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ABSTRACT 
Recently, a general agreement has come out to support the fact that improved economic conditions for households 

and individuals generally leads to better health conditions. Due to income inequality in society, some households 

and individuals cannot afford quality treatment against malaria. We examine how income inequality affects 

malaria transmission dynamics by dividing the total human population broadly into; low income, middle income, 

and high-income earners. We then formulated a system of deterministic differential equations based on income 

inequalities to study malaria transmission dynamics. Impacts of income-inequality are investigated through the 

incorporation of the Gini index into the model equations. We find that the diseasefree equilibrium point of the 

model always exists. Using the center manifold theorem, we find a condition under which backward bifurcation 
will occur in the model. We also find that even without a disease-induced death rate, backward bifurcation may 

exist. Numerical simulations conducted show that widening income inequality will increase malaria cases and the 

number of people being hospitalized.  
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I. INTRODUCTION 
Malaria is widely considered as one of the 

most severe global public health problems 

worldwide, particularly among tropical regions of the 

world. In Africa, Nigeria is reported to have the 

greatest number of malaria cases, [19]. The disease is 

a major public health concern in sub-Saharan Africa 

as it is a leading cause of disability and death, 

especially among children. It was reported that in 

2016 alone, 216 million people world over suffered 

from malaria with over 400,000 deaths,[50] . Since 

the year 2000, substantial progress has been made in 

curbing the menace of malaria. From the report in 
[59] , it was noted that between 2000 and 2015 , 

malaria case incidence and mortality rates were 

decreased by     and     respectively and 

endemic regions were decreased from 108 countries 

and territories in the year 2000 to 91 in 2016. These 

successes are generally linked to early diagnoses, 

drug-therapies, better health infrastructure, use of 

insecticide-treated bed-nets (ITNs), Long-lasting 

insecticide nets (LLINS), intermittent preventive 

treatment especially for pregnant women during 
anti-natal, and indoor residual spraying [19, 11, 33, 

38, 44, 61]. Despite the remarkable progress, malaria 

remains the most deadly vector-borne disease in the 

world. Malaria has a ravaging touch on public health 

and socio-economic conditions of the people by 

imposing a heavy economic burden on individuals, 

households, and the entire economy [18, 23, 59]. 
There are many reports in the literature 

suggesting that wealth and income distributions have 

significant impacts on malaria transmission and 

health in general. For example, the report in [52] 

assert that income inequality has negative impacts on 

education and health. According to Michael Marmot 

reported in [43], income is related to health through 

the gross national product of countries, the income of 

individuals, and the income inequalities that exist 

among rich nations and geographic areas. Similarly, 

one of the findings in the empirical work reported in 
[19] is that the prevalence of malaria was associated 

significantly with having a low household family 

income, not using ITNs, and having no toilets in the 

house among other factors. In that report, household 

family income was divided into two based on 

monthly income, where the low income was 

considered to constitute a significant risk group. Otto 

Lenhart reported in [41] found that families with 

higher income may have better access to health care, 

whereas people with lower income are likely to be 

faced with more stressful situations that are 
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detrimental to health. Perhaps this finding might be 

explained further by the report in [52], where it was 

shown that about     of the National monthly 

minimum wage in Nigeria is required to cover the 

cost of uncomplicated malaria treatment per patient 

per malaria episode in some private hospitals in 

Ibadan, Nigeria. Similarly, one of the conclusions of 
the report in [7] is that the cost of malaria treatment 

for under-five children in some parts of Ghana is 

considerably high in comparison to the poverty level 

of the area. The implication of this is that lack of fund 

makes malaria patients resort to self-treatment or no 

treatment at all, see [7]. Other reports on the negative 

effects of low income on malaria treatment in some 

African countries such as Ethiopia, Mozambique, 

Tanzania, Togo, and Nigeria can be found in [17, 4, 

35, 45, 55]. In fact, the connection between, malaria, 

poverty and income inequality is well documented in 

[29, 53]. The distribution of wealth in most countries 
for which there is reliable data is strikingly uneven. 

According to the report in [59], the world is more 

unequal today than any other time since World War 

II and that the richest    of the world population 

owns about     of the world’s assets, while the 

bottom half owns no more than   . As a result of 

income-inequality countries and communities of the 

world are divided into different groups such as low 

income, lower middle income, upper middle income, 
and the high-income groups, [36, 57]. The division is 

mainly based on Gini index which is a summary 

statistic with value in the range       that measures 

how fairly income is distributed in a population, [24, 

37]. Definition of Gini index is based on the Lorenz 

curve which plots the percentage,      of the total 

income of a population that is cumulatively earned 

by the bottom    of the population. The more equal 

the distribution of income, the smaller the value of 

the Gini index and vice-versa. 
The global targets of WHO and the global 

malaria community is a world free of malaria by 

2030. As part of the contribution by researchers for 

the attainment of these targets, mathematical models 

of malaria transmissions are developed by several 

authors to gain insight into the dynamics of the 

disease. In these models, several characteristic 

features of malaria disease such as clinical immunity, 

malaria-strains, and protections against the disease 

are investigated and analyzed mathematically [6, 27, 

39, 49]. Other features of malaria disease considered 
by modelers are personal/household protection 

against the disease through the use of ITNs and 

LLINs. For example, using global uncertainty and 

sensitivity analysis, Bala and Gimba reported in [6] 

concluded that malaria can be controlled through the 

combination of     drug treatment of malaria 

cases, and     ITNs coverage with     efficacy. 

Despite the significant achievement recorded on the 

use of ITNs in mitigating the scourge of malaria, 

certain problems associated with it are reported in the 

literature. Firstly, Briget and Koella, [40] reported 

that the use of ITNs is like a double-edged sword 

because it diverts infectious mosquitoes to non-users, 

and hence increasing their risk. Secondly, the report 

in [26] hypothesis that high use of ITNs may cause 

mosquitoes to adapt and change their biting to day 
time through evolutionary behavior. Thirdly, the 

requirements of regular re-treatment to preserve 

ITNs efficacy impose an additional cost on 

low-income earners, for this reason, LLINs, 

recommended by WHO and Roll Back Malaria 

partners is generally prefer as a cost-effective and 

sustainable method for protection against malaria 

[16]. From the report in [44], the authors concluded 

that using LLINs with over     coverage will lead 

to effective malaria control. However, reaching this 

coverage level can be quite challenging. From the 
report in [3], there have been studies in Tanzania, 

Madagascar, and India, where low demand for 

LLINs among mostly low-income households was 

found. The report further asserts that there exists a 

high demand for LLINs among the middle-income 

class in Ghana. This suggests that income difference 

will play a significant role in achieving a high level 

of LLINs coverage unless a strategy for subsidizing 

for the poor/low-income group is put in place, see [3, 

32]. 

In the models reported in [1, 12], the authors 
incorporated a parameter in the mosquito biting rate 

function to model the impacts of ITNs usage. In the 

model reported in [46], the biting rate function not 

only contains ITNs coverage but also contains its 

efficacy and replacement time. Recent studies have 

shown that the concept of relying on malaria 

transmission through mosquito biting rates alone is 

flawed, [2, 14]. In these studies, it was shown that 

salivary gland sporozoite load strongly correlates 

with malaria infection probability. Thus, it is 

imperative to sporozoite load into account when 

modeling the malarial force of infection. As reported 
by many researchers, one of the characteristic 

features of malaria disease that makes control effort 

difficult is the phenomenon of backward bifurcation 

which has been observed in many malaria models. 

Some of these studies can be found in [10, 28, 30, 31, 

39, 47]. Under this circumstance, the necessity for 

the basic reproduction number to be less than one for 

the disease to be controlled is no longer holds. The 

occurrences of backward bifurcation are typically 

linked to; disease-induced death rates and choice of 

incidence functions [25, 34]. Apart from dynamical 
models, there are health economic models of 

infectious diseases that have employed static 

conditions to study disease effects, see for instance 

[7, 15, 48, 51, 53, 58]. This type of approach may be 



Saminu Iliyasu Bala, et. al. International Journal of Engineering Research and Applications 

www.ijera.com 
ISSN: 2248-9622, Vol. 12, Issue 2, (Series-II) February 2022, pp. 31-46 

 

 
www.ijera.com                        DOI: 10.9790/9622-1202023146                33 | P a g e  
        

 

 
 

acceptable for malaria control where disease burden 

and transmission is constant. However, this is not the 

malaria case especially in the endemic regions and 

also for the fact that malaria transmission intensity is 

highly affected by seasonality [5, 8, 20, 42]. 

Widening income inequality is the defining 

challenge of our time. In many countries, the gap 

between the rich and poor is at its highest level in 
decades. Inequities have negative impacts on access 

to education, and health care. To make matters 

worse, many of the people in desperate need of 

malaria treatment simply cannot afford it. Not 

surprisingly then, the extent of inequality, its drivers, 

have become one of the topics of frequent discussion 

by policymakers and researchers alike. Against this 

background, we wish to combine dynamic 

mathematical modeling and some basic concepts in 

economics to formulate a model to investigate how 

income inequality affects malaria transmission and to 
find out whether there are other factors apart from 

disease-induced death rate that can bring about the 

phenomenon of backward bifurcation. To the best of 

our knowledge, this is the first time in literature 

where income inequality is incorporated into a 

dynamic model of malaria transmission to study its 

effects.  

 

II. MODEL FORMULATION 
We formulate a basic model to study the 

effects of income inequality on the malaria 

transmission dynamics by considering the human and 

mosquito populations. The human population is 

divided into 3 main groups; the low income, middle 

income, and high income earners. The low income 

group is made up of susceptible, exposed, infected, 

treated and recovered denoted by             and 

   respectively. Similarly, the middle income group 

is made up of susceptible, exposed, infected, treated 

and recovered denoted by             and    

respectively. Also, the high income earners is made 

up of susceptible, exposed, infected treated and 

recovered individuals denoted by             and 

   respectively. The total human population is 

denoted by       
                     All 

recruitment of new individuals are assumed to join 

one of the susceptible compartments at a rate   , for 

humans and    for mosquitoes, unless otherwise 

stated, the subscript   is assumed to vary from 1 to 3 

. The reason for chosen different recruitment rates for 

each susceptible class is in line with the report in 
[54], which states that individuals with improved 

economic conditions have lower birth rates. All 

human individuals can exit their current 

compartment due natural death, which can occur at a 

rate   . We assumed that susceptible humans with 

low income can move to susceptible class with 

middle income through interaction with susceptible 

individuals with high income at a rate proportional to 

linearly decreasing function of the inequality-level 

measured by the Gini index   given by     
           is constant. We also assumed that 

individuals from susceptible class with middle 

income can move to the susceptible class with low 
income due to lose of jobs/income that might happen 

due to some circumstances such as the emergence of 

Covid-19, see for instance [22]. We modeled this 

transition as an increasing function of the Gini index 

given by            is constant. During 

economic growth developing countries may 

encounter difficulties in their transition from the 

middle income group to the high income group and 

will remain in the middle income group for several 

years, [21]. For this reason and also to reduce the 

complexity of the model equations, we assume that 
there is no transition from the middle income group 

to the high income group. Susceptible humans can be 

infected through the bite of infectious mosquito at a 

rate       after which they move to the respective 

exposed compartments. The rate       is the force of 

infection and it assumed to depend on the average 

number of mosquito bites  , effect of personal 

protection against malaria,   , the number of 

sporozoite per mosquito   , the average number of 

mosquito per human host  , as well as the 

transmission probability from infectious mosquito to 

human given that there is contact   . We model the 

force of infection by  

   
       

     
 

where              The effect of personal 

protection is incorporated into the force of infection 

using  

                                (2.0) 

where           represents the 
proportion of ITNs coverage and efficacy of ITNS 

respectively,           represents minimum and 

maximum transmission rates respectively. We 

further assumed that          and       
   to account for the fact the higher the income, the 

higher the possibility of purchasing items required to 

reduce contacts with mosquitoes. The implication of 

this assumption is that          and       
    The personal protection formula given in 

equation (2.0) is slightly different from the one used 

in [1] due to incorporation of ITNs efficacy,    is 

incorporated. Strictly speaking, bed-nets are 

generally used indoors and at certain times of the 

night, however early and outdoor biting by 

mosquitos have been reported in literature, see for 

instance [9, 56], hence, we follow the assumption 

made in [1] that even if the entire host population 

used fully efficient bed-nets            , the 

transmission can only be reduced to a minimum 
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value         Likewise, if nobody uses bed-nets 
      , transmission will be at its maximum level. 

We assume that exposed humans who 

survives the latent period becomes infectious at the 

   and move to the corresponding infectious 

compartment. Members of the infectious classes are 

either treated at a rate    and enter the respective 

treatment class of treated infectious, or they may 

recover at a rate    without medication and enter the 

corresponding class of recovered humans   , or die 

from the disease at a rate   . Members of the 

treatment compartments can recover or die from the 

disease at the rates           respectively, where 

      , represents modification parameter to 

account for reduced death rate in the presence of the 

disease,     ,    measures the potency of the drug 

in reducing the disease-induced death of infectious 

humans, [13]. We assume that humans with 

high-income can afford high-quality drugs which 

might be expensive. Hence, the difference in the 

value of this parameter. Individuals in the recovered 

compartments can lose immunity and join the 

respective susceptible class at a rate     We assign 

weights      to each of the three income groups and 

using these weights we calculate         , and    

using the Lorenz curve reported in [37],  

       
 

  

            
   

        (2.1) 

 In fact equation (2.1) comprises of the product of 

two Lorenz curves 

 

        
 

  

       (2.2) 

                
   

    .  (2.3) 

 We assumed that                  
                       
The mosquito population is divided into two 

compartments, susceptible and infectious, which are 

denoted by      , respectively, with a total 

population given by         . We assumed 

that susceptible mosquitoes are recruited by birth at a 

fixed rate     and this population is decreased by 

infection, following effective contacts with infected 

humans, at a rate      , given by  

   
                              

     
 

and death which can occur at a rate           

where    is natural death, and the death rate when 

in contact with ITNs given by              . 

The parameter    represents the probability that a 

bite on human from a susceptible mosquito leads to 

infection of the mosquito,     
  

  
  The parameter 

group     also models the effect of reduced 

infectiousness of the middle and the high income 

groups. The Schematic description of the model is 

given in  Figure 1 and the model equations are given 

by (2.4) and the description of the model parameters 

is given on Table 1.  

 

Table  1: Model parameters and their descriptions.  

  Parameter   Description 

   Average daily biting rate on man by a single mosquito Time    

   Probability of transmission of infection from infected humans to susceptible mosquitoes, 

Dimensionless 

   Recruitment rate into the     susceptible human group through birth or immigration, Time    

    Probability of transmission of infection from infected mosquitoes to susceptible humans, 

Dimensionless 

    Human natural death rate, Time    

  Number of mosquitoes per human host, Dimensionless 

   Efficacy of drugs in the treatment of the     infectious humans’ group, Dimensionless 

   Proportion of ITN usage, for the     humans’ group, Dimensionless 

   Disease induced death rate for the     infectious humans’ group, Time    

   ITN efficacy for the     humans’ group, Time    

   Recovery rate, for the     infections humans’ group, Time    

   Rate at which expose human become infectious, for the     expose humans’ group, Time    

   Average number of sporozoite per mosquito, Dimensionless 

   Constant of proportionality, Dimensionless 

   Constant of proportionality, Dimensionless 

   Modi cation parameter to account for reduced death rate for the     infections humans’ group, 
Dimensionless 

   Measures the potency of the drug in reducing the disease, induced death rate for the     treated 
humans’ group, Dimensionless 

   Treatment rate for     infectious humans’ groups, Time    
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     Maximum transmission rate, Time    

   Rate at which individuals in the     recovered humans group loses immunity, Time     

     Minimum transmission rate, Time     

   Recruitment rate into mosquito’s population mosquitoes, Time    

   Death rate of mosquitoes Time     

    ITNs induced death rate for mosquitoes Time     

   Weight of the     humans’ group, Dimensionless 

  Gini index, Dimensionless 

 

 
   

  
                                  

 
   

  
                                  

 
   

  
                    

 
   

  
                 

      
   

  
                 

  
   

  
                 

     
   

  
                        

       
   

  
                        

       
   

  
                        

       
   

  
                        

       
   

  
                        

       
   

  
                        

      
   

  
                        

       
   

  
                        

      
   

  
                        

 
   

  
               

 
   

  
            (2.4) 

 

 

2.1  Basic Properties of the Model 

Theorem 1  Let the initial condition be                                          . Then 

the solution of model (2.4) with the given initial condition will remain positive for any future time    . 

To prove Theorem 1 we recall the second equation of model (2.4) 
   

  
                     

      

  
 

                             So that  

          
 

 
   

  
 
                                

 
                      

Similarly, it can be shown that the other state variables                                  

              for      Thus, all solutions of the model (2.4) are positive for all non-negative initial 

conditions, as required.  

Lemma 1  The closed set                             
             

 

  
    

  

  
   

with           , is positively-invariant and attracting for the model (2.4)  

 PROOF. By adding the first fifteen equations, and the remaining two equations of the model (2.4) we have  

 

   

  
           

               

   

  
        

 

respectively. The rest of the prove is similar to the proof of Lemma 1 of [30, 28]. Hence, model (2.4) is well-posed 

mathematically and epidemiologically in   and it is suffices to study the dynamics of the model in    see [30, 
28].  
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Figure  1: Schematic diagram of the model showing transfer into and out of different compartments and the 

corresponding transfer rate. 

   

III. DISEASE FREE EQUILIBRIUM POINT (DFE) AND REPRODUCTION NUMBER 

 Model (2.4) has a DFE given by         
    

    
    

    
    

    
    

  

  
                         

  

  
      

     The associated non-negative matrix   (of new infection terms) and the matrix   (of the transition terms) 

are given, respectively, by;  
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respectively, where                                                        
     The dominant eigenvalue of      is  

    
                 

              
                   

                   
         

                
  

We define the reproduction number in relation to the DFE as  

        
  

  
              

                   
                   

         

                
   

 

IV. BACKWARD BIFURCATION 
The phenomenon of backward bifurcation, a situation where a DFE co-exists with a stable endemic 

equilibrium point when the reproduction is less than unity has been observed in many epidemiological models 

such as [30, 31]. We now investigate the condition under which bifurcation will occur in model (2.4) by choosing 

   as the bifurcation parameter. We calculate the critical value of this parameter which makes        as  

   
  

  
                

  
            

                   
                   

         
  (4.1) 

 We obtained eleven eigenvalues of the Jacobian matrix of model (2.4) evaluated at the DFE and at      
  as  

                                             
             

The remaining eigenvalues are the roots of a sextic polynomial whose coefficients are all positive and non 

vanishes. Thus, we have one eigenvalue with magnitude zero, and all the remaining eigenvalues have negative 

real parts. We let                                                            

                     Further more, let                be the left hand sides of model (2.4). The 

components of the right     , and the left eigenvectors             corresponding to the zero eigenvalue are  
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 Note that                                                                                  
 3 3 3 3 3− 9 3 3 3>0. The bifurcation coefficients,   and  , are given, respectively, by  

 

      
             

    

     
 

        

  
   

      
         

    

     
 

                         

  
   

 

where  

 

                                                                    
 

                     
                                       

    
  

                             
    

                                                              

                               

 

The components of the right eigenvectors are all positive while the sign of the components of the left eigenvectors 

depends on the sign of     which is a free variable. If we choose       , then          , and the 

remaining components of the right eigenvector are all positive except    whose sign is unknown. We write 

     
    

 , where   
    

 are given by  

 

  
  

                                         

           
                 

  
  

                                            

           
                 

 
                                       

           
                 

 

We simplify the bifurcation coefficient   to get            Thus, we state the following, 

 

Theorem 2  Model (2.4) will under go backward bifurcation at        if  

          
 

 Note that the bifurcation is forward if     , this will happen if there no disease-induced death rate and 

     . This means that even in the absence of a disease-induced death rate, backward bifurcation cannot be 

ruled out. Note that       when there is perfect income inequality      , hence, in the absence of 

disease-induced death rate and the presence of perfect income inequality, backward bifurcation will not occur in 

our model but can occur in the presence of imperfect income inequality         and absence of 
disease-induced death rate.  

 

V. ENDEMIC EQUILIBRIUM POINT: SPECIAL CASES 
 In this section we wish to find the condition under which the equilibrium point of model (2.4) exist with the 

disease classes non-zero. We let the endemic equilibrium point be denoted by 

      
     

     
     

     
     

     
   , we consider two special cases;   

    • Model (2.4) with disease induced death rate set to zero.  

    • Model (2.4) with disease induced death rate set to zero and          .  

  

5.1  Model with disease induce death rate zero 

 Assuming that the disease induce death rate is zero, then   
   

        

  
 .To find the equilibrium point, we set 
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the right hand side of model (2.4) to zero and the we expressed each equilibrium value in terms of   
   as shown in 

equations (5.1),(5.2) and (5.3). Finally we obtained a single equation involving only   
   given in equation (5.4). 
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The factors    
        

        
         and    

           have all positive coefficients, thus by 
Descartes rule of sign, non of them have any positive root. Hence, the positive roots of equation (5.4) are the 

positive roots of the quintic  

     
        

        
        

        
         (5.5) 

 

We are unable to determine the signs of          but we find that          . Therefore, we have at 

least one sign change in the coefficients of the quintic given in equation    . Hence, by Descartes’ rule of sign, 
equation (5.5) has at least one positive root. Note that each of the terms in systems (5.1) to (5.3) is positive. So that 
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for each positive root of equation (5.5) the existence of positive equilibrium values of other state variables is 

guaranteed. Thus, we state the following;  

Theorem 3  Model (2.4) with disease induced death rate set to zero has at least one endemic equilibrium point 

whose existence does not necessarily depend on the reproduction number     , moreover, the number of endemic 

equilibrium points is same as the number of positive roots of the quintic given in equation (5.5). 

 
The implication of Theorem 3 is that, the classification of humans into various epidemiological groups considered 

in this report may lead to multiple steady states that are not typical of many malaria models. This is because 

backward bifurcation can still occur even when the disease induced-death rate is set to zero. 

 

5.2  Endemic Equilibrium point: Special Case 2 

In this subsection, we wish to find the endemic equilibrium point in a situation where the disease-induced death 

rate is zero and that susceptible individuals with low income do not join the susceptible individuals with middle 

income and vice-versa              . By following a procedure similar that in subsection ??, we find that 

the equilibrium point of model (2.4) with                  depends on the positive roots of the cubic  

       
        

        
      (5.6) 

 where,  

 
             

                
                   

                     
                              

 

                         
   

   
      Note that     , and      if         We state the following 

results  

Theorem 4  Model (2.4) with disease induced death rate set to zero and            , has  

    1.  At least one and at most three endemic equilibrium points if          

    2.  Zero or two endemic equilibrium points if       .  

  

To prove the first part of Theorem 4, we note that       , if        and                

since the leading term is positive. Thus, by intermediate value theorem, a positive root of       exist. By 

considering the signs pattern of the coefficients of      , we find that there is at least one sign change and at most 
three sign changes. The results follows from Descartes’ rule of sign. To prove the second part, we find that there 

are only two possibilities for the signs pattern of the coefficients of       for         These are two sign 

changes and one sign preservation or three signs preservations and no sign change. Hence, from Descartes’ rule of 

sign the number of positive roots are either 0 or two. 

 

VI. NUMERICAL SIMULATION 
We conducted numerical simulation of model (2.4) by first assigning weights to each income group as 

                      , for low, middle and high income groups respectively. The other parameter 

values as given on Table 2. The results of the simulations are presented on Figures 2, 3 and 4 using the initial 

conditions indicated. The results in Figure 2 are for the three different groups of susceptibles using different values 

of the Gini index. It can be seen that over a small period of time, smaller income inequality (smaller values of   ) 

will result in higher growth of the susceptible with low income. The negative impacts of inequality manifest 

themselves in the long run where we notice a high growth rate for susceptible individuals with low income. Since 

this group contains the lowest income earners, this implies that high income inequality will lead to an increase in 

the number of people that finds it difficult to afford personal protection against malaria and its treatment.  
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Figure  2: Numerical simulation of model three (2.4) for different susceptible humans using the initial condition 

                                                                                      
                                        and the parameter values given on Table with the various 

values of Gini index as shown. 

 
As for susceptible with middle and high incomes, it can be seen from the middle and the third panels of 

Figure 2 that the lower the inequality, the higher the growth of the population being simulated. The dynamics in 

the middle panel of Figure 2 might be explained by the fact that when the Gini index is high, more individuals 

from susceptible group 2 will move to susceptible group 1.  

 

Table  2: Parameter values used in the simulation and their sources.  

   Parameter   Value  Source 

   0.1991 [60] 

   0.83 [12] 

                             Assumed 

         [12] 

               [12] 

  8 [31] 

   Variable Assumed 

   Variable Assumed 

                               Assumed 

                          Assumed 

                        [12] 

                       [12] 

   3 Assumed 

   0.0005 Assumed 

   0.0005 Assumed 

   Variables Assumed 

   Variables Assumed 

   Variable Assumed 

     0.9 [46] 

                              [46] 

     0.0696 [46] 

   6000 Assumed 

   0.04 [12] 

    0.0995 [31] 
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                          Assumed 

  Variable Assumed 

   

 
Figure  3: Numerical simulation of model three (2.4) for different susceptible humans using the initial condition 

                                                                                      
                                        and the parameter values given on Table with the various 

values of Gini index as shown. 

   

 
Figure  4: Numerical simulation of model three (2.4) for different susceptible humans using the initial condition 

                                                                                      
                                        and the parameter values given on Table with the various 

values of Gini index as shown. 

 

From the first and the second panels of 

Figure 3 it can be seen that the higher the number of 

people who become infected, the longer it takes for 

the disease to be eradicated. From the third panels of 

Figures 3 and 4 one can say that the values of the Gini 
indexes used do not affect the number of infections or 

treated individuals with high income. From the first 

and second panels of Figure 4 one can see that the 

number of individuals in the treatment compartments 

does not vary much for the different Gini indexes 

over a small period of time. As time progresses, the 
results become similar to those shown in Figure 3. 
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The results indicate that the policy of countering 

growing income inequality will be beneficial to the 

population in line with the work in [43]. Reducing 

income-inequality is not only beneficial to 

population growth but helps in the number of malaria 

cases and hence, the number of people being 

hospitalized. In addition to the disease-induced death 

rate, backward bifurcation can also appear as a result 
of the movement of susceptible individuals with low 

income, to susceptible individuals with middle 

income.  

 

VII. CONCLUSION 
In this report, we formulated a deterministic 

mathematical model of malaria transmission by 

dividing the total human population broadly into 

three based on income level. We calculated the 
reproduction number and found the condition under 

which backward bifurcation may occur in the model. 

Our analysis indicates that even without a disease 

induce-death rate, backward bifurcation may occur in 

the model. The numerical simulation conducted 

shows that widening income inequality will increase 

malaria cases and the number of people being 

hospitalized.  
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