traditional machine learning, on the other hand, involves a

data pipeline that uses a central server (on-premises or in the cloud) to host the trained model and make

predictions. Distributed Machine Learning (FL), on the other hand, is a method of downloading the current

model and computing an updated model using local data at the device itself (a.k.a. edge computing).These

locally trained models are then sent back to the central server, where they are aggregated (i.e. weights are

averaged), and a single consolidated and improved global model is then sent back to the devices. The interaction

of parameters and the resulting model, however, may still reveal information about the training data used. Two
approaches have been used in this report to address these privacy concerns, which are based on Homographic

Encryption and Secret Sharing techniques, among others. The report summarises previous research in these areas

and makes recommendations for future research.

Keywords - Cryptography, Neural Network, Privacy- preserving, Homographic Encryption, Secret Sharing Scheme

Date of Submission: 13-04-2022 Date of Acceptance: 29-04-2022

I. INTRODUCTION
Machine learning algorithms have

advanced to the point that they are now widely used

across sectors. Nonetheless, industries that deal with

sensitive and private data, such as healthcare and

banking, have lagged behind due to legislative

requirements to protect consumers' information.

Entities are now offering model inference as a

service, thanks to the rise of Machine Learning as a

Service. In such cases, we may differentiate three

parties: a model owner, such as a hospital that has

trained a model, a host, such as a cloud provider that

provides computing resources, and a client who

wants to use the service. In rare cases, a model

owner might also be a host.Because the client does

not want her data exposed and the model owner

wants to protect her model, trust must be developed

between the two sides. Large-scale acquisition of

sensitive data, on the other hand, poses hazards. At

the same time, as huge corporations become more

conscious of the dangers of compromising data

security and user privacy, the importance of data

privacy and security has become a global concern.

The news of data leaks is raising tremendous anxiety

in the public media and among governments. This

paper describes a method for increasing privacy-

preserving machine learning by using secure

multiparty computing (MPC) to securely compute

sums of model parameter updates from individual

users' devices.Secure Aggregation is the problem of

computing a multiparty sum where no party reveals

its update in the open, even to the aggregator. To

update a global model, the secure aggregation

primitive can be used to privately combine the

outputs of local machine learning on user devices.

This type of training model has real-world

applications: a user's device can share an update

knowing that the service provider will only see it

after it has been averaged with the updates of other

users. The secure aggregation problem has attracted

a lot of attention: there have been works based on

generic secure multi-party computation protocols,

DC-nets, partially- or fully-homographic threshold

RESEARCH ARTICLE OPEN ACCESS

Mohit Sharma, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 12, Issue 4, (Series-IV) April 2022, pp. 58-65

www.ijera.com DOI: 10.9790/9622-1204045865 59 | P a g e

encryption, and pairwise masking, to name a few. In

Section 9, we go over these previous works in

greater depth and compare them to our approach.

Mutual machine learning and cryptography research

is not a new field. Machine learning, in addition to

cryptography, has a wide range of applications in

information and network security. The following is a

non-exhaustive list of examples:-

1) Detection of network anomalies

2) Malware detection and analysis

3) Applications of homomorphic encrpytion

4) Physical Unclonable Functions Attacks

5) Developing an intrusion detection system using

machine learning (IDS)

6) Classification and identification of malicious

codes

To address the aforementioned security concerns, we

investigate the integration of neural networks with

cryptography techniques to design a secure

Decentralized learning system with a semi-

honest(curious to know) server, taking into account

the universality nature of neural networks. We

design a secure decentralised based general learning

system that consists of initialization, local weight

computation, and global weight aggregation, using

transfer-ring encrypted weights distributed over a

distributed system. We're especially interested in the

context of mobile devices, where communication is

extremely costly and dropouts are common. Given

these constraints, we'd like to compare the loss and

performance of two popular cryptography

techniques, namely Homographic Encryption and

Secret Sharing, in a distributed machine learning

system.

II. BACKGROUND

In this section, we introduce the

background and explain the underlying building

blocks of our proposed framework in Figure 1,

namely Federated Learning, Homographic

Encryption, and Secret Sharing.

Fig. 1. Architecture of Distributed Machine Learning

system and overview of how an iteration works during
general federated learning model.

 A. Federated Learning

For processing data to improve our

services, Google has built one of the most secure and

robust cloud infrastructures available. We're now

discussing a new approach for models trained from

user interaction with mobile devices: Federated

Learning. Federated Learning (FL) is a technique

that downloads the current model and uses local data

to compute an updated model on the device itself

(a.k.a. edge computing). These locally trained

models are then sent back to the central server,
where they are aggregated (i.e. weights are

averaged), and a single consolidated and improved

global model is then sent back to the devices.

Fig. 2. Your phone personalizes the model locally, based
on your usage (A). Many users’ updates are aggregated
(B) to form a consensus change (C) to the shared model,
after which the procedure is repeated

Federated Learning allows mobile phones

to learn a shared prediction model collaboratively

while keeping all training data on the device,

effectively decoupling machine learning from the

need to store data in the cloud. By bringing model

training to the device, this goes beyond the use of

local models that make predictions on mobile

devices (like the Mobile Vision API and On-Device
Smart Reply).

Mohit Sharma, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 12, Issue 4, (Series-IV) April 2022, pp. 58-65

www.ijera.com DOI: 10.9790/9622-1204045865 60 | P a g e

Federated Learning enables smarter models, faster

response times, and lower power consumption while

maintaining privacy.

This approach also has another immediate benefit: in
addition to providing an update to the shared model,

the improved model on your phone can be used right

away, allowing you to create experiences tailored to

your preferences.

B. Homomorphic Encryption

Homographic Encryption is a type of encryption that

is used to encrypt data. Homographic Encryption is a

cryptographic scheme that uses public keys. The
user generates a secret and public key pair, then

encrypts her data with the public key before sending

it to a third party who will perform computations on

it. Because of the homomorphic properties of

encryption and decryption, the user can obtain the

encrypted result and decode it with her own key to

view the output of the computation on her data

without having to show it to a third party in clear. It

allows some computations to be performed on

encrypted data. For example, given an encrypted

input x, it should be possible to publicly compute
Enc(x) for a function f from a class of functions.he

key word here is "publicly," which means that this

computation must be possible without requiring

access to any confidential information.

C. Secret Sharing

Secret sharing is a term used in

cryptography to describe any method for distributing

a secret among a group of participants, each of
whom receives a share of the secret. Only by

combining the shares can the secret be

reconstructed; individual shares are useless on their

own.

Fig. 3. Secret sharing (also called secret splitting) which

refers to methods for distributing a secret among a group
of participants, each of whom is allocated a share of the

secret is shown in the figure.

Given a secret S, we would like n parties to share the

secret so that the following properties hold:

1) All N parties can get together and recover S

2) Less than n parties cannot recover S

As shown in the figure 3, we have a secret x which

is distributed among all shareholders x1, x2, x3 ... xn

and reconstructed as secret x after the aggregation.

In this section, we mathematically formulate the

concept of federated learning and then discuss about

the problems related to above approach and various

threats to the model i.e. Fault Tolerance, Malicious

Clients.

Privacy Leak: A problem caused by insecure
communication in which the privacy of the clients'

shared parameters is compromised, and the server

learns about the shared weights or parameters. Given

that the model's parameters are trained using the

user's data, there is a chance that such parameters

can provide information about the data. The number

of updates sent from the device to the server should

be kept to a minimum. There's no need to share any

more information than is necessary to update the

model on the server. Otherwise, there's always the

risk of personal information being exposed and
intercepted.Even if private data is not sent explicitly

to the server, it is vulnerable because it is possible to

restore it using the parameters trained by such data.

In the worst-case scenario, if an attacker is able to

recover the data, it should be as anonymous as

possible, avoiding revealing personal information

such as a user's name.

Data Poisoning: In FL, clients can now view

intermediate model states and contribute arbitrary

changes as part of the decentralized training process,

whereas before they could only act as passive data
providers. Malicious clients will be able to alter the

training process with little limitation as a result of

this.

Mohit Sharma, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 12, Issue 4, (Series-IV) April 2022, pp. 58-65

www.ijera.com DOI: 10.9790/9622-1204045865 61 | P a g e

Fig. 4. Malicious client responsible for data poisoning

Model Aggregate Problem: After collecting

individual parameters, the aggregation is mostly

done on the server, which then updates the global

model. This procedure is crucial since it must take

into account the clients' benefits and define the end
of the learning process. When a client-side

protection measure is used, such as perturbation

before collecting model parameters, the aggregation

procedure cannot be as simple as averaging. The

primary reasons are as follows: The number of

clients increases the noise power of perturbation; (ii)

the server must know the stochastic information

from clients, and the aggregation method must

distinguish between privacy-sensitive and privacy-

insensitive clients.

III. EXPERIMENTAL RESULTS AND

POSSIBLE SOLUTIONS

In this section, we discuss the possible solutions and

some experimental results to solve the above
problems.

A. Homographic Encryption with Authentication for

privacy leak

 The model is delivered to the server after the
client trains it using its private data, as detailed in

Section 2. At this point, an attacker may manipulate

parts of the model's Apis to make it act in their

favor. For example, the attacker could have

influence over the labels that are allocated to

photographs with specific characteristics. The FL

framework's overall security is primarily concerned

with model theft attacks. In particular, any FL

member may inject hidden functionality into the

joint global model, such as ensuring that an image

classifier assigns an attacker-selected label to photos
with certain attributes or that a word predictor

completes certain sentences with an attacker. As a

result, various safeguards are included in the security

design for FL. To address these concerns, we

employed Homographic Encryption with

Authentication, which ensures that even after

sharing parameters with the server or another client,

they cannot be decoded, ensuring that each client's

privacy is protected.

Fig. 5. Homomorphically Encrypted Training.

 Homomorphic encryption is used to protect user

data by exchanging parameters throughout the

encryption process. That is, the parameters must be

encoded before being uploaded, and the public-

private decoding keys must also be sent, incurring

additional communication costs.

Key Steps of Homographic Encryption:

Let P denote the plaintext space, which is defined as

P = 0,1 and comprises input message tuples (m1,

m2,..mn). To describe the circuit's evaluation on the

message tuple, let's use the letter C and the
conventional function notation C (m1, m2,...

mn).The general HE is described below:

• Gen(1λ, α) is the key generation algorithm that

generates output keys triplets, i.e., secret key-pair

(sk and pk) along with evaluation key (evk), where λ

is security parameter and α is auxiliary input, (sk,

pk, evk) KeyGen()

• Enc(pk,m) encrypts a message (m) with the public

key (pk) and outputs a ciphertext (c ε C), c

Encpk(m)

• Dec(sk, c) decrypts a ciphertexts with the secret

key (sk) and recovers message (m) as the output, m

Decsk(c)

• Eval(evk, C, c1, c1, . . . , cn) produces evaluation

output by taking evk key as input, a circuit CεC and

Mohit Sharma, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 12, Issue 4, (Series-IV) April 2022, pp. 58-65

www.ijera.com DOI: 10.9790/9622-1204045865 62 | P a g e

tuple of input ciphertexts, i.e., c1...cn and previous

evaluation results, c Evalevk(evk, C, c1, c2, ...cn).

Observation and Results:

Fig. 6. RMSE values variation with number of Iterations in
Homographic Encryption for two and eight clients.

 As shown in the figure 6, we can observe that

RMSE values for two clients are decreasing and the

model is converging first and then it’s almost

constant which is expected according to the

theoretical aspects. Also, it shows some variation

and bumps in the case of 8 clients which is

happening because of the more data distribution and
participation of more clients in aggregation.

In the figure 7, the wall-clock running time taken by

HE algorithm is very large as compared to a simple

neural network which causes some amount of delay

or latency in each iteration w.r.t the neural network

without encryption.

Fig. 7. Wall-clock running time for the client and server with and

without Homographic Encryption in each iteration.

Fig. 8. RMSE values variation with number of Iterations for

malicious clients

Because Homographic Encryption only works in a
Semi-honest(curious to know) environment where

all clients and servers want to know one another's

parameters but can't manipulate them, we can see a

number of bumps and changes in RMSE values in

Figure 8. And in some cases, it isn't conceivable.

So, we'll talk about a technique called Secret

Sharing, which can address all of the above

difficulties to some level.

B. Secret Sharing for reducing Data Poisoning and

improving Model Aggregation

Federated learning (FL), as discussed in section 3, is
a new paradigm for distributed training of large-

scale deep neural networks in which participants'

data is kept on their own devices and only model

updates are shared with a central server. The

distributed nature of FL, on the other hand, creates

new threats from potentially malicious participants.

We'll look at the secret sharing technique to solve

this problem. Secret sharing is an old cryptographic

primitive with real-world applications in Bitcoin

signatures and password management, for example.

Secret sharing, on the other hand, has strong ties to
secure computation and can be used for private

machine learning, for example.

The essence of the primitive is that a dealer wants

to split a secret into several shares and distribute

them to shareholders in such a way that each

shareholder learns nothing about the secret, but

the secret can be reconstructed if enough people

re-combine their shares. Intuitively, the issue of

trust shifts from a single individual's integrity to

the non-collaboration of multiple parties: it

becomes distributed.

Secret Sharing's Key Steps: The main goal of this
algorithm is to divide a secret into several distinct

parts that must be encrypted.

• Let's call the secret we want to encrypt S.

Mohit Sharma, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 12, Issue 4, (Series-IV) April 2022, pp. 58-65

www.ijera.com DOI: 10.9790/9622-1204045865 63 | P a g e

• It's broken down into N parts: S1, S2, S3,..., Sn.

• After dividing it, the user chooses a number K to

decrypt the parts and discover the original secret.

• It's chosen in such a way that we won't be able to

find the secret S if we only know K parts (i.e., the

secret S can't be reconstructed with (K – 1) parts or

fewer.

• We can easily compute/reconstruct our secret code
S if we know K or more parts from S1, S2, S3,..., Sn.

This is referred to as the (K, N) threshold scheme.

Approach: The main idea behind the Secret Sharing

Algorithm is that we can find a polynomial equation

with the degree (K – 1) for the given K points.

Example: We can find a linear polynomial axe + by

= c for the two points (x1, y1) and (x2, y2).

Similarly, we can find a quadratic polynomial ax2 +

bx + cy = d for the given three points.

The idea is to construct a polynomial of degree (K –

1) in which the constant term is the secret code and
the remaining numbers are random, and this constant

term can be found by using any K points out of N

points generated by this polynomial using

Lagrange's Basis Polynomial.

Let S = 65, N = 4, and K = 2 be the secret code.

• To encrypt the secret code, we first construct a

polynomial of degree (K – 1).

• As a result, the polynomial should be y = a + bx.

Our secret code is represented by the constant part

'a'.

• Assume b is a random number, such as 15.

• As a result, we get N = 4 points from this
polynomial y = 65 + 15x.

Let's call those four points (1, 80), (2, 95), and (3,

110). (4, 125). Clearly, we can generate the initial

polynomial from any two of these four points, and

the constant term an in the resulting polynomial is

the secret code.

• The Lagrange basis is used to reconstruct the given

polynomial back. The term polynomial is used.

The Lagrange polynomial[12] is based on the idea of

first forming the Lagrange identities, then summing

these identities to get the required function that we

need to find from the given points.

Overview of iterations in the secret sharing

protocol:-

• At first, each client generates their own share of

parameter shares.

• These shares are then distributed to all clients in

such a way that each client owns the shares of the
others.

• The parameters are sent to the server for

aggregation after client distribution, and then the

averaged parameters are broadcasted to all clients.

Observations in the secret sharing protocol:

As shown in Figure 9, the RMSE curves show a lot

of variation when compared to Figure 7, and they are

not converging or reaching global optima. It occurs

because the precision value of the shared parameters,

which is 3 in the case of secret sharing, and weights

change so quickly in comparison to a simple neural
network, resulting in high and low RMSE at times.

And if we consider high precision, the time

complexity increases because there are many steps,

such as generating shares, distributing shares, model

aggregating, and reconstructing shares using

Lagrange interpolation, and it requires a high

computational power CPU, indicating a trade-off

between accuracy and resources required.

Fig. 10. RMSE values variation with number of Iterations for

malicious clients

When the number of malicious clients and the number of shares,

max, increase, as shown in figure 10, the RMSE values curves

suddenly bump or increase as compared to figure 1. Failures are

kept constant, and the maximum number of shares that can be

manipulated is N-K shares, implying that we need at least K

shares to reconstruct the secret, where N is the number of shares

generated and K is the number of shares required to decrypt the

Mohit Sharma, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 12, Issue 4, (Series-IV) April 2022, pp. 58-65

www.ijera.com DOI: 10.9790/9622-1204045865 64 | P a g e

secret. And we can do an aggregation successfully if we have at

least k shares on the server.

Fig. 11. RMSE variation with number of shares used

As shown in Figure 11, RMSE values decrease as

the number of shares increases, which is

understandable because each client will have a good

mix of shares in this case, and malicious clients will
not have a significant impact on the model.

However, as the number of shares grows, the

computation time grows, and we need more

powerful resources to protect our model from

malicious clients.

C. Comparison between the three protocols:

RMSE Comparison:

Fig. 12. RMSE comparison for all 3 protocols

Figure 12 depicts this. The Simple neural network

and Homographic Encryption model performs better

than the secret sharing technique initially with 0 or 2

malicious clients, but it performs worse as the

number of malicious clients grows, indicating that

secret sharing is better in a scenario with a large

number of malicious clients. It is dependent on the

state of the environment in order to determine which

model to use.

Time Comparison:

Fig. 13. Wall-clock running time comparison for all 3

protocols

Data-overhead Size Comparison:

Fig. 14. Data-overhead comparison for all 3 protocols

As shown in the figure 13, the time taken for each

iteration by the client and server is almost same for

Homographic Encryption and Secret Sharing though

it’s value is somewhat large for Secret Sharing

technique. And the time consumed in case of a

simple neural network is small which shows the

trade-off between the privacy and computation time.

As shown in figure 14, the size of data overhead is
too much which is almost(100%) for Homographic

Encryption as compared to the other two. Each

parameter is encrypted and encoded which has

approximately 20000000 bytes(20 MB) length. On

the other hand, the data overhead size is almost

negligible in case of secret sharing and simple neural

networks.

IV. CONCLUSION
We used different cryptographic

algorithms, such as Homographic Encryption and

Secret Sharing, to develop a privacy-preserving

federated learning scheme in this report. We also

discussed privacy issues and threats to the model in

a general federated learning approach, and we

attempted to use homographic encryption and secret

Mohit Sharma, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 12, Issue 4, (Series-IV) April 2022, pp. 58-65

www.ijera.com DOI: 10.9790/9622-1204045865 65 | P a g e

sharing techniques, which can force the central

server to conduct the aggregation operation and is

robust against user dropouts and malicious users.

After that, we created a set of secure protocols to

implement the distributed Neural network linear

regression model, using the secure aggregation

scheme that we designed. Extensive tests were

carried out to assess the efficacy and efficiency of
both methods. The results of the experiments

showed that using Secret Sharing allowed the neural

network to be trained in a malicious and manipulated

environment with some performance loss, and that

secure aggregation computation and communication

costs were reduced. However, Homographic

encryption and the general approach were unable to

handle user dropouts and manipulated users, despite

producing some good and accurate performance

results, and the data-overhead of communication in

the case of Homographic Encryption was too large.

V. FUTURE SCOPE

We looked at both cryptography algorithms in which

secret sharing was demonstrating some promising

privacy results. However, we must improve the

system's performance and attempt to reduce loss and

time complexity in the following ways: -
1) Various methods for reassembling the secret, such

as the Fast Fourier Transform and Newton's method,

which can reduce time complexity and thus improve

precision.

2) Distributed system scaling and design for a large

number of clients

3) Create a system that combines Homographic

Encryption and Secret Sharing.

4) By removing central authority, you can get to

serverless architecture.

5) Using multi-threading to check the beats of all the
instances

REFERENCES

[1]. Ronald L. Rivest, “Cryptography and

machine learning” Supported by NSF grant

CCR-8914428, ARO grant N00014-89-J-

1988, and the Siemens Corporation

[2]. Runhua Xu, Nathalie Baracaldo, Yi Zhou, Ali

Anwar and Heiko Lud- wig“HybridAlpha: An

Efficient Approach for Privacy-Preserving
Feder- ated Learning”, ACM ISBN 978-1-

4503-6833-9/19/11. . .

[3]. H. Brendan McMahan, Eider Moore, Daniel

Ramage, Seth Hampson, Blaise Aguera y

Arcas ”Communication-Efficient Learning of

Deep Networks from Decentralized Data”,

Google, Inc., 651 N 34th St., Seattle, WA

98103 USA

[4]. Brendan McMahan and Daniel Ramage

”Federated Learning: Collaborative Machine

Learning without Centralized Training Data”,

https://ai.googleblog.com/2017/04/federated-

learning-collaborative.html Google, Inc., 651

N 34th St., Seattle, WA 98103 USA

[5]. QinbinLi,ZeyiWen,ZhaominWu,SixuHu,Naib

oWang,BingshengHe, ”A Survey on
Federated Learning Systems: Vision, Hype

and Reality for Data Privacy and Protection”,

arXiv:1907.09693v4 [cs.LG] 1 Apr 2020

[6]. Michele Minelli, ”Fully homomorphic

encryption for machine learning”,

”Cryptography and Security [cs.CR]”

 ni ersite aris sciences et lettres, 2018.

English. ffNNT : 2018PSLEE056ff. fftel-

01918263v2f

[7]. Lidong Zhou, ”Secret Sharing”, CS Cornell,

USA
http://www.cs.cornell.edu/courses/cs513/2000

SP/SecretSharing.html

[8]. Maeva Benoit and Morten Dahl, ”How

Practical is Somewhat Homomorphic

Encryption Today?”,

https://medium.com/snips-ai/how-practical-is-

somewhat-homomorphic-encryption-today-

6818d1c6f7f6

[9]. Morten Dahl, ”High-Volume Secret Sharing”

https://medium.com/snips-ai/optimizing-

threshold-secret-sharing-c877901231e5

[10]. YangLiuZhuoMa, XimengLiu, SiqiMa,
SuryaNepal, Robert.HDeng, Kui Ren,

”Boosting Privately: Federated Extreme

Gradient Boosting for Mobile Crowdsensing”

arXiv:1907.10218v2 [cs.CR] 10 Apr 2020

[11]. Secret double octopus, ”The Secret

SecurityWiki”https://doubleoctopus.com/secu

rity-wiki/encryption-and-cryptography/secret-

sharing/

[12]. Wikipedia the free encyclopedia, ”Lagrange

polynomial”https://en.wikipedia.org/wiki/Lag

rangepolynomial
[13]. Chuan Ma , Jun Li, Ming Ding, Howard H.

Yang, Feng Shu, Tony Q.S. Quek, H. Vincent

Poor ”On Safeguarding Privacy and Security

in the Framework of Federated Learning”

arXiv:1909.06512 [cs.NI]

[14]. Ahmed Gad ”Breaking Privacy in Federated

Learning”https://heartbeat.fritz.ai/breaking-

privacy-in-federated-learning-77fa08ccac9a

[15]. Jonas Geiping, Hartmut Bauermeister,

Hannah Dro ge, Michael Moeller, ”Inverting

Gradients – How easy is it to break privacy in

federated learning?” arXiv:2003.14053
[cs.CV]

