
Mohit Sharma, et. al. International Journal of Engineering Research and Applications 

www.ijera.com  
ISSN: 2248-9622, Vol. 12, Issue 4, (Series-IV) April 2022, pp. 58-65 

 

 
www.ijera.com                                 DOI: 10.9790/9622-1204045865                                58 | P a g e  
        

 

 
 

 
 

Decentralized Machine Learning Models with 

Cryptographic Techniques 
 

Mohit Sharma*, Sanchita Shirur**, Anurag Singh***, Prof Preeti Satao**** 
* (Department of  Computer Engineering, MCTs Rajiv Gandhi Institute of Technology, India 

**( Department of  Computer Engineering, MCTs Rajiv Gandhi Institute of Technology, India 

***( Department of  Computer Engineering, MCTs Rajiv Gandhi Institute of Technology, India 

***( Department of  Computer Engineering, MCTs Rajiv Gandhi Institute of Technology, India 

 

ABSTRACT 

Everything from medical screening to disease outbreak detection could benefit from machine learning models 
trained on sensitive real-world data. And, thanks to the widespread use of mobile devices, even more detailed—

and sensitive—information is becoming available. Traditional machine learning, on the other hand, involves a 

data pipeline that uses a central server (on-premises or in the cloud) to host the trained model and make 

predictions. Distributed Machine Learning (FL), on the other hand, is a method of downloading the current 

model and computing an updated model using local data at the device itself (a.k.a. edge computing).These 

locally trained models are then sent back to the central server, where they are aggregated (i.e. weights are 

averaged), and a single consolidated and improved global model is then sent back to the devices. The interaction 

of parameters and the resulting model, however, may still reveal information about the training data used. Two 
approaches have been used in this report to address these privacy concerns, which are based on Homographic 

Encryption and Secret Sharing techniques, among others. The report summarises previous research in these areas 

and makes recommendations for future research. 
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I. INTRODUCTION 
Machine learning algorithms have 

advanced to the point that they are now widely used 

across sectors. Nonetheless, industries that deal with 

sensitive and private data, such as healthcare and 

banking, have lagged behind due to legislative 

requirements to protect consumers' information. 

Entities are now offering model inference as a 

service, thanks to the rise of Machine Learning as a 

Service. In such cases, we may differentiate three 

parties: a model owner, such as a hospital that has 

trained a model, a host, such as a cloud provider that 

provides computing resources, and a client who 

wants to use the service. In rare cases, a model 

owner might also be a host.Because the client does 

not want her data exposed and the model owner 

wants to protect her model, trust must be developed 

between the two sides. Large-scale acquisition of 

sensitive data, on the other hand, poses hazards. At 

the same time, as huge corporations become more 

conscious of the dangers of compromising data 

security and user privacy, the importance of data 

privacy and security has become a global concern. 

The news of data leaks is raising tremendous anxiety 

in the public media and among governments. This 

paper describes a method for increasing privacy-

preserving machine learning by using secure 

multiparty computing (MPC) to securely compute 

sums of model parameter updates from individual 

users' devices.Secure Aggregation is the problem of 

computing a multiparty sum where no party reveals 

its update in the open, even to the aggregator. To 

update a global model, the secure aggregation 

primitive can be used to privately combine the 

outputs of local machine learning on user devices. 

This type of training model has real-world 

applications: a user's device can share an update 

knowing that the service provider will only see it 

after it has been averaged with the updates of other 

users. The secure aggregation problem has attracted 

a lot of attention: there have been works based on 

generic secure multi-party computation protocols, 

DC-nets, partially- or fully-homographic threshold 
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encryption, and pairwise masking, to name a few. In 

Section 9, we go over these previous works in 

greater depth and compare them to our approach. 

Mutual machine learning and cryptography research 

is not a new field. Machine learning, in addition to 

cryptography, has a wide range of applications in 

information and network security. The following is a 

non-exhaustive list of examples:- 

 

1) Detection of network anomalies 

2) Malware detection and analysis 

3) Applications of homomorphic encrpytion 

4) Physical Unclonable Functions Attacks 

5) Developing an intrusion detection system using 

machine learning (IDS) 

6) Classification and identification of malicious 

codes 

 

To address the aforementioned security concerns, we 

investigate the integration of neural networks with 

cryptography techniques to design a secure 

Decentralized learning system with a semi-

honest(curious to know) server, taking into account 

the universality nature of neural networks. We 

design a secure decentralised based general learning 

system that consists of initialization, local weight 

computation, and global weight aggregation, using 

transfer-ring encrypted weights distributed over a 

distributed system. We're especially interested in the 

context of mobile devices, where communication is 

extremely costly and dropouts are common. Given 

these constraints, we'd like to compare the loss and 

performance of two popular cryptography 

techniques, namely Homographic Encryption and 

Secret Sharing, in a distributed machine learning 

system. 

 

II. BACKGROUND 

In this section, we introduce the 

background and explain the underlying building 

blocks of our proposed framework in Figure 1, 

namely Federated Learning, Homographic 

Encryption, and Secret Sharing. 

 
Fig. 1. Architecture of Distributed Machine Learning 

system and overview of how an iteration works during 
general federated learning model. 

 

 A. Federated Learning 

For processing data to improve our 

services, Google has built one of the most secure and 

robust cloud infrastructures available. We're now 

discussing a new approach for models trained from 

user interaction with mobile devices: Federated 

Learning. Federated Learning (FL) is a technique 

that downloads the current model and uses local data 

to compute an updated model on the device itself 

(a.k.a. edge computing). These locally trained 

models are then sent back to the central server, 
where they are aggregated (i.e. weights are 

averaged), and a single consolidated and improved 

global model is then sent back to the devices. 

 

Fig. 2. Your phone personalizes the model locally, based 
on your usage (A). Many users’ updates are aggregated 
(B) to form a consensus change (C) to the shared model, 
after which the procedure is repeated 

Federated Learning allows mobile phones 

to learn a shared prediction model collaboratively 

while keeping all training data on the device, 

effectively decoupling machine learning from the 

need to store data in the cloud. By bringing model 

training to the device, this goes beyond the use of 

local models that make predictions on mobile 

devices (like the Mobile Vision API and On-Device 
Smart Reply). 
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Federated Learning enables smarter models, faster 

response times, and lower power consumption while 

maintaining privacy. 

This approach also has another immediate benefit: in 
addition to providing an update to the shared model, 

the improved model on your phone can be used right 

away, allowing you to create experiences tailored to 

your preferences. 

B. Homomorphic Encryption 

Homographic Encryption is a type of encryption that 

is used to encrypt data. Homographic Encryption is a 

cryptographic scheme that uses public keys. The 
user generates a secret and public key pair, then 

encrypts her data with the public key before sending 

it to a third party who will perform computations on 

it. Because of the homomorphic properties of 

encryption and decryption, the user can obtain the 

encrypted result and decode it with her own key to 

view the output of the computation on her data 

without having to show it to a third party in clear. It 

allows some computations to be performed on 

encrypted data. For example, given an encrypted 

input x, it should be possible to publicly compute 
Enc(x) for a function f from a class of functions.he 

key word here is "publicly," which means that this 

computation must be possible without requiring 

access to any confidential information. 

C. Secret Sharing 

Secret sharing is a term used in 

cryptography to describe any method for distributing 

a secret among a group of participants, each of 
whom receives a share of the secret. Only by 

combining the shares can the secret be 

reconstructed; individual shares are useless on their 

own. 

 
Fig. 3. Secret sharing (also called secret splitting) which 

refers to methods for distributing a secret among a group 
of participants, each of whom is allocated a share of the 

secret is shown in the figure. 
 

Given a secret S, we would like n parties to share the 

secret so that the following properties hold: 

1) All N parties can get together and recover S  

2) Less than n parties cannot recover S 

As shown in the figure 3, we have a secret x which 

is distributed among all shareholders x1, x2, x3 ... xn 

and reconstructed as secret x after the aggregation. 

In this section, we mathematically formulate the 

concept of federated learning and then discuss about 

the problems related to above approach and various 

threats to the model i.e. Fault Tolerance, Malicious 

Clients. 

 

Privacy Leak: A problem caused by insecure 
communication in which the privacy of the clients' 

shared parameters is compromised, and the server 

learns about the shared weights or parameters. Given 

that the model's parameters are trained using the 

user's data, there is a chance that such parameters 

can provide information about the data. The number 

of updates sent from the device to the server should 

be kept to a minimum. There's no need to share any 

more information than is necessary to update the 

model on the server. Otherwise, there's always the 

risk of personal information being exposed and 
intercepted.Even if private data is not sent explicitly 

to the server, it is vulnerable because it is possible to 

restore it using the parameters trained by such data. 

In the worst-case scenario, if an attacker is able to 

recover the data, it should be as anonymous as 

possible, avoiding revealing personal information 

such as a user's name. 

 

Data Poisoning: In FL, clients can now view 

intermediate model states and contribute arbitrary 

changes as part of the decentralized training process, 

whereas before they could only act as passive data 
providers. Malicious clients will be able to alter the 

training process with little limitation as a result of 

this. 
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Fig. 4. Malicious client responsible for data poisoning 
 

Model Aggregate Problem: After collecting 

individual parameters, the aggregation is mostly 

done on the server, which then updates the global 

model. This procedure is crucial since it must take 

into account the clients' benefits and define the end 
of the learning process. When a client-side 

protection measure is used, such as perturbation 

before collecting model parameters, the aggregation 

procedure cannot be as simple as averaging. The 

primary reasons are as follows: The number of 

clients increases the noise power of perturbation; (ii) 

the server must know the stochastic information 

from clients, and the aggregation method must 

distinguish between privacy-sensitive and privacy-

insensitive clients. 

III. EXPERIMENTAL RESULTS AND 

POSSIBLE SOLUTIONS 

In this section, we discuss the possible solutions and 

some experimental results to solve the above 
problems.  

A. Homographic Encryption with Authentication for 

privacy leak 

     The model is delivered to the server after the 
client trains it using its private data, as detailed in 

Section 2. At this point, an attacker may manipulate 

parts of the model's Apis to make it act in their 

favor. For example, the attacker could have 

influence over the labels that are allocated to 

photographs with specific characteristics. The FL 

framework's overall security is primarily concerned 

with model theft attacks. In particular, any FL 

member may inject hidden functionality into the 

joint global model, such as ensuring that an image 

classifier assigns an attacker-selected label to photos 
with certain attributes or that a word predictor 

completes certain sentences with an attacker. As a 

result, various safeguards are included in the security 

design for FL. To address these concerns, we 

employed Homographic Encryption with 

Authentication, which ensures that even after 

sharing parameters with the server or another client, 

they cannot be decoded, ensuring that each client's 

privacy is protected. 

 

 
Fig. 5.  Homomorphically Encrypted Training. 

 

 
     Homomorphic encryption is used to protect user 

data by exchanging parameters throughout the 

encryption process. That is, the parameters must be 

encoded before being uploaded, and the public-

private decoding keys must also be sent, incurring 

additional communication costs. 

Key Steps of Homographic Encryption: 

Let P denote the plaintext space, which is defined as 

P = 0,1 and comprises input message tuples (m1, 

m2,..mn). To describe the circuit's evaluation on the 

message tuple, let's use the letter C and the 
conventional function notation C (m1, m2,... 

mn).The general HE is described below: 

• Gen(1λ, α) is the key generation algorithm that 

generates output keys triplets, i.e., secret key-pair 

(sk and pk) along with evaluation key (evk), where λ 

is security parameter and α is auxiliary input, (sk, 

pk, evk)  KeyGen() 

• Enc(pk,m) encrypts a message (m) with the public 

key (pk) and outputs a ciphertext (c ε C), c  

Encpk(m) 

• Dec(sk, c) decrypts a ciphertexts with the secret 

key (sk) and recovers message (m) as the output, m  

Decsk(c) 

• Eval(evk, C, c1, c1, . . . , cn) produces evaluation 

output by taking evk key as input, a circuit CεC and 
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tuple of input ciphertexts, i.e., c1...cn and previous 

evaluation results, c  Evalevk(evk, C, c1, c2, ...cn). 

Observation and Results: 

 

Fig. 6. RMSE values variation with number of Iterations in 
Homographic Encryption for two and eight clients. 

 As shown in the figure 6, we can observe that 

RMSE values for two clients are decreasing and the 

model is converging first and then it’s almost 

constant which is expected according to the 

theoretical aspects. Also, it shows some variation 

and bumps in the case of 8 clients which is 

happening because of the more data distribution and 
participation of more clients in aggregation.  

In the figure 7, the wall-clock running time taken by 

HE algorithm is very large as compared to a simple 

neural network which causes some amount of delay 

or latency in each iteration w.r.t the neural network 

without encryption. 

Fig. 7. Wall-clock running time for the client and server with and 

without Homographic Encryption in each iteration. 

 
Fig. 8. RMSE values variation with number of Iterations for 

malicious clients 

Because Homographic Encryption only works in a 
Semi-honest(curious to know) environment where 

all clients and servers want to know one another's 

parameters but can't manipulate them, we can see a 

number of bumps and changes in RMSE values in 

Figure 8. And in some cases, it isn't conceivable. 

So, we'll talk about a technique called Secret 

Sharing, which can address all of the above 

difficulties to some level. 

B. Secret Sharing for reducing Data Poisoning and 

improving Model Aggregation  

Federated learning (FL), as discussed in section 3, is 
a new paradigm for distributed training of large-

scale deep neural networks in which participants' 

data is kept on their own devices and only model 

updates are shared with a central server. The 

distributed nature of FL, on the other hand, creates 

new threats from potentially malicious participants. 

We'll look at the secret sharing technique to solve 

this problem. Secret sharing is an old cryptographic 

primitive with real-world applications in Bitcoin 

signatures and password management, for example. 

Secret sharing, on the other hand, has strong ties to 
secure computation and can be used for private 

machine learning, for example. 

The essence of the primitive is that a dealer wants 

to split a secret into several shares and distribute 

them to shareholders in such a way that each 

shareholder learns nothing about the secret, but 

the secret can be reconstructed if enough people 

re-combine their shares. Intuitively, the issue of 

trust shifts from a single individual's integrity to 

the non-collaboration of multiple parties: it 

becomes distributed. 

Secret Sharing's Key Steps: The main goal of this 
algorithm is to divide a secret into several distinct 

parts that must be encrypted. 

• Let's call the secret we want to encrypt S. 
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• It's broken down into N parts: S1, S2, S3,..., Sn. 

• After dividing it, the user chooses a number K to 

decrypt the parts and discover the original secret. 

• It's chosen in such a way that we won't be able to 

find the secret S if we only know K parts (i.e., the 

secret S can't be reconstructed with (K – 1) parts or 

fewer. 

• We can easily compute/reconstruct our secret code 
S if we know K or more parts from S1, S2, S3,..., Sn. 

This is referred to as the (K, N) threshold scheme. 

Approach: The main idea behind the Secret Sharing 

Algorithm is that we can find a polynomial equation 

with the degree (K – 1) for the given K points. 

Example: We can find a linear polynomial axe + by 

= c for the two points (x1, y1) and (x2, y2). 

Similarly, we can find a quadratic polynomial ax2 + 

bx + cy = d for the given three points. 

The idea is to construct a polynomial of degree (K – 

1) in which the constant term is the secret code and 
the remaining numbers are random, and this constant 

term can be found by using any K points out of N 

points generated by this polynomial using 

Lagrange's Basis Polynomial. 

Let S = 65, N = 4, and K = 2 be the secret code. 

• To encrypt the secret code, we first construct a 

polynomial of degree (K – 1). 

• As a result, the polynomial should be y = a + bx. 

Our secret code is represented by the constant part 

'a'. 

• Assume b is a random number, such as 15. 

• As a result, we get N = 4 points from this 
polynomial y = 65 + 15x. 

Let's call those four points (1, 80), (2, 95), and (3, 

110). (4, 125). Clearly, we can generate the initial 

polynomial from any two of these four points, and 

the constant term an in the resulting polynomial is 

the secret code. 

• The Lagrange basis is used to reconstruct the given 

polynomial back. The term polynomial is used. 

The Lagrange polynomial[12] is based on the idea of 

first forming the Lagrange identities, then summing 

these identities to get the required function that we 

need to find from the given points. 

Overview of iterations in the secret sharing 

protocol:- 

• At first, each client generates their own share of 

parameter shares. 

• These shares are then distributed to all clients in 

such a way that each client owns the shares of the 
others. 

• The parameters are sent to the server for 

aggregation after client distribution, and then the 

averaged parameters are broadcasted to all clients. 

Observations in the secret sharing protocol:  

As shown in Figure 9, the RMSE curves show a lot 

of variation when compared to Figure 7, and they are 

not converging or reaching global optima. It occurs 

because the precision value of the shared parameters, 

which is 3 in the case of secret sharing, and weights 

change so quickly in comparison to a simple neural 
network, resulting in high and low RMSE at times. 

And if we consider high precision, the time 

complexity increases because there are many steps, 

such as generating shares, distributing shares, model 

aggregating, and reconstructing shares using 

Lagrange interpolation, and it requires a high 

computational power CPU, indicating a trade-off 

between accuracy and resources required. 

 

Fig. 10. RMSE values variation with number of Iterations for 

malicious clients  

When the number of malicious clients and the number of shares, 

max, increase, as shown in figure 10, the RMSE values curves 

suddenly bump or increase as compared to figure 1. Failures are 

kept constant, and the maximum number of shares that can be 

manipulated is N-K shares, implying that we need at least K 

shares to reconstruct the secret, where N is the number of shares 

generated and K is the number of shares required to decrypt the 
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secret. And we can do an aggregation successfully if we have at 

least k shares on the server. 

Fig. 11. RMSE variation with number of shares used  

As shown in Figure 11, RMSE values decrease as 

the number of shares increases, which is 

understandable because each client will have a good 

mix of shares in this case, and malicious clients will 
not have a significant impact on the model. 

However, as the number of shares grows, the 

computation time grows, and we need more 

powerful resources to protect our model from 

malicious clients.  

C. Comparison between the three protocols:  

RMSE Comparison: 

 
Fig. 12. RMSE comparison for all 3 protocols 

Figure 12 depicts this. The Simple neural network 

and Homographic Encryption model performs better 

than the secret sharing technique initially with 0 or 2 

malicious clients, but it performs worse as the 

number of malicious clients grows, indicating that 

secret sharing is better in a scenario with a large 

number of malicious clients. It is dependent on the 

state of the environment in order to determine which 

model to use.  

Time Comparison: 

 
Fig. 13. Wall-clock running time comparison for all 3 

protocols 

Data-overhead Size Comparison: 

 
Fig. 14. Data-overhead comparison for all 3 protocols 

As shown in the figure 13, the time taken for each 

iteration by the client and server is almost same for 

Homographic Encryption and Secret Sharing though 

it’s value is somewhat large for Secret Sharing 

technique. And the time consumed in case of a 

simple neural network is small which shows the 

trade-off between the privacy and computation time. 

As shown in figure 14, the size of data overhead is 
too much which is almost(100%) for Homographic 

Encryption as compared to the other two. Each 

parameter is encrypted and encoded which has 

approximately 20000000 bytes(20 MB) length. On 

the other hand, the data overhead size is almost 

negligible in case of secret sharing and simple neural 

networks. 

IV. CONCLUSION 
We used different cryptographic 

algorithms, such as Homographic Encryption and 

Secret Sharing, to develop a privacy-preserving 

federated learning scheme in this report. We also 

discussed privacy issues and threats to the model in 

a general federated learning approach, and we 

attempted to use homographic encryption and secret 
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sharing techniques, which can force the central 

server to conduct the aggregation operation and is 

robust against user dropouts and malicious users. 

After that, we created a set of secure protocols to 

implement the distributed Neural network linear 

regression model, using the secure aggregation 

scheme that we designed. Extensive tests were 

carried out to assess the efficacy and efficiency of 
both methods. The results of the experiments 

showed that using Secret Sharing allowed the neural 

network to be trained in a malicious and manipulated 

environment with some performance loss, and that 

secure aggregation computation and communication 

costs were reduced. However, Homographic 

encryption and the general approach were unable to 

handle user dropouts and manipulated users, despite 

producing some good and accurate performance 

results, and the data-overhead of communication in 

the case of Homographic Encryption was too large. 

V. FUTURE SCOPE 

We looked at both cryptography algorithms in which 

secret sharing was demonstrating some promising 

privacy results. However, we must improve the 

system's performance and attempt to reduce loss and 

time complexity in the following ways: -  
1) Various methods for reassembling the secret, such 

as the Fast Fourier Transform and Newton's method, 

which can reduce time complexity and thus improve 

precision. 

2) Distributed system scaling and design for a large 

number of clients 

3) Create a system that combines Homographic 

Encryption and Secret Sharing. 

4) By removing central authority, you can get to 

serverless architecture. 

5) Using multi-threading to check the beats of all the 
instances 
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