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ABSTRACT 

This paper presents the design of a low-cost, portable robotic arm for American Sign Language (ASL) 

interpretation and sentiment analysis. To mitigate the complexity of communication between the deaf and dumb 

and common beings, a two-way communication and interpretation model has been designed to translate the 

English language into ASL symbols on the robotic arm and ASL into the English language using image 

recognition. Along with translation, the model can also analyse the sentiments of the mute people and has an 

auto-text completion feature for ease of typing, thus improving the entire calibre of interaction and making it 

more human-like. 

Keywords- American Sign Language (ASL); sentiment analysis; two-way communication; 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 07-10-2022                                                                           Date of Acceptance: 18-10-2022   

----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

I. Introduction 
Impairment in hearing and speech is one 

of the most common disabilities worldwide. 

Deafness and dumbness is either congenital or 

acquired. Congenital deafness leads to deprivation 

of hearing by birth, arising due to natural causes. 

Acquired deafness arises from some disease, 

accident or other cases. Deafness is of two types- 

totally deaf and the partially deaf. As per WHO 

reports, in India, almost 63 million people are 

suffering from hearing impairment, majority 

consisting of young children between ages 0 to 14.  

Deaf people communicate in two ways- 

sign language and lip reading. Due to a lot of 

similar sounding words in the English language, 

only 30% of the words in the language can be 

accurately differentiated, even by the most 

experienced lip reader. Sign language is a more 

accurate way for deaf people to communicate 

because they can differentiate words without 

communication. American Sign Language (ASL) is 

a purely visual language, it cannot be written, but 

can be translated. 

Modern technology proposes hearing aids 

to elevate communication difficulties, but when a 

person loses their hearing ability entirely, hearing 

aids are unavailable. Behind-the-ear hearing aids 

are also only helpful with profound hearing loss 

patients. These devices are therefore, not widely 

popular among the deaf and dumb people and 

require improvement in design for various settings.  

In this article, we propose a design of a robotic sign 

language interpreter for the mute people. The 

unique features of the proposed design are: 

1) Low-cost, 3D printed and portable robotic arm 

for translation of the English language into ASL 

symbol. 

2) An image-recognition model to translate ASL 

into the English language, thereby facilitating two-

way communication. 

3) The translating model comes with sentiment 

analysis and text auto-completion feature for faster 

typing in the user interface. 

The proposed setup in its current form can 

translate, ASL letters into English language and 

display on the monitor, and another person who 

does not know ASL can type in the monitor and the 

robotic arm will show the corresponding ASL 

symbol. In addition, the setup can analyze 

sentiments of the mute people and display on the 

monitor. This article discusses the design and 

construction of the proposed system and is 

organized as follows. 

 

II. EXISTING METHODS 
Paper [1] represents an on-screen sign 

language translation system using java NetBeans. 

Due to its high accuracy and lesser time 

consumption, canny edge detection algorithm has 
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been used. This algorithm has better noise 

reduction and clear image detection for future 

processing with lower error-rate and localized edge 

points. Paper [2] presents a virtual sign language 

translator based on gesture recognition. The input 

through camera is recorded, segmented into frames, 

and the recognized symbol is translated into 

corresponding English alphabet. The image 

fragments are passed through multiple filters for 

enhancement and elimination of unwanted 

background noise. After pre-processing, Fourier 

description technique is used to recognize the 

symbols and store in the respective directory. Paper 

[3] exposes a neural network based gesture 

recognition system, that has an accuracy of 100%. 

Only a few gestures have been trained and tested 

using Support Vector Machine machine learning 

technique. Paper [4] reveals a real-time image 

recognition model using Haar features with 

AdaBoost classifier to differentiate between the 

right and left arm and various skin colors. Paper [5] 

shows a sign language interpreter using SciPy to 

perform perceptron technique in neural networks. 

Paper [6] represents the use of ARM CORTEX A8 

processor for implementation and OpenCV for 

image recognition in real-time. Paper [7] presents 

an Indian Sign Language numbers recognition 

system, trained with dataset containing 300 images 

and has a prediction accuracy of 99.56% in 22 

epochs. Paper [8] presents a system that makes use 

of convolutional Neural network for spatial 

features extraction and inception model for sign 

language recognition. Long Short Term Memory 

combined with Recurrent Neural network is used to 

extract temporal features from the input video.  

 

III. PROPOSED METHOD 
The paper proposes an efficient, portable, 

low-cost model for the two-way communication 

system. Currently, the design is composed of three 

Machine learning image recognition models for 

recognizing ASL letters shown to the webcam and 

displaying corresponding English language 

alphabets on the user-interface, which in this case 

is the laptop screen. This completes one-way 

communication between the mute person and the 

common person. 

The other way of communication is 

established when a person, who does not know 

ASL wants to convey a message to a deaf and 

dumb person, he/she can type the English alphabet 

on the keyboard and a 3D printed robotic arm will 

show the corresponding ASL symbol for the letter 

as shown in figure 1. 

 
Fig.1. Block diagram of ASL interpreter 

 

IV. METHODOLOGY 
Implementation of image-recognition 

model: 

The first step is to import necessary 

packages for building the model. The packages 

include pandas, numpy, seaborn, matplotlib, 

tensorflow, keras and sklearn. Once the basic 

packages have been imported, deep learning 

packages are imported after tensorflow gpu has 

been installed using .whl file. 

tf.test.is_built_with_cuda() and 

tf.test.is_built_with_gpu_support() commands are 

used to test if cuda and gpu support have been 

enabled. Another os module is imported to explore 

the dataset used for training the deep learning 

model. Os.listdir(train_dir) is used for checking 

contents of train and test directory. Plt.imshow(a1) 

command is used to check one image in directory 

to confirm if the correct directory has been 

accessed. For each image in the dataset, average 

size of the images is calculated. For loops are used 

to go through each image in training and testing 

directory and normalizing them using pillow. This 

step is optional since we can use OpenCV and in 

experimentation we have higher accuracy. Hence, 

the for loops have been commented. Next, one 

image is accessed from each class like A, B, C, D, 

del, E, F, G, H, I, J, K, L, M, N, nothing, O, P, Q, 

R, S, space, T, U, V, W, X, Y, Z, bearing unique 

labels are in the right directories.  

The next important phase of the image 

recognition model is training the dataset. A 

tensorboard variable is setup to check the training 

epochs of deep learning models. A function is 

created to access all images across all twenty-nine 

classes and a training and test split is created using 

scikit-learn. Using the ImageDataGenerator() 

function, an image data generator is created. Using 

the image_gen.random_transform(), image 

augmentation is added to the existing dataset. Next, 

a model has to be defined for image recognition, 

once the dataset has been cleaned and prepared. 

The flow diagram and detailed explanation of the 

model is shown in figure. Image augmentation 

introduced to the image dataset include the 

rotation, horizontal flip, vertical flip, addition of 

sheer, padding and other such noise inducing 
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operations which may introduce variety into the 

dataset and prevent over fitting on the image data 

and ensure a good validation accuracy for the 

trained model. In addition to pillow, openCV can 

be used to carry out important image processing 

operations such as background elimination and 

sckit-learn can be used to replace image data 

generators by invoking the train test split 

functionality, which would improve the efficiency. 

 

 
Fig.2. Flowchart of image recognition deep 

learning model 

 

The first step is to create Convolutional 

Neural Network of suitable architecture. The 

flowchart for the image recognition model is shown 

in figure 2. The architecture is defined as follows:  

The Sequential model is initialized with the 

following layers: 

1 X Conv2D with 16 filters. 

1 X Conv2D with 32 filters. 

1 X MaxPool2D layer 

1 X Conv2D with 32 filters. 

1 X Conv2D with 64 filters. 

1 X MaxPool2D layer. 

1 X Conv2D layer with 128 filters 

1 X Conv2D layer with 128 filters 

1 X MaxPool2D layer 

1 X BatchNormalization 

1 X Flatten layer 

1 X Densely Packed layer with 52 perceptrons with 

activation function = „relu‟(rectified                                            

linear units) 

1 X Densely Packed layer with 29 neurons(number 

of classification) with “Softmax” Activation 

function. 

Optimizer chosen is „adam‟,‟rmsprop‟ is a suitable 

alternative. 

Loss function is „categorical cross entropy‟. 

Kernel regularizer is „l2‟. 

 

 
Fig.3. Model Summary 

 

An Early stopping variable is created to 

stop model training of suitable accuracy and 

prevent over fitting. The model is compiled and the 

training data is fit. To check the model 

performance, a model performance metrics are 

plotted. The test data is then loaded. The test data 

contains images with the image name as the class, 

to which the image belongs to. In this way, the 

model is tested for accuracy through several trials.   

Implementation of image-recognition model using 

DenseNet 

Import necessary packages such as pandas, 

matplotlib, seaborn, numpy, cv2, sklearn, 

Tensorflow and its sub packages such as 

preprocessing, models, layers, optimizers, 

callbacks and applications. Use the Os module to 

explore the dataset used for training the DL 

module. 

The next step is taking one image in each 

directory to see if the correct directory is chosen. 

Plt.imshow(a1) command is used to check one 

image in directory to confirm if the correct 

directory has been accessed. For each image in the 

dataset, average size of the images is calculated. 

For loops are used to go through each image in 

training and testing directory and normalizing them 

using pillow. This step is optional since we can use 

OpenCV and in experimentation we have higher 

accuracy. Hence, the for loops have been 

commented. Next, one image is accessed from each 

class like A, B, C, D, del, E, F, G, H, I, J, K, L, M, 

N, nothing, O, P, Q, R, S, space, T, U, V, W, X, Y, 

Z, bearing unique labels are in the right directories. 

To monitor the real time training of the 

DenseNet model, tensorboard variable can be setup 

which also helps in the illustration of the flow 

chart. We create a function to access images across 

all 29 classes and using scikitlearn framework, 

training, testing and validation datasets have been 

created. 
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To make sure that the DenseNet model is 

suitable for real time applications, noise is 

introduced into the data set by using the image data 

generator to add rotation, vertical and horizontal 

flip, sheer and padding to every third image in the 

dataset. 

The model architecture is illustrated in figure 4 as 

follows: 

model_d=DenseNet121(weights='imagenet',include

_top=False, input_shape=(64, 64, 3))  

x = model_d.output 

x = GlobalAveragePooling2D()(x) x = 

BatchNormalization()(x) 

x = Dropout(0.5)(x) 

x = Dense(1024,activation='relu')(x)  

x = Dense(512,activation='relu')(x) x = 

BatchNormalization()(x) 

x=Dropout(0.5)(x) 

preds=Dense(29,activation='softmax')(x) #FC-layer 

 

Before trainable parameter optimization: 

Total parameters: 8,632,925 

Trainable parameters: 8,546,205 

Non-trainable-parameters:86,720  

model.compile(optimizer='Adam',loss='categorical

_crossentropy',metrics=['accuracy'])  

After trainable parameter optimization: 

Total parameters: 8,632,925 

Trainable parameters: 1,592,349 

Non-trainable parameters: 7,040,576 

The next step is compiling the model and fitting the 

training data. The model is trained for  total of 50 

epochs. The number of epochs was chosen based 

on the grid search approach. 

 

 
Fig.4. Flowchart of image recognition deep 

learning model using DenseNet 

Implementation of sentiment analysis model     

 

Fig.5. Block Diagram of sentiment analysis 

model 

 

Figure 5 represents the block diagram of 

sentiment analysis model, where, a sentence is 

taken as input either in voice or text format and the 

input text is featurized by creating bag of words 

vector and further processing is done to determine 

term frequency and inverse document frequencies. 

This completes the text processing part of 

sentiment analysis. After the pre-processing, the 

words are passed through the RNN based neural 

network to classify the statement into specific 

sentiments. The detailed process is described 

below. 

Data acquisition-The Data required to 

train a sentiment recognizing neural network can be 

created manually, individual records in the training 

data would consist of the example statement and a 

label representing the sentiment of the statement. 

Data Cleaning, Data Visualization and 

Exploratory Data Analysis- The data can be 

compiled into a data structure such as a dataframe 

by using the pandas library, matplotlib library can 

now be utilized to observe the trends in data such 

as length of the statement associated with each 

sentiment. In data cleaning the primary goal is 

ensure that data has balanced class representation 

and minimize noise in data which will be utilized to 

train the neural network. A heatmap, as shown in 

figure 6, is used to check if there is any noise in the 

data. The heatmap below represents that there are 

no null values or any noise in the data. 

Fig.6.  Exploratory data analysis heatmap 

 

Text Preprocessing- the nltk package can 

be imported, the download shell of nltk provides a 

wide variety of sub packages such as "stop words" 

which helps us featurize the textual data and 
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eliminate the words in a sentence which have no 

impact on emotion.eg: "Hello how are you?" can be 

after being filtered for stop words will be 

transformed into [“Hello”].Punctuations can also 

be eliminated in the preprocessing of text, the 

string package can be utilized to filter out the 

punctuations in a statement. Count Vectorizer-The 

list of words after text preprocessing can now be 

featured by being converted into a bag of words 

vector. Pre-processing functions are used to convert 

each message, represented as a list of tokens 

(lemmas), into a vector that machine learning 

models can understand. The process follows these 

steps: count how many times does a word occur in 

each message (Known as term frequency), weigh 

the counts,  so that frequent tokens get lower 

weight (inverse document frequency), normalize 

the vectors to unit length, to abstract from the 

original text length (L2 norm). Each vector will 

have as many dimensions as there are unique words 

in the data frame. First SciKit Learn's 

CountVectorizer has been used. This model will 

convert a collection of text documents to a matrix 

of token counts. This can be imagined as a 2-

Dimensional matrix, as shown in figure 7, where 

the 1-dimension is the entire vocabulary (1 row per 

word) and the other dimension are the actual 

documents. 

 

 
Fig.7. Frequency of occurrence of words 

 

TF-IDF Transformer-TF-IDF stands for 

term frequency-inverse document frequency, and 

the tf-idf weight is a weight used for retrieving 

information and mining text. The weight is a 

statistical measure to evaluate the importance of 

word in a collection. The importance of the word is 

determined by the number of times of occurrence 

in the document and offset by its frequency in the 

collection.  

TF(t) = (Number of times term t appears in a 

document) / (Total number of terms in the 

document). 

IDF: Inverse Document Frequency is a measure of 

the importance of a term. When Term frequency is 

computed, all terms hold equal importance, 

whereas, certain words like “is”, “that”, “of”, 

“this”, may occur too many times in a document 

but have very little importance in a document. 

Therefore, such frequent terms must be weighed 

down and the rare words  must be scaled up, using 

inverse document frequency.  

 IDF(t) = log_e(Total number of 

documents / Number of documents with term t in 

it). 

TF(t) and IDF(t) will serve to augment the vector, 

which will be fed into a neural network. After 

usage of Countvectorizer and TfIdf. Transformer 

the output will be a sparse matrix, which can now 

be feed into a neural network of suitable 

architecture. The choice of the type of neural 

architecture is dependant on the required 

application, RNN built using LSTMs and GRU‟s 

are a suitable option, but a much more efficient 

approach would be to use the scikit learn‟s 

multinomial naïve bayes classifier, since its 

prediction is based on a ensemble of most probable 

hypothesis rather than considering a single most 

probable hypothesis, sckit learn does include other 

Gaussian classifiers which could also be 

implemented to obtain required functionality and 

serve as a multiclass/binary classifier. 

Implementation of Autocomplete text model 

The first step is to setup custom environment with 

cuda toolkit enabled and required versions  of 

necessary packages such as pandas, numpy, 

seaborn, matplotlib, os, tensorflow and sklearn. 

From online repositories like guttenberg.org a 

novel in .txt format with utf-8 encoding has been 

downloaded. A function is created that finds the 

unique characters in the novel that will be used for 

training the RNN, The functions returns a data 

structure that serves the purpose of a vocabulary, 

which can be used to encode the text. Two 

additional Data structure  

-one dictionary to encode text. 

-one numpy array to decode the encoded text. 

The textual data can be encoded into numerical 

format using the data structures just created. Now, 

a character Dataset is created from tensor 

slices(encoded text)(tensor slices are a data 

structure that can be used to create sequences). On 

the character dataset .batch() function can be used 

to create sequential batches. Before we create a 

RNN model we create a custom loss function to 

replace "categorical crossentropy", the loss 

function created is based on sparse categorical 
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crossentropy with the parameter from_logits set to 

True. 

We now create a RNN model of the following 

architecture. 

The flowchart of the RNN architecture used is 

described below.  The model consists of 

embeddings layer to map the input sequence into a 

numerical array of dimension equal to the 

vocabulary.The next layer consists of GRU (gated 

recurrent units)-output of the GRU takes into 

consideration not just the present input but history 

for previous outputs of the perceptron GRU 

perceptron.Long short term memory units(LSTMs 

can also be used) Finally, we have a dense fully 

connected layer with number of units equal to 

number of possible classification. The custom loss 

function is invoked and adam is used as the 

optimizer. 

The model is trained for a suitable number of 

epochs, which can be determined using the Grid 

search approach. The saved model can be saved, 

the weights of the saved model can be loaded onto 

a newly created model with a different batch size if 

necessary. The model summary is represented in 

figure 8. 

 

 
Fig.8 Model summary 

 

Implementation of translation of English 

letters to ASL using    Robotic arm 

Arduino UNO microcontroller has been 

used to control the rotation of the servo motors, 

which in turn help rotate the fingers of the 3D 

printed robotic arm, to represent the corresponding 

ASL letter. Each micro servo motor requires 5V of 

power supply for operation and the robotic arm 

contains 5 servo motors. Arduino IDE has been 

used to code the instructions for the rotation of the 

micro servos. To supply 5V of power to each servo 

motor, several steps are involved as shown in 

figure 9. The first step is to step down the 220V 

AC main power supply to 12V AC using a 220V-

12V step down transformer. Once, the main power 

supply has been stepped down, a bridge rectifier 

has been used to convert AC to 12V DC power. 

Next, L7805CV, a three terminal a linear voltage 

regulator IC is used to regulate the 12V DC input 

to exactly 5V. Thus, the required power for servo 

motors has been setup. 

 
Fig.9. Circuit diagram for powering Robotic 

arm 

 

Now, each servo motor connected to each 

finger needs to be given instructions of open and 

close when a certain letters on the keyboard is 

pressed. In this project, a left humanoid robotic arm 

has been used, hence, only left hand ASL letters 

can be translated. These letters include A, B, E, F, 

K, W, I, D and L. For each letter, an Arduino code 

has been written to rotate each upto 180, 270 or 

360 degrees, depending on the ASL symbol. 

 

V. RESULTS 
The accuracy and loss plots for each deep 

learning model have been shown in the figures 

below. Figure 10 represents the accuracy and loss 

plots for image recognition model. The image 

recognition model has a prediction accuracy of 

98.46% with an evaluating loss of 0.151217. 

Similarly, Figure 11 shows the image recognition 

model using DenseNet architecture and image 

augmentation. The image-recognition model using 

DenseNet architecture and image augmentation has 

a prediction accuracy of 98.07% with evaluation 

loss of 0.062042. Figure 12 presents the 

recognition of ASL symbol and displaying its 

English Language equivalent. 

 

 

 
Fig.10. Accuracy and loss for plot image-

recognition model 
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Fig.11. Accuracy and loss for plot image-

recognition model using DenseNet architecture 

and image     augmentation 

 

 
Fig.12. Prediction of ASL symbol ‘A’ shown 

 

Table 1 test accuracy obtained for various 

architectures

 
 

From paper [9], the test accuracy of the 

DenseNet architecture model used for recognizing 

Bangladesh Sign Language is 88.6%, as shown in 

table 1. The proposed model has been able to 

improve the efficiency of the model using the same 

architecture upto 98.07% to recognize American 

Sign Language images and convert them to English 

letters. 

The sentiment analysis model was tested with 

several sentences of different emotions and showed 

a prediction accuracy of 93%. The classification 

report for sentiment analysis is shown in figure 13 

along with the test results. The auto-complete text 

model completed the text entered for all words as 

shown in the figure 14. The robotic arm ASL 

symbol translation is shown in figure 15, where 

letters „D‟ and „W‟ are represented in ASL.  

 
 

 
Fig.13. Classification report and test results for 

sentiment analysis model 

 

 
Fig.14. Results for auto-complete text 
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Fig.15. English to ASL letters translation by 

robotic arm representing D and W respectively 

 

VI. CONCLUSION 
Impairment in hearing and speech has 

always been a societal problem. The invention of 

Sign-Language has served as a mode of 

communication for them to be able to integrate into 

society but is still faced with unequal opportunities 

and compromises in society due to a lack of proper 

communication. With fast-growing technology and 

evolution, interference of technical agents is 

undeniable to help the specially challenged people 

to achieve equality among all kinds of people. 

Modern virtual interpreters and onscreen display of 

translated English language into Sign Language 

seem to have mitigated the efficacy of 

communication. In order to build equal 

opportunities for hearing and speech impaired 

community, an effort has been put to design a low-

cost interpreter to translate ASL to English and 

vice versa with a relatively high accuracy and 

sentiment analysis and auto-complete text features. 

This high computational speed model can eliminate 

the requirement of a learned translator and can be 

used widely in educational and medical fields for 

faster communication, thus helping provide quality 

education and information to all people. 

 

FUTURE SCOPE 

To increase the mobility of the entire 

project, raspberry Pi module could be utilized i.e., 

the ML/DL models could be dumped onto the 

raspberry Pi. As an alternative to DenseNet, other 

modern model architectures such as EfficientNet 

and ResNet could be explored. The quality of 

dataset used for training the ML/DL models could 

be enhanced. Currently the project implements grid 

search CV for hyper parameter optimization but 

other heuristic search algorithms such as BFS or 

DFS could be used to better guarantee convergence 

to global minima. 
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