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ABSTRACT 

We investigate the time series properties of the Bitcoin trading volume and compare them with the properties of 

realized volatility. The Hurst exponent of the trading volume time series is greater than 1/2, which indicates that 

the time series is persistent. The generalized Hurst exponent of trading volume is not constant, indicating that the 

time series is multifractal. We find that the trading volume and realized volatility have similar time variations in 

the Hurst exponent.  We also explore the properties of incremental time series and find that both the time series 

of trading volume and realized volatility exhibit a value smaller than 1/2, indicating that the time series are anti-

persistent. We conclude that trading volume and realized volatility are correlated in time to some extent and have 

similar time series properties. 
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I. INTRODUCTION 

In empirical finance, volatility which 

expresses the magnitude of variation in asset time 

series, is of great importance for financial risk 

management, which is necessary to avoid huge 

losses in the future. Various volatility estimation 

techniques have been developed. For instance, the 

generalized autoregressive conditional 

heteroscedasticity (GARCH) model [1] is widely 

accepted as a volatility model that successfully 

captures notable properties of asset time series, such 

as volatility clustering, classified as stylized facts [2]. 

The GARCH model is further extended to capture 

more asset properties and mimic real variations in 

asset time series, e.g. [3-7]. 

There also exists a model-free approach 

called the “realized volatility” [8,9], which is 

constructed as the sum of squared intraday returns 

and is proven to approach integrated volatility as the 

number of intraday returns increases. Realized 

volatility is shown to be promising by an analysis 

that investigates the returns standardized by realized 

volatility. Provided that the return time series𝑟𝑡  is 

given by 𝑟𝑡 = 𝜎𝑡𝜖𝑡 , where 𝜎𝑡  is the standard 

deviation and 𝜖𝑡 is the standard Gaussian random 

number, the standardized returns 
𝑟𝑡

𝜎𝑡
 should be the 

standard Gaussian random number, or equivalently, 

the distribution of the standardized returns should 

become gaussian.  Using realized volatility as a 

proxy of 𝜎𝑡 , we find that the distributions of 

standardized returns are well approximated by the 

standard Gaussian distribution, which indicates that 

realized volatility is suitable as a proxy for real 

volatility [10-16]. 

Since the volatility time series has the 

property of volatility clustering, it exhibits long-time 

correlations, which results in Hurst exponents 

greater than 1/2. However, the time series of the 

volatility increment has a Hurst exponent smaller 

than 1/2, indicating that the time series is anti-

persistent [17-19]. 

To some degree, the trading volume 

explains the volatility time variation [20]. The study 

of the GARCH model, including the trading models, 

finds that the GARCH parameters become small 

when the trading volume is included in the model 

[21-25]. However, later studies argue that trading 

volume does not fully explain the effect of GARCH 

volatility [26-31]. 

In this study, we focus on the trading 

volume of Bitcoin and investigate its time-series 

properties. If the trading volume and volatility are 

correlated with each other in time, we can observe 

similar properties for both time series. We 

investigated the multifractal properties of the time 

series using a multifractal detrended fluctuation 

analysis (MDFA). The MDFA developed in [32] can 

be applied to nonstationary time series and has been 

widely accepted as a tool to explore the multifractal 

properties of time series. We investigate the 

multifractal properties of both trading volume and 

volatility using MDFA and clarify whether both have 

RESEARCH ARTICLE                                              OPEN ACCESS 



Tetsuya Takaishi. International Journal of Engineering Research and Applications 

www.ijera.com 

ISSN: 2248-9622, Vol. 12, Issue 11, November 2022, pp. 24-29 

 

 
www.ijera.com                                   DOI: 10.9790/9622-12112429                                  25 | P a g e  

               

 

 

 

 

similar time-series properties. 

The remainder of this paper is organized as 

follows. Section 2 introduces the MDFA; section 3 

describes the data used; section 4 presents the 

results; and section 5 presents the conclusions. 

II. MULTIFRACTAL DETRENDED 

FLUCTUATION ANALYSIS 

The MDFA developed in [32] is described 

as follows. First, we determine profile 𝑌(𝑖) from the 

time series 𝑥(𝑖) we considered.  

𝑌(𝑖) = ∑ (𝑥(𝑘) − 〈𝑥〉)𝑖
𝑘=1 ,        (1)                       

where 〈𝑥〉 is the average of 𝑥(𝑖). We then divide 

profile 𝑌(𝑖) into 𝑁𝑠 non-overlapping segments of 

equal length 𝑠,where 𝑁𝑠 is defined by 𝑁𝑠 ≡ 𝑖𝑛𝑡 (
𝑁

𝑆
). 

In general, the length of the time series is not always 

a multiple of 𝑠,and a short time period may remain at 

the end of the profile. To utilize this part, the same 

procedure is repeated, starting from the end of 

profile 𝑌(𝑖). Therefore, we obtain 2𝑁𝑠 segments. 

Next, using the segments, we calculated the 

variance 𝐹2(𝜐, 𝑠). For the forward direction 𝜐 =
1, … , 𝑁𝑠, we obtained 

𝐹2(𝜐, 𝑠) =
1

𝑠
∑ (𝑌[(𝜐 − 1)𝑠 + 𝑖] − 𝑃𝜐(𝑖))2.𝑠

𝑖=1     (2) 

Similarly, for the backward direction: 

𝜐 = 𝑁𝑠 + 1, … ,2𝑁𝑠,  

𝐹2(𝜐, 𝑠) =
1

𝑠
∑ (𝑌[𝑁 − (𝜐 − 𝑁𝑠)𝑠 + 𝑖] −𝑠

𝑖=1

𝑃𝜐(𝑖))2.
(3) 

Here, 𝑃𝜐(𝑖) is the fitting polynomial to remove the 

local trend in segment 𝜐 and we use a cubic-order 

polynomial. 

 Finally, we averaged over all segments and 

obtained the q-th order fluctuation function 

𝐹𝑞(𝑠) = {
1

2𝑁𝑠
∑ (𝐹2(𝜐, 𝑠))

𝑞/22𝑁𝑠
𝜐=1 }

1/𝑞

.           (4) 

𝐹𝑞(𝑠) is expected to behave as a power law function 

as 

𝐹𝑞(𝑠) ∼ 𝑠ℎ(𝑞).                                                     (5) 

The scaling exponent ℎ(𝑞) is called the generalized 

Hurst exponent. The Hurst exponent is given by  

ℎ(2) . When ℎ(𝑞)  is constant for all  𝑞 , the time 

series is said to be “monofractal”. However, ℎ(𝑞) 

varies as a function of 𝑞 , and the time series is 

“multifractal”. Using this ℎ(𝑞) , we explored the 

multifractal properties of the time series. 

III. DATA 

In this study, we use Bitcoin Tick data (in 

dollars) traded on Bitstamp from September 14, 

2011, to September 1, 2021, and downloaded from 

Bitcoincharts. From the tick data, we construct daily 

returns 𝑟𝑡defined by the logarithmic price difference, 

as 

𝑟𝑡 = 𝑙𝑜𝑔𝑃𝑡 − 𝑙𝑜𝑔𝑃𝑡−1,                              (6) 

where  𝑃𝑡is the daily price at time t. Fig.1 displays 

the time series of the daily return constructed by 

Eq.(6). 

We use realized volatility for the volatility 

time series. Fig.2 shows the time series of daily 

realized volatility constructed with 5-min intraday 

returns. We recognize that there are periods in which 

large realized volatilities are clustered, called 

volatility clustering. Volatility clustering generates 

long-term correlations in a volatility time series. The 

incremental time series of logarithmic realized 

volatilities exhibits a Hurst exponent smaller than 

1/2, which indicates that the time series is ant-

persistent and is also called rough volatility [17-19]. 

 

Fig.1 Daily return of Bitcoin. 

Fig.2 Daily realized volatility of Bitcoin. 

IV. RESULTS 

To investigate the time variation of 

multifractal properties, we employed the rolling 

window method. We set the window size to one year 

and performed the MDFA for the data in that 

window. Then, we determined the generalized Hurst 

exponent ℎ(𝑞)  by fitting the results of the 

fluctuation function to the power-law function of 

Eq.(5). We calculated ℎ(𝑞) using 𝑞 = [−5,5] .To 

avoid the possibility that the fluctuation function 

diverges at a large 𝑞 [33], we restrict 𝑞 to this region. 



Tetsuya Takaishi. International Journal of Engineering Research and Applications 

www.ijera.com 

ISSN: 2248-9622, Vol. 12, Issue 11, November 2022, pp. 24-29 

 

 
www.ijera.com                                   DOI: 10.9790/9622-12112429                                  26 | P a g e  

               

 

 

 

 

Next, we shifted the window to one day and repeated 

the process. 

We analyze the time series of  the 

logarithmic realized volatility (log-RV) and 

logarithmic trading  volume (log-Vol).  Figs.3-4 

display the time series of log-RV and log-Vol. It was 

found that the values of log-Vol before 2014 were 

smaller than those after 2014. This smaller log-Vol 

can be attributed to the early market stage, at which 

Bitcoin trading was inactive. 

Fig.5 shows the time evolution of the Hurst 

exponent ℎ(2). We also plot the ℎ(2) of the return 

time series in Fig.5. The Hurst exponents of log-RV 

and log-Vol are mostly greater than 1/2, which 

indicates that both time series are persistent, and 

their time variations are similar. However, the Hurst 

exponent of returns fluctuates around 1/2, which 

indicates that the time series is close to the random 

walk. Before 2014, the Hurst exponent of returns 

was found to be smaller than 1/2, which is 

considered a sign of illiquidity in the early market 

[34-36]. For log-RV and log-Vol, we find smaller 

Hurst exponents in the early market (before 2014), 

and thus log-RV and log-Vol could also be affected 

by illiquidity. 

Fig.6 displays a 3 dimensional (3D) plot of 

the generalized Hurst exponentℎ(𝑞)of log-RV. We 

find that the ℎ(𝑞) is not constant for 𝑞 , which 

indicates that the time series is multifractal, and 

moreover, we also find that the functional form of 

ℎ(𝑞) varies over time. While the values of ℎ(𝑞) in a 

range of 𝑞 = [−5,5]  are mostly greater than 1/2, 

before 2014, at the early market,  ℎ(𝑞) takes smaller 

values than those in other periods. 

Fig.7 shows the 3D-plot of the generalized 

Hurst exponent ℎ(𝑞) of log-Vol. Similar to log-RV, 

ℎ(𝑞) is not constant, showing multifractality, and 

varies over time. While the values of ℎ(𝑞)  are 

mostly greater than 1/2, they are smaller than those 

of log-RV. 

Next, we calculate the Hurst exponent of 

the incremental time series of log-RV and log-Vol. 

Let 𝑥𝑡be a time series at time t.  Then, the increment 

time series 𝑧𝑡  is defined by  𝑧𝑡 = 𝑥𝑡 − 𝑥𝑡−1.  Fig.8 

displays the Hurst exponents of the increment time 

series of log-RV and log-Vol. The Hurst exponents 

of both time series were found to be less than 1/2, 

indicating that the time series were anti-persistent. 

The anti-persistency of log-RV has been known 

previously [17-19]. The Hurst exponents of log-RV 

and log-Vol vary over time. The time variations of 

the Hurst exponents of log-RV and log-Vol exhibit a 

similar variation pattern, which is also evidence that 

the two time series are correlated with each other. 

The Hurst exponents of the incremental time series 

at the early market stage before 2014 were found to 

be smaller than those at other periods, which can 

also be attributed to illiquidity in the early market. 

Fig.3 Time series of logarithmic RV. 

Fig.4 Time series of logarithmic trading volume. 

Fig.5 Hurst exponent ℎ(2)  of log-RV, log-Vol and 

return. 
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Fig.6 3D plot of ℎ(𝑞) of log-RV. 

 
Fig.7 3D plot of ℎ(𝑞) of log-Vol. 

 
Fig.8 Hurst exponent ℎ(2) of increment time series 

for log-RV and log-Vol. 

 Figs.9-10 show ℎ(𝑞) of increment time 

series of log-RV and log-Vol in 3D. It is found that 

ℎ(𝑞)’s of both time series vary with 𝑞, which means 

that the time series have a multifractal property. This 

is consistent with the previous results from Bitcoin 

and a stock return that show increment time series 

are multifractal [19]. 

 
Fig.9 3D plot of ℎ(𝑞) of increment log-RV. 

 
Fig.10 3D plot of ℎ(𝑞) of increment log-Vol. 

V. CONCLUSION 

To investigate the multifractal properties of 

the time series of log-RV and log-Vol, we performed 

the MDFA and obtained the generalized Hurst 

exponent ℎ(𝑞). We find that ℎ(𝑞)’s of log-RV and 

log-Vol vary in 𝑞, indicating that the time series are 

multifractal. The time variations of the Hurst 

exponent ℎ(2) of log-RV and log-Vol are similar to 

each other, which suggests that log-RV and log-Vol 

are correlated in time and supports the view that the 

volatility time variation is explained by trading 

volume to some extent [20-21]. 

We also obtain ℎ(𝑞) ’s of the increment time 

series of log-RV and log-Vol. The Hurst exponent 

ℎ(2)  of log-RV is less than 1/2, and ℎ(𝑞)  is not 

constant in 𝑞 , which indicates that the time series 

has anti-persistence and multifractal properties. 

These results are consistent with those obtained 

previously in [19]. 

While we focus on the trading volume in this 

paper, it might be informative to investigate other 

financial variables such as the number of 

transactions. The number of transactions is also 

found to correlate with the volatility [31]. Thus, it 

could be interesting to examine whether the number 
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of transactions also exhibits the similar time series 

properties to the volatility. 
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