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ABSTRACT
The paper considers the robust recursive stochastic algorithm for identification of multivariable Hammerstein 
model with a general static nonlinear block in polynomial form and a linear block described with multivariable 
ARMAX (Autoregressive Moving Average with Exogenous Variables) model. It is assumed that there is a priori 
information about the distribution class to which a real disturbance belongs. Such description of disturbance 
allows the presence of outliers in observations. Design of recursive algorithm, in this paper, based on robust 
statistics and Newton – Raphson method. The Newton – Raphson method requires that the loss function should 
be twice differentiable. Huber loss function, based on robust statistics, has just first derivative. The problem can 
be overcome with the pseudo – Huber loss function which has the derivatives of arbitrary orders and which 
behaves similarly as Huber loss function. In this paper the Huber loss function is used for first derivative of 
functional while pseudo - Huber loss function is used for second derivative of functional. That is essence of 
modification of Newton – Raphson method. The main contributions of the paper are: (i) Design a new algorithm 
for identification of multivariable nonlinear systems; (ii) The convergence analysis.
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I.
II. INTRODUCTION

Multivariable systems represent an 
important class of practical systems [1]. The 
examples are thermal power plants and distillation 
columns. Designing of regulators for such processes 
requires their mathematical models. From the 
investigations point of view identification theory is 
vibrant [2-4]. A great deal of attention is dedicated 
to identification of multivariable stochastic systems 
[5,6]. The key role of process modelling has a nature 
of disturbance. Most frequently it is supposed that 
disturbance has Gaussian distribution. Practical 
research showed that this assumption not justified 
[7]. Namely, in population of observations there are 
rare large observations (outliers). Owing that fact it 
is imperative to design recursive identification 
algorithm which has minor sensitivity to presence of 
outliers. The main tool for design of such algorithms 
is a robust statistics [8-9]. Using this theory it is 
possible to get robust recursivealgorithms.

Review of recent result in robustindustrial 
process identification is given in reference [10] 
where the different probabilistic methods are used 
for outlier modelling. The concept of influence 

function [11] also can be used in robust estimation. 
This concept is considered in references [12, 13]

Robust estimation is relevant for different 
fields: (i) outliers detection based on data mining 
perspective [14, 15]; (ii) machine learning [16, 17]; 
(iii) signal processing [18]; (iv) principal component 
analysis [19].

Robust identification and prediction of 
multivariable systems are considered in [20 – 22]. 

In this papera new robust algorithm is 
derived. Namely, the robust identification is based 
on Huber loss function depending on the most 
unfavourable density of probability of disturbance. 
This function has only derivatives of first order. The 
Huber function (derivative of Huber loss function) is 

not differentiable in two points  k


  and  k


  

where k  is parameter of the Huber function. From 
that fact it follows that Huber loss function is not 
applicable to second order methods. (for 
example,the Newton – Raphson algorithm, which is 
considered in this paper). In reference [23] the 
problem has been overcome by upper bound for 
Fisher information. In this paper it is used pseudo - 
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Huber loss function [24 – 26] which has derivatives 
of arbitrary order. 
In this paper is proposed modified Newton – 
Raphson algorithm in which Huber loss function is 
used for the first derivative of functional while for 
second derivative of functional the pseudo - Huber 
loss function is used. The algorithms has gain matrix 
which explicitly depends on the second derivative of 
pseudo - Huber loss function.

The convergence analysis of given 
algorithm is based on martingale theory [27] and 
theory of passive operators [28].

The main contributions of the paper are:
(i) Design of new robust recursive algorithm, 
for identification of multivariable Hammerstein 
model, based on modified Newton – Raphson 
method.
(ii) The convergence analysis of algorithm.

The paper is organized as follows. Section 2 
describes the multivariable Hammerstein model of 
the system. In section 3 is considered derivation of 
algorithms based on Huber loss function and pseudo 
– Huber loss function. Section 4 considers 
convergence analysis of robust algorithm and 
behaviour of algorithmis considered in section 5 
(Simulation study). The concluding remarks are 
given in the last section.

III. MULTIVARIABLE NARMAX MODEL
Let us suppose that the system is described by the nonlinear multivariable ARMAX model with r – 

dimensional input and p – dimensional output. 

       
1 1 1

k k kq q q  

 A y B f u C w (1)

where  
1qA  and  

1qB  and   
1qC are matrix polynomials and 

1q

 denotes the shift – back  operator 

 
1

1n nq x x


 . Order of polynomials  

1qA ,  
1qB  and   

1qC  are

 

 

 

1 1
1

1 1
1

1 1
1

...

...

...

n
n

m
m

l
l

q q q

q q q

q q q

  

  

  

   

  

   

A I A A

B B B

C I C C (2)

where  1,2,...,i i nA  are r x r matrices,  1,2,...,i i mB  are r x p matrices and  1,2,...,i i lC are r 

x r matrices. The stochastic disturbance kw  is a martingale difference in relation to thenondecreasing family 

of 


 - algebras  nF .

Function  kf u in model (1) is a nonlinear vector function and is introduced in [23].

       
1 2

1 2, ,...,
Tr

k k k r kf u f u f u 
 

f u
  ,   

 
r

k Rf u
(3)

The  
i

i kf u  1,2,...,i r
 are a nonlinear functions of a known basis ( s ,...,, 21 ).

       1 1 2 2 ...
j j

i i i i i i i
i k k k n n kf u d u d u d u      (4)
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where
i
jd  1,2,..., ;    1,2,..., ji r j n   are unknown parameter.

We will introduce

 max jj
s n

(5)
From relations (4) and (5) we have

 

 

 

 

     

     

     

1 1 1 1 1 1 1
1 1 1 2 2

2 2 2 2 2 2 2
2 1 1 2 2

1 1 2 2

...

...

...

k k k s s k
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k

r r r r r r r
r k k k s s k

f u d u d u d u

f u d u d u d u

f u d u d u d u
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  
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   

     
    

   

   
        

⋮ ⋮

f u

(6)
where some matrix elements, according to relation (5), are equal to zero.

1

2

0

  ,   1,2,...,

0

i

i
i

r
i

d
d

i s

d

 
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⋱
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(7)
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⋮
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(8)
From relations (7) and (8) it follows

 

 

 
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1 1

2 2

  ,   1,2,...,

i i k

i i k
i i k
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





 

 
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 
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⋮

D u

(9)
Using relation (9) one can get

   
1

s

k i i k
i

f u D u

(10)

For  i ku we have
      ,   d 1,2,...,d

i k i k dq m


  u u (11)

From relations (2), (10) and (11) it follows that

         

     

     

1
1 1 1 1 2 1 1 2 1 1

1 2 2 1 2 2 2 2 2 2
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... ...

...

k k k m k m
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s s k s s k m s s k m

q
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  

     
 
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 

   
 

B f u B D u B D u B D u

B D u B D u B D u

B D u B D u B D u
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  

   (12)
Now we will introduce the vector

       

       

0
1 2 1 1 1 2 1

2 1 2 1 1

, ,..., , , ,..., ,

,..., ,..., ,..., , ,...,

T T T T T T T
k k k k n k k k m

T T T T T T
k k m s k s k m k k l

     

     

    





x y y y u u u

u u u u w w

 

    (13)
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and matrix of parameter

  



1 2 1 1 2 1 1 1 2 2 2 2 1 2

1

, , , , ,..., , , ,..., ,..., , ,..., ,

,...,

TM
n m m s s m s

l

 A A A B D B D B D B D B D B D B D B D B D

C C
(14)

Using (13) and (14) we have

 
0TM

k k k y x w (15)
Let us introducethe matrix

 

 

 

0

0

0

0

0

T

k
T

k k
T

k

 

 

   

 
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 

⋱

x

I x

x



(16)
where the symbol   denotes the Kroneckerproduct.

Further we will introduce operator "vec" as the operator that generates a column vector by setting the 
columns of the matrix one below the other.

From (14) we have
 Mvec  (17)

Now model (15) has a form
0

k k k k y w  (18)

In the above equation matrix 
0
k  depends from the immeasurable quantity  1, 2,...,i i k k k l   w . The 

standard action in identification is to replace iw with the estimated prediction error ke . Now we have

     

       

1 2 1 1 1 2 1

2 1 2 1 1

, ,..., , , ,..., ,

,..., ,..., ,..., , ,...,
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k k k k n k k k m

T T T T T T
k k m s k s k m k k l

x
     

     

    





y y y u u u

u u u u e e

 

    (19)
Now matrix of observation has a form

0

0

T
k

k
T
k

 

 

 

 
 

⋱

x

x (20)
and prediction error is

1k k k k e y   (21)
and will be used for definition of identification criterion.

IV. ROBUST RECURSIVE STOCHASTIC ALGORITHM

In this paper we will suppose that the only distribution class to which the stochastic disturbance kw belongs 
is known. The general description of such class is

  : 1   ,   is symmetricP P P N G G


     (22)

where  0,1   is the contamination degree and  0,N  as a zero-mean Gaussian distribution with a 
covariance matrix  . The distribution (22) can describe the presence of outliers in observations.

We will assume that the components of vector 
1 2....T p

k k k kw w w 
 

w are independent. Using Huber 
methodology [8] it is possible to find the least favourable probability density on a class (22) 
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 

 
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*
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1 exp  ,   
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k
iii

i k
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


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    (23)

The relation between the contamination degree 


and the parameter 
ik
 of Huber function is 

 
 

 
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
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
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
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(24)

Intensive simulations [29] show that the 


 move up to 0.2 and  2,4ik

 . The best performance is 

accomplished for 3ik

 .

Let us define the next functions

   
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e
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The component of           the vector kw , are independent and the least favorable probability density of stochastic 
disturbance is 

   
* *

1

p
i

k i k
i

p p w


w
(26)

By using maximum likelihood methodology it is possible to define Huber loss function. 
   

*log p  x x   ,  
1: pR R   (27)

From (21) and (27) it follows that identification criterion is. 

    kJ E  e (28)

where E  is mathematical expectation operator.  
In this paper we consider recursive minimization of criterion (28) by applying the Newton – Raphson algorithm. 
First we introduce the empirical functional for relation (28). 

   
1

1 k

k i
i

J
k



  e
(29)

The Newton – Raphson algorithm has a form. 

   
12

1 1 1k k k k k kk J k J
 



  
      
   

    (30)
As in [20] from (29) it follows that

   k kk J
 

    e (31)
The next result will be of interest. 
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Result 1: [20]. Let us define
mRx , the vector function  

nRy x  and real function  
1f Ry . Then
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From (25) – (27) it follows
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From (31) and Result 1 we have

 
 

T
kk

k
k

e



  

 

ee
e (33)

By using relations (21) one can get
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On the other hand from relation (32) it follows that
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is Huberfunction.
From (31), (33), (34) and (35) it follows that
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From relation (36) it follows that Huber`s function 
 

i
 

 is not differentiable in the two points  
ik
 and 

 
ik


 . It means that the function
  

 is only first order differentiable and it is impossible to find second 

derivative of  kJ  , i.e.  
2

kJ  which is need for Newton – Raphson method. Because we consider a 
smooth version of Huber loss function, the pseudo - Huber loss function which has a derivative of all degree [24 
– 26]. 
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In our case the pseudo - Huber`s loss function has a form

     
2 2 2ln

1
1,2,...,

i i i i i i i
ph k ke k k e k

i p

  





 
     

 

 (38)
The pseudo - Huber`s loss function is

       
1 1 2 2 ... p p

ph k ph k ph k ph ke e e e      (39)
Empirical functional for that case has a form

   
1

1 k
ph
k ph i

i
J

k


  e
(40)

As in relation (35) we have

 

 

 

 

1 1

2 2

ph k

ph kph k

k

p p
ph k

e

e

e







 

 

 
  


 

 

  

⋮

e
e

(41)
Where.

   
2 2

1,2,...,

i i
i k
ph

i i
k

k e

k e

i p





 



 (42)

From relation (40), similarly as in relation (37) on can get. 
   1

ph T
k k k ph kk J

 
    e (43)

where 

 

 

 

 

1 1

2 2

ph k

ph k
ph k

p p
ph k

e

e

e







 

 

 

  

 

 

  

⋮

 e

The second derivative of empirical functional (40), by using relation (43), is

      
2

1
1 1

1 1k k
ph T T
k k k ph i k ph i i

i i
J

k k 

 

         e e
(44)

For large 
i

 the prediction errors ie  are approximately independent and matrix  ph i e  is diagonal matrix. 

Let us introduce    ph i i  e N e  . From relation (44) it follows that 

   
2

1
1

k
ph T
k k k i

i
J

 



   N ie
(45)

Where 
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 

  

  

1 1 0

0

ph i

i

p p
ph i





 

 

 

 

 

 
 

⋱

e

N e

e
(46)

  
 

   

3

3/2
2 2

1,2,...,

i
i i
ph k

i i
k

k
e

k e

i p









 
 

 

 (47)
In what follows it will be used modified version of Newton – Raphson algorithm (30)

   
12

1 1 1
ph

k k k k k kk J k J
 



  
      
   

    (48)
Let us introduce 

 
12

1
ph

k k kk J





  
 

P (49)
From relations (30), (37), (48) and (49) it follows that

 1
T

k k k k k
    P e (50)

By using relations (44) and (49) one can get

   
1 1

1
1

k
T T

k k i i k k k k
i

P 





     P N e N e
(51)

Now it will be used matrix inversion lemma [30]

   
11 1 1 1 1    

   A BC A A B I CA B CA (52)
with compatible matrix dimensions of matrices A, B and C.
From (51) it follows that

 
11

1
T

k k k k k





  
 

 P P N e (53)
Let us denote

 
1   ,   ,  T

k k k k


  A P B C N e  (54)
Known facts from matrix theory are

   
1 11 1 1 1  ,  k

    

 A P AB B A (55)
From last facts we have 

         

       

1 11
1 1

1 11 1
1 1

T T
k k k k k k k k k

T T
k k k k k k k k

 


 

 
 

 

  

    
 

I N e P N e I N e P N e

N e I N e P N e P

  

  
(56)

By using relations (51) – (59) we finally have relation for matrix gain

 
11

1 1 1
T T

k k k k k k k k k k




  
   
 

   P P P P N e P (57)
Relations (50) and (57) represent modified Newton – Raphson algorithm for parameter estimation. 
Remark 1. In relation (22) it is given general form of class of distributions. Very often, in practice, it is used 
Tukey`s class of distributions [31]

       11 0, 0   ,  0,1P N N       2Σ

where  0,N iΣ 1,2i  is the normal distribution with zero mean and the covariance matrix
 1,2i i Σ and 1 2≪Σ  .
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Remark 2. We will now show another form of the algorithm (50) and (57). Second derivative of functional 
 

phJ   is

        
2 ph T T

k k k k k kJ E trE


      N e N e
(58)

Near the minimum of functional  
phJ   is k ke w  and relation (58) becomes

          
2 ph T T

k k k k k kJ trE tr E E


      N w N w
(59)

The   kE N w  cannot be calculated analytically and, owing that, we introduce approximation for second 
derivative of pseudo – Huber loss function. Let us introduce

1 ,

0 ,
1,2,...,

i i
ki

a

w k

otherwise
i p





 
 



 (60)
and

 

 

 

1 0

0

a k

a k
p
a k

w

w





 

 

 

 
 

⋱N w

(61)
Further is

     k a kE E N w N w M (62)
From last relation it follows that 

      

 
   

*

2

1 10

2 1 2 1 2 1
22

i

i i i i i
i a k a k k k

k i i
i ik k
L

i i

m E w w p w dw

w we d k




 

 
 

 





  

    
      

   




(63)

The function  
i
L   is a Laplace function for which exists table of values. Matrix M has a form

1 0

0 p

m

m

 

 

 

 
 

⋱M

(64)
and second derivative of functional, based on (59)

      
2 a T T

k k k kJ trE E


      M M
(65)

where is    
ph aJ J 

Empirical functional of  
2 aJ


   is

 
2

1
1

k
a T

k k k
i

k J
 



   M
(66)

As for algorithm (51) and (57) is obtained
11

1 1 1
a a a T T a
k k k k k k k k k




  
   
 

P P P P M P   (67)
where 

 
12

1
a a
k k kk J






  
 

P (68)
Similarly as for relation (51) for parameter estimate we have next relation
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 1
a T

k k k k k
    P e (69)

Relation (67) and (69) represent second form of recursive algorithm. Such algorithm is considered in [21].
The explicit form of the algorithm considered in this paper is 

Robust algorithm

 Tukey class of distributions
       1 21 0, 0   ,  0,1P N N       

 

2 2
11 21

1 2
2 2
1 2

2 2
1 2

0 0
  ,  

0 0

  ,  1,2,...
p p

i i i p

 

 

 

   

   
 
   

   
   



⋱ ⋱

≪

 

 Prediction error

1
ˆ

k k k k e y  

 Matrix gain

 
11

1 1 1
T T

k k k k k k k k k k




  
   
 

   P P P P N e P    ,  0 gP I
   ,   

1g≫

 

 

 

1 1 0

0

ph k

a k

p p
ph k

e

e





 

 

 

 

 

  

⋱N e

  
 

   

3

3/2
2 2

1,2,...,

i
i i
ph k

i i
k

k
e

k e

i p









 
 

 



 Parameter estimate
 1

T
k k k k k
    P e   ,  0  0

 

 

 

 

1 1

2 2

k

k
k

p p
k

e

e

e







 

 

 

  

 

 

  

⋮

 e

 
,

sign ,

1,2,...,

i i i
k ki i

k i i i i
k k

e e k
e

k e e k

i p



 



 


 




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V. CONVERGENCEANALYSIS

The convergence analysis of the algorithm (50) and (57) is based on martingale theory [27].  We 

assume that kw  is a martingale- difference sequence with respect to an increasing sequence of


 - fields 
 :kF k Z


 defined on the underlying probability space  , ,F P . We shell require the following 

conditions to hold.
A) Hypotheses for stochasic disturbance

(A1) kw is a sequence of martingale difference with symmetric probability distributionfunction

(A2)
 

2 2
1sup k k

k
E F 


  w 1..pw

(A3)The zeros of  
1det qC  lie outside the closed unit disc

B) Hypotheses for nonlinearfunction  

(B1) The function    is odd and continuous everywhere

(B2) The function    is uniformly bounded

C) Hypotheses for pseudo - Huberfunction

(C1) The function   
i
ph


   , 

1,2,...,i p

 are even bounded functions

(C2) Elements of matrix  kN e  is uniformly bounded

 

 

 

1 1 0

0

ph k

k

p p
ph k

e

e





 

 

 

 

 

  

⋱N e

satisfay the condition     0,i i
ph ke


 

  ,  
1,2,...,i p

(C3)       
1 1

1 1k k p k kE F q


 

 
 ̃N e C  

  , k k 
̃ ̃ 

  

   

   

11 1 1
1

1 1
1

1 1
1

0

0

k k

p k k pp
k k

q
q

q






 



 



 



 

 
  

 

 

̃

̃

̃

 

  

 

C
C

C

where   
1 1

1

i

k kq 



̃C  
  ,  

1,2,...,i p

 is the i-th row of the matrix  
 

1 1
1k kq 



̃C  
 and

      
1 1

1 1

ii i i
k k ph k kq E e F 

 

 
̃C  

  ,  

1,2,...,i p

   0,i
   



Vojislav Filipovic. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 12, Issue 2, (Series-I) February 2022, pp. 47-66

www.ijera.com                                DOI: 10.9790/9622-1202014766                                 65 | P a g e

D) Hypotheses for conditional mathematical exception for trace of matrix gain kP

 
1

1
a
k k kr E tr F


 P

(D1)    
1 1

1 1
a a T
k k k p k k kr r tr q



 

 
  ̃    C

liminf   ,   . .1a
kk
r w p



 

E) Hypotheses for generalized strictly positive real conditions
(E1) There exists the strictly passive operator H such that

     
1 1 1 1

1
1
2k k p k kq q



   

 Hz C z C z z 

where      
1 1

1 1k k kq E F 


  C z e

 ,  1k k k ̃z  

F) Hypotheses about the persistent excitation condition (F1). There exist constans 
1c 

, 1pk


   such 
that 

 

 
1

min

log
lim 0

c a
p k

k
k

k r









P

Now we will prove following lemma.
Lemma: Let us consider the model (18) – (21) and algorithm (50) and (57) subject to the assumption (A3), (C1) 
– (C3) and (D1). Then

 

 1 log

T
k k k

c a
k p k

tr
k r






 
 P

  ,  

1c 

, 

1pk




  ,  

. .1w p

Proof: From relation (53) we have
 

1 1
1

T
k k k k k
 


P P N e   (70)

Let ki is the i-th row of the matrix k . Using relation (70) it follows that

     
1 1 1
1

i i T i i T
k k ph k ki ki k ph k k ki kie I e 
  



  
  

 
 

P P P P    

(71)
From relation (71) one can get

  
1 1
1det det det i i T

k k ph k k ki kie
 



 
 

 
 

 P P I P
(72)

The eigenvalues of matrix   
i i T
ph k k ki kie


 P

 are solution of equation

  det 0i i T
ph k k ki kie 

 
 

 
 

 P I
(73)

The solutions of equations are

  1 2 3 ,  0i i T
ph k ki k ki pe    


      P

(74)
Owing the relation (74) we have

     det 1i i T i i T
ph k k ki ki ph k ki k kiI e e 

  
  

 
 

   P P
(75)

By using relations (72) and (75) it follows that
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  
1 1

1
1

det det
det

i i T k k
ph k ki k ki

k

e

 






 

P PP
P (76)

Let us consider

   
1

1

k
T

k k k i i
i

r tr tr



 
   

 
 P N e

(77)
Prediction error has a form

 
1 1

1 1k k k k k k kq 

 
    ̃ ̃e y C w    (78)

From relation (77) and conditions of lemma (C3) and (D1) one can get

       
1 1

11
1 1

k k
T T a

k i i i k p i i i kk
i i

E r F tr E tr q r


 



 

   
     

   
 

̃      N e C
(79)

Using assumption (D1) it follows that

 1liminf  E k kn
r F




 
(80)

and consequently
liminf   ,   . .1kk

r w p


 
(81)

Based on condition (C1) – (C3) it follows that it can be found 1pk


   for which

     
11 1

1

i
i i

p k k ph kk q e

 


 




̃C  

  ,  

1,2,...,i p

(82)
From last relation it follows that

    
1 1

1p p i i kk q
 

 


̃C N e  

(83)
Using relations (79) and (83) we have

  
1 1

1
1

k
T a

k p k p i i i p k
i

r k tr q k r
  

 





 
  

 


̃    C
(84)

Let matrix kP  has d x d dimensions. Let us notice that

   
1 1 1

max
1

det
d

d
k i k k

k
 

  



 P P P
(85)

Further we have

   
1 1

max
1

d

k k k k
k

r  
 



  P P
(86)

where k   is eigenvalue, with max  being the maximal eigenvalue
From last two relations it follows that

 
1/1det
d

k kr 

 P (87)
Using relation (84) it follows that

  

 

  

0 0
loglog

T T
k k k k k k k k

cc a
k k k k kp k

tr tr
rk r



 

 

 
   P N e P N e

From relations (76) and (87) we have
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       

 

   

0 0

1

10 0
0

0

1

det1 1
1

1 1
1 1 det

1

log log

det det
logdet log det

  ,  . .1
1 log det

k

k

i i TT d
ph k ki k kik k k k

c c
k k k k ik k

Pp p
c ck k

cc
i k k i k kk k P

c

c
k

etr
r r

dxd d
x

pd w p
c







 

  

  



 

   





 




  



 

  

   PP N e

P P
P P

P (88)

In relation (88) two facts are used
1

0det 1  ,  for k k k

  P (89)
1det   ,  . .1w p


 P (90)

From relation (47) one can get

  sup 1i i
ph ke




  ,  
1,2,...,i p

(91)
For that case

 

1 0

0 1
k

 

 

 

  

⋱N e

(92)
By using condition (C2) and relation (92) it is possible to conclude that

 k 0 N e I
Let us define

        1 2

1 2

 ,    ,    kS S S

S S S

      

 

k k= 0 N e I 0 N e I N e I

Now from (88) it follows that

     

  

0 0 1

0 2

, ,

,

log log

log

T T
k k k k k k k k

c c
k k S k k Sk k

T
k k k k

c
k k S k

tr tr
r r

tr
r

 

 





 

  

 



   

 

P N e P N e

P N e

From last relation we have

    

0 2 0, log log

T T
k k k k k k k

c c
k k S k kk k

tr tr
r r

 

 

   
   P N e P

(93)
From relations (84) and (93) follows proof of lemma   
Now we will formulate main result of the paper.
Theorem: Consider the model (18) – (21) and the algorithms (50) and (57) subject to the assumptions of the 
lemma and assume further that the following hypotheses are satisfied : (A1) – (A2),  (B1) – (B2),  (E1) and (F1)
Then

 ˆlim 1k
k

P


  

Proof: Introducing the Lyapunov stochastic function 
T

k k k kV  ̃ ̃ P  we obtain using (51)
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   

     

1
1 1

1
1 1 12

TT T
k k k k k k k k k k

T T T T T
k k k k k k k k k k k

V 

 



  

      
   

 

̃ ̃

̃ ̃ ̃

     

        

P e P P e

P e e P e (94)
From relation (53) we have

 
1 1

1
T

k k k k k
 


  P P N e (95)

From last relation it follows that

     
1 1

1 1 1 1 1 1 1 1

TT T T T
k k k k k k k k k k k k k k kP V

 

       
    
 

̃ ̃ ̃ ̃ ̃ ̃        P N e N e (96)
Using relations (94) and (96) one concludes that

           1 1 1 12
T TT T T T

k k k k k k k k k k k k k k kV V
   

   ̃ ̃ ̃          N e e e P e (97)
Using conditions (A1) – (A2) , (B1) and (D1) of theorem it follows that

   

    

 

    

 

   

 

1 1
1 1 1

1

1 1
1 1 1

1

log log log

2

log log

T

k k p k k k kk k
kc a c a c a

p k p k p k

T
T T

k k k k k k k k k
kc a c a

p k p k

qV VE F
k r k r k r

q
E F

k r k r



  

 

 

  



 

 



 
 

   

  

 
 

   

  

̃ ̃ ̃

̃ ̃

      

        

C

C e P e

(98)

From condition (B2) of theorem we have

         
2

max
T T T T

k k k k k k k k k k k kk tr


         e P e e P P (99)
Where

 
2

sup ,k
k

k


 
  
 

 e
(100)

Now from relations (98) and (99) it follows that

   

 

 

     
 

 

1
1

1 1 1 1
1 1 1 1

2

log log log

1
2 log

T

k kk k
kc a c a c a

p k p k p k

T
k k k

k k p k k k k c a
p k

V VE F
k r k r k r

tr
q q k

k r

  

 







   

  

 
 

   

  

 
 

 
 

̃

̃ ̃ ̃

 

 

       

P
C C

(101)
By using assumption (E1) of theorem and property of passive operators we have

       
1 1 1 1

1 1 1 1 1
1

12 0
2

k T

k i i i i p k k k k n
i

S q q k


   

   



 
   

 
 


̃ ̃ ̃ ̃         C C

 , 
 0,nk   (102)

Let us define the quantity

   
  ,  

log log
k k

k k kc a c a
p k p k

S VT R R
k r k r
 

  

(103)
Using (101) – (103) one concludes

 
 

 
1 1 log

T
k k k

k k k c a
p k

tr
E T F T

k r


 
 

 P

(104)
From result of Lemma and relation (104) it follows that

*lim   ,  . .1kn
T T w p




(105)
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By using relation (105) we have 
*lim   ,  . .1kn

R R w p



(

*T
 and 

*R
are finite constants) and one can get

 

 

 

   

 

2 211
min

1
min

log log log

T
k k kk k k

k c a c a c a
p k p k p k

k

tr
R

k r k r k r
  









  

̃ ̃̃ ̃ PP

P

  

(106)
From assumption (E1), relations (103) and (105) and last relation follows the proof of theorem  

VI. SIMULATION STUDY
In this paper we consider properties of robust recursive algorithm, for estimation of MIMO NARMAX model, 
on the simulation level. In what follows we will consider two inputs and two outputs model

       
1 1 1

k k kq q q  

 A y B f u C w
where

 
1 1 1

1

1 0 0.3 0.4
0 1 0.65 0.7

q q q  
   

   
   

   

A I A

   
1 1 1

1

0.8 0.5
0.35 0.95

q q q  
 

 
 
 

B B

   
1 1 1

1

1 0 0.58 0.41
0 1 0.75 0.85

q q q  
   

   
   

   

C I C

The   ,  1,2,3i i D matrices have a form

1 2 3

1 0 0 0 0.35 0
  , =   , = 

0 1 0 0.5 0 0.5
     


     
     

D D D

The vectors     ,  1,2,3i k i  u are

   
 

 

 
 

 

2 31 11

1 2 32 2 32 2
  ,    ,  

k kk
k k k

k k k

u uu
u u u

   
 

      
   

 
   

  u u u

The nonlinear black is

   
 

   

31 1
3

3 3 2 32 2 21

0.35

0.5 0.5

k k

k k
i

k k k

u u

u u u

 
  
 

 
 

f u D u

and unknown parameter

   1 1 1 2 1 3 1, , , ,
TM
 A B B D B D C

By using above matrices one can get that parameter

 
0.3 0.4 0.8 0.5 0 0.25 0.28 0.25 0.58 0.41
0.65 0.7 0.35 0.95 0 0.475 0.123 0.475 0.75 0.85

TM    

 
    



For our example 
0

0

T
k

k T
k

 
  

 


x

x
where

     1 1 1 2 1 3 1 1, , ,T T T T T T
k k k k k k    

 
 

x y u u u ,e  
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1k k k k e y  

The components of input signal 
1 2,k k ku u 

 
u  are random variables which are uniformly distributed in an 

interval (-2 , 2).
The stochastic disturbance has non – Gaussian distribution

     
2 2
1 21 0, 0,i

k i i i iw N N        ,  
1,2i 

where  
2,N m   is Gaussian distribution with mean m and variance 

2


. In the simulations is used  
2
1 1i     ,   

2
2 100i    ,   1,2i 

i    ,   1,2i 
In all cases it is assumed that the parameter of Huber function

3ik

    ,  1,2i 

Parameters     ,  1,2,...si k
i D , for known matrix 1D  as supposed in the paper, can be determined in the 

following way

     

     

1 1
2 1 1 2

1
1 1

k k k

s sk kk

 







D B B D

D B B D

In the our example it is necessary to determine, according with form  
TM

 , matrices 2D  and 3D . When 
r p

 (model with r – inputs and p – outputs) the matrix 1B  is rectangular  and it is necessary to use a pseudo 

inverse matrix 1
B . For rectangular matrix 1B  with p x r dimensions 

p r
 the pseudo inverse matrix is

 
1

1 1 1 1
T T



B B B B
Now matrices can be determined as

     

     

2 1 1 2

1 1

k k k

s sk k k









D B B D

D B B D
In this paper we compare two algorithms. The first one is algorithm designed for the case when disturbance has 
Gaussian distribution (linear algorithm). The second algorithm is designed for case of non – Gaussian 
distribution of disturbance (that is algorithmproposed in this paper.
The linear extended least squares algorithm (ELS) is

 

   

1 1

1 1 1

  ,   
TG G G G G G G

k k k k k k k k

T TG G G G G G G G G
k k k k k k k k k

 

  

   

   
  

   

  

P e e y

P P P P e I P

G
kφ

The algorithm proposed in this paper (robust extended least square- RELS) is
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The estimation error 
G
k  for linear algorithm (extended least squares) is

2
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And for algorithm in this paper (robust extended least squares)
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In the next figures (Fig.1, Fig.2) the comparison between linear and robust algorithm is presented. From figures 
it is possible to see that behaviour of robust recursivealgorithm is superior in comparison to linear algorithm. 
The superiority increases with increase in contamination degree
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Fig.1Comparison of robust and linear algorithms for  = 0.05
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Fig.2Comparison of robust and linear algorithms for  = 0.2
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VII.
VIII. CONCLUSION

The paper considers design of recursive 
algorithm by using Newton – Raphson method. It is, 
also, assumed that observations have outliers. The 
key ingredient in systems identification is 
identification criterion (loss function) and for 
Newton – Raphson method loss function must be 
second order differentiable. Huber loss function has 
only first derivative. Owing that fact it is introduced 
pseudo – Huber loss function which has derivatives 
of all degrees and which behaves similarly as Huber 
loss function. The recursive algorithm is based on 
both functions. The first derivative in method is 
based on Huber loss function while second 
derivative is based on pseudo – Huber loss function. 
The convergence analysis is performed for given 
robust recursive algorithm. Further investigation 
will be related to identification of time varying 
nonlinear systems.  
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