
Dr. Jalaja S, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 12, Issue 10, October 2022, pp. 92-99

www.ijera.com DOI: 10.9790/9622-12109299 92 | P a g e

Robotic Arm for Sign Language Interpretation with

sentiment analysis and auto-complete text features

Dr. Jalaja S
Department of Electronics and Communication, Bangalore Institute of Technology, KR Road, Bengaluru

 Kiruthiga Chandra Shekar
Department of Electronics and Communication, Bangalore Institute of Technology, KR Road, Bengaluru

ABSTRACT

This paper presents the design of a low-cost, portable robotic arm for American Sign Language (ASL)

interpretation and sentiment analysis. To mitigate the complexity of communication between the deaf and dumb

and common beings, a two-way communication and interpretation model has been designed to translate the

English language into ASL symbols on the robotic arm and ASL into the English language using image

recognition. Along with translation, the model can also analyse the sentiments of the mute people and has an

auto-text completion feature for ease of typing, thus improving the entire calibre of interaction and making it

more human-like.

Keywords- American Sign Language (ASL); sentiment analysis; two-way communication;

--- ----------

Date of Submission: 07-10-2022 Date of Acceptance: 18-10-2022

--- ----------

I. Introduction
Impairment in hearing and speech is one

of the most common disabilities worldwide.

Deafness and dumbness is either congenital or

acquired. Congenital deafness leads to deprivation

of hearing by birth, arising due to natural causes.

Acquired deafness arises from some disease,

accident or other cases. Deafness is of two types-

totally deaf and the partially deaf. As per WHO

reports, in India, almost 63 million people are

suffering from hearing impairment, majority

consisting of young children between ages 0 to 14.

Deaf people communicate in two ways-

sign language and lip reading. Due to a lot of

similar sounding words in the English language,

only 30% of the words in the language can be

accurately differentiated, even by the most

experienced lip reader. Sign language is a more

accurate way for deaf people to communicate

because they can differentiate words without

communication. American Sign Language (ASL) is

a purely visual language, it cannot be written, but

can be translated.

Modern technology proposes hearing aids

to elevate communication difficulties, but when a

person loses their hearing ability entirely, hearing

aids are unavailable. Behind-the-ear hearing aids

are also only helpful with profound hearing loss

patients. These devices are therefore, not widely

popular among the deaf and dumb people and

require improvement in design for various settings.

In this article, we propose a design of a robotic sign

language interpreter for the mute people. The

unique features of the proposed design are:

1) Low-cost, 3D printed and portable robotic arm

for translation of the English language into ASL

symbol.

2) An image-recognition model to translate ASL

into the English language, thereby facilitating two-

way communication.

3) The translating model comes with sentiment

analysis and text auto-completion feature for faster

typing in the user interface.

The proposed setup in its current form can

translate, ASL letters into English language and

display on the monitor, and another person who

does not know ASL can type in the monitor and the

robotic arm will show the corresponding ASL

symbol. In addition, the setup can analyze

sentiments of the mute people and display on the

monitor. This article discusses the design and

construction of the proposed system and is

organized as follows.

II. EXISTING METHODS
Paper [1] represents an on-screen sign

language translation system using java NetBeans.

Due to its high accuracy and lesser time

consumption, canny edge detection algorithm has

RESEARCH ARTICLE OPEN ACCESS

Dr. Jalaja S, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 12, Issue 10, October 2022, pp. 92-99

www.ijera.com DOI: 10.9790/9622-12109299 93 | P a g e

been used. This algorithm has better noise

reduction and clear image detection for future

processing with lower error-rate and localized edge

points. Paper [2] presents a virtual sign language

translator based on gesture recognition. The input

through camera is recorded, segmented into frames,

and the recognized symbol is translated into

corresponding English alphabet. The image

fragments are passed through multiple filters for

enhancement and elimination of unwanted

background noise. After pre-processing, Fourier

description technique is used to recognize the

symbols and store in the respective directory. Paper

[3] exposes a neural network based gesture

recognition system, that has an accuracy of 100%.

Only a few gestures have been trained and tested

using Support Vector Machine machine learning

technique. Paper [4] reveals a real-time image

recognition model using Haar features with

AdaBoost classifier to differentiate between the

right and left arm and various skin colors. Paper [5]

shows a sign language interpreter using SciPy to

perform perceptron technique in neural networks.

Paper [6] represents the use of ARM CORTEX A8

processor for implementation and OpenCV for

image recognition in real-time. Paper [7] presents

an Indian Sign Language numbers recognition

system, trained with dataset containing 300 images

and has a prediction accuracy of 99.56% in 22

epochs. Paper [8] presents a system that makes use

of convolutional Neural network for spatial

features extraction and inception model for sign

language recognition. Long Short Term Memory

combined with Recurrent Neural network is used to

extract temporal features from the input video.

III. PROPOSED METHOD
The paper proposes an efficient, portable,

low-cost model for the two-way communication

system. Currently, the design is composed of three

Machine learning image recognition models for

recognizing ASL letters shown to the webcam and

displaying corresponding English language

alphabets on the user-interface, which in this case

is the laptop screen. This completes one-way

communication between the mute person and the

common person.

The other way of communication is

established when a person, who does not know

ASL wants to convey a message to a deaf and

dumb person, he/she can type the English alphabet

on the keyboard and a 3D printed robotic arm will

show the corresponding ASL symbol for the letter

as shown in figure 1.

Fig.1. Block diagram of ASL interpreter

IV. METHODOLOGY
Implementation of image-recognition

model:

The first step is to import necessary

packages for building the model. The packages

include pandas, numpy, seaborn, matplotlib,

tensorflow, keras and sklearn. Once the basic

packages have been imported, deep learning

packages are imported after tensorflow gpu has

been installed using .whl file.

tf.test.is_built_with_cuda() and

tf.test.is_built_with_gpu_support() commands are

used to test if cuda and gpu support have been

enabled. Another os module is imported to explore

the dataset used for training the deep learning

model. Os.listdir(train_dir) is used for checking

contents of train and test directory. Plt.imshow(a1)

command is used to check one image in directory

to confirm if the correct directory has been

accessed. For each image in the dataset, average

size of the images is calculated. For loops are used

to go through each image in training and testing

directory and normalizing them using pillow. This

step is optional since we can use OpenCV and in

experimentation we have higher accuracy. Hence,

the for loops have been commented. Next, one

image is accessed from each class like A, B, C, D,

del, E, F, G, H, I, J, K, L, M, N, nothing, O, P, Q,

R, S, space, T, U, V, W, X, Y, Z, bearing unique

labels are in the right directories.

The next important phase of the image

recognition model is training the dataset. A

tensorboard variable is setup to check the training

epochs of deep learning models. A function is

created to access all images across all twenty-nine

classes and a training and test split is created using

scikit-learn. Using the ImageDataGenerator()

function, an image data generator is created. Using

the image_gen.random_transform(), image

augmentation is added to the existing dataset. Next,

a model has to be defined for image recognition,

once the dataset has been cleaned and prepared.

The flow diagram and detailed explanation of the

model is shown in figure. Image augmentation

introduced to the image dataset include the

rotation, horizontal flip, vertical flip, addition of

sheer, padding and other such noise inducing

Dr. Jalaja S, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 12, Issue 10, October 2022, pp. 92-99

www.ijera.com DOI: 10.9790/9622-12109299 94 | P a g e

operations which may introduce variety into the

dataset and prevent over fitting on the image data

and ensure a good validation accuracy for the

trained model. In addition to pillow, openCV can

be used to carry out important image processing

operations such as background elimination and

sckit-learn can be used to replace image data

generators by invoking the train test split

functionality, which would improve the efficiency.

Fig.2. Flowchart of image recognition deep

learning model

The first step is to create Convolutional

Neural Network of suitable architecture. The

flowchart for the image recognition model is shown

in figure 2. The architecture is defined as follows:

The Sequential model is initialized with the

following layers:

1 X Conv2D with 16 filters.

1 X Conv2D with 32 filters.

1 X MaxPool2D layer

1 X Conv2D with 32 filters.

1 X Conv2D with 64 filters.

1 X MaxPool2D layer.

1 X Conv2D layer with 128 filters

1 X Conv2D layer with 128 filters

1 X MaxPool2D layer

1 X BatchNormalization

1 X Flatten layer

1 X Densely Packed layer with 52 perceptrons with

activation function = „relu‟(rectified

linear units)

1 X Densely Packed layer with 29 neurons(number

of classification) with “Softmax” Activation

function.

Optimizer chosen is „adam‟,‟rmsprop‟ is a suitable

alternative.

Loss function is „categorical cross entropy‟.

Kernel regularizer is „l2‟.

Fig.3. Model Summary

An Early stopping variable is created to

stop model training of suitable accuracy and

prevent over fitting. The model is compiled and the

training data is fit. To check the model

performance, a model performance metrics are

plotted. The test data is then loaded. The test data

contains images with the image name as the class,

to which the image belongs to. In this way, the

model is tested for accuracy through several trials.

Implementation of image-recognition model using

DenseNet

Import necessary packages such as pandas,

matplotlib, seaborn, numpy, cv2, sklearn,

Tensorflow and its sub packages such as

preprocessing, models, layers, optimizers,

callbacks and applications. Use the Os module to

explore the dataset used for training the DL

module.

The next step is taking one image in each

directory to see if the correct directory is chosen.

Plt.imshow(a1) command is used to check one

image in directory to confirm if the correct

directory has been accessed. For each image in the

dataset, average size of the images is calculated.

For loops are used to go through each image in

training and testing directory and normalizing them

using pillow. This step is optional since we can use

OpenCV and in experimentation we have higher

accuracy. Hence, the for loops have been

commented. Next, one image is accessed from each

class like A, B, C, D, del, E, F, G, H, I, J, K, L, M,

N, nothing, O, P, Q, R, S, space, T, U, V, W, X, Y,

Z, bearing unique labels are in the right directories.

To monitor the real time training of the

DenseNet model, tensorboard variable can be setup

which also helps in the illustration of the flow

chart. We create a function to access images across

all 29 classes and using scikitlearn framework,

training, testing and validation datasets have been

created.

Dr. Jalaja S, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 12, Issue 10, October 2022, pp. 92-99

www.ijera.com DOI: 10.9790/9622-12109299 95 | P a g e

To make sure that the DenseNet model is

suitable for real time applications, noise is

introduced into the data set by using the image data

generator to add rotation, vertical and horizontal

flip, sheer and padding to every third image in the

dataset.

The model architecture is illustrated in figure 4 as

follows:

model_d=DenseNet121(weights='imagenet',include

_top=False, input_shape=(64, 64, 3))

x = model_d.output

x = GlobalAveragePooling2D()(x) x =

BatchNormalization()(x)

x = Dropout(0.5)(x)

x = Dense(1024,activation='relu')(x)

x = Dense(512,activation='relu')(x) x =

BatchNormalization()(x)

x=Dropout(0.5)(x)

preds=Dense(29,activation='softmax')(x) #FC-layer

Before trainable parameter optimization:

Total parameters: 8,632,925

Trainable parameters: 8,546,205

Non-trainable-parameters:86,720

model.compile(optimizer='Adam',loss='categorical

_crossentropy',metrics=['accuracy'])

After trainable parameter optimization:

Total parameters: 8,632,925

Trainable parameters: 1,592,349

Non-trainable parameters: 7,040,576

The next step is compiling the model and fitting the

training data. The model is trained for total of 50

epochs. The number of epochs was chosen based

on the grid search approach.

Fig.4. Flowchart of image recognition deep

learning model using DenseNet

Implementation of sentiment analysis model

Fig.5. Block Diagram of sentiment analysis

model

Figure 5 represents the block diagram of

sentiment analysis model, where, a sentence is

taken as input either in voice or text format and the

input text is featurized by creating bag of words

vector and further processing is done to determine

term frequency and inverse document frequencies.

This completes the text processing part of

sentiment analysis. After the pre-processing, the

words are passed through the RNN based neural

network to classify the statement into specific

sentiments. The detailed process is described

below.

Data acquisition-The Data required to

train a sentiment recognizing neural network can be

created manually, individual records in the training

data would consist of the example statement and a

label representing the sentiment of the statement.

Data Cleaning, Data Visualization and

Exploratory Data Analysis- The data can be

compiled into a data structure such as a dataframe

by using the pandas library, matplotlib library can

now be utilized to observe the trends in data such

as length of the statement associated with each

sentiment. In data cleaning the primary goal is

ensure that data has balanced class representation

and minimize noise in data which will be utilized to

train the neural network. A heatmap, as shown in

figure 6, is used to check if there is any noise in the

data. The heatmap below represents that there are

no null values or any noise in the data.

Fig.6. Exploratory data analysis heatmap

Text Preprocessing- the nltk package can

be imported, the download shell of nltk provides a

wide variety of sub packages such as "stop words"

which helps us featurize the textual data and

Dr. Jalaja S, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 12, Issue 10, October 2022, pp. 92-99

www.ijera.com DOI: 10.9790/9622-12109299 96 | P a g e

eliminate the words in a sentence which have no

impact on emotion.eg: "Hello how are you?" can be

after being filtered for stop words will be

transformed into [“Hello”].Punctuations can also

be eliminated in the preprocessing of text, the

string package can be utilized to filter out the

punctuations in a statement. Count Vectorizer-The

list of words after text preprocessing can now be

featured by being converted into a bag of words

vector. Pre-processing functions are used to convert

each message, represented as a list of tokens

(lemmas), into a vector that machine learning

models can understand. The process follows these

steps: count how many times does a word occur in

each message (Known as term frequency), weigh

the counts, so that frequent tokens get lower

weight (inverse document frequency), normalize

the vectors to unit length, to abstract from the

original text length (L2 norm). Each vector will

have as many dimensions as there are unique words

in the data frame. First SciKit Learn's

CountVectorizer has been used. This model will

convert a collection of text documents to a matrix

of token counts. This can be imagined as a 2-

Dimensional matrix, as shown in figure 7, where

the 1-dimension is the entire vocabulary (1 row per

word) and the other dimension are the actual

documents.

Fig.7. Frequency of occurrence of words

TF-IDF Transformer-TF-IDF stands for

term frequency-inverse document frequency, and

the tf-idf weight is a weight used for retrieving

information and mining text. The weight is a

statistical measure to evaluate the importance of

word in a collection. The importance of the word is

determined by the number of times of occurrence

in the document and offset by its frequency in the

collection.

TF(t) = (Number of times term t appears in a

document) / (Total number of terms in the

document).

IDF: Inverse Document Frequency is a measure of

the importance of a term. When Term frequency is

computed, all terms hold equal importance,

whereas, certain words like “is”, “that”, “of”,

“this”, may occur too many times in a document

but have very little importance in a document.

Therefore, such frequent terms must be weighed

down and the rare words must be scaled up, using

inverse document frequency.

 IDF(t) = log_e(Total number of

documents / Number of documents with term t in

it).

TF(t) and IDF(t) will serve to augment the vector,

which will be fed into a neural network. After

usage of Countvectorizer and TfIdf. Transformer

the output will be a sparse matrix, which can now

be feed into a neural network of suitable

architecture. The choice of the type of neural

architecture is dependant on the required

application, RNN built using LSTMs and GRU‟s

are a suitable option, but a much more efficient

approach would be to use the scikit learn‟s

multinomial naïve bayes classifier, since its

prediction is based on a ensemble of most probable

hypothesis rather than considering a single most

probable hypothesis, sckit learn does include other

Gaussian classifiers which could also be

implemented to obtain required functionality and

serve as a multiclass/binary classifier.

Implementation of Autocomplete text model

The first step is to setup custom environment with

cuda toolkit enabled and required versions of

necessary packages such as pandas, numpy,

seaborn, matplotlib, os, tensorflow and sklearn.

From online repositories like guttenberg.org a

novel in .txt format with utf-8 encoding has been

downloaded. A function is created that finds the

unique characters in the novel that will be used for

training the RNN, The functions returns a data

structure that serves the purpose of a vocabulary,

which can be used to encode the text. Two

additional Data structure

-one dictionary to encode text.

-one numpy array to decode the encoded text.

The textual data can be encoded into numerical

format using the data structures just created. Now,

a character Dataset is created from tensor

slices(encoded text)(tensor slices are a data

structure that can be used to create sequences). On

the character dataset .batch() function can be used

to create sequential batches. Before we create a

RNN model we create a custom loss function to

replace "categorical crossentropy", the loss

function created is based on sparse categorical

Dr. Jalaja S, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 12, Issue 10, October 2022, pp. 92-99

www.ijera.com DOI: 10.9790/9622-12109299 97 | P a g e

crossentropy with the parameter from_logits set to

True.

We now create a RNN model of the following

architecture.

The flowchart of the RNN architecture used is

described below. The model consists of

embeddings layer to map the input sequence into a

numerical array of dimension equal to the

vocabulary.The next layer consists of GRU (gated

recurrent units)-output of the GRU takes into

consideration not just the present input but history

for previous outputs of the perceptron GRU

perceptron.Long short term memory units(LSTMs

can also be used) Finally, we have a dense fully

connected layer with number of units equal to

number of possible classification. The custom loss

function is invoked and adam is used as the

optimizer.

The model is trained for a suitable number of

epochs, which can be determined using the Grid

search approach. The saved model can be saved,

the weights of the saved model can be loaded onto

a newly created model with a different batch size if

necessary. The model summary is represented in

figure 8.

Fig.8 Model summary

Implementation of translation of English

letters to ASL using Robotic arm

Arduino UNO microcontroller has been

used to control the rotation of the servo motors,

which in turn help rotate the fingers of the 3D

printed robotic arm, to represent the corresponding

ASL letter. Each micro servo motor requires 5V of

power supply for operation and the robotic arm

contains 5 servo motors. Arduino IDE has been

used to code the instructions for the rotation of the

micro servos. To supply 5V of power to each servo

motor, several steps are involved as shown in

figure 9. The first step is to step down the 220V

AC main power supply to 12V AC using a 220V-

12V step down transformer. Once, the main power

supply has been stepped down, a bridge rectifier

has been used to convert AC to 12V DC power.

Next, L7805CV, a three terminal a linear voltage

regulator IC is used to regulate the 12V DC input

to exactly 5V. Thus, the required power for servo

motors has been setup.

Fig.9. Circuit diagram for powering Robotic

arm

Now, each servo motor connected to each

finger needs to be given instructions of open and

close when a certain letters on the keyboard is

pressed. In this project, a left humanoid robotic arm

has been used, hence, only left hand ASL letters

can be translated. These letters include A, B, E, F,

K, W, I, D and L. For each letter, an Arduino code

has been written to rotate each upto 180, 270 or

360 degrees, depending on the ASL symbol.

V. RESULTS
The accuracy and loss plots for each deep

learning model have been shown in the figures

below. Figure 10 represents the accuracy and loss

plots for image recognition model. The image

recognition model has a prediction accuracy of

98.46% with an evaluating loss of 0.151217.

Similarly, Figure 11 shows the image recognition

model using DenseNet architecture and image

augmentation. The image-recognition model using

DenseNet architecture and image augmentation has

a prediction accuracy of 98.07% with evaluation

loss of 0.062042. Figure 12 presents the

recognition of ASL symbol and displaying its

English Language equivalent.

Fig.10. Accuracy and loss for plot image-

recognition model

Dr. Jalaja S, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 12, Issue 10, October 2022, pp. 92-99

www.ijera.com DOI: 10.9790/9622-12109299 98 | P a g e

Fig.11. Accuracy and loss for plot image-

recognition model using DenseNet architecture

and image augmentation

Fig.12. Prediction of ASL symbol ‘A’ shown

Table 1 test accuracy obtained for various

architectures

From paper [9], the test accuracy of the

DenseNet architecture model used for recognizing

Bangladesh Sign Language is 88.6%, as shown in

table 1. The proposed model has been able to

improve the efficiency of the model using the same

architecture upto 98.07% to recognize American

Sign Language images and convert them to English

letters.

The sentiment analysis model was tested with

several sentences of different emotions and showed

a prediction accuracy of 93%. The classification

report for sentiment analysis is shown in figure 13

along with the test results. The auto-complete text

model completed the text entered for all words as

shown in the figure 14. The robotic arm ASL

symbol translation is shown in figure 15, where

letters „D‟ and „W‟ are represented in ASL.

Fig.13. Classification report and test results for

sentiment analysis model

Fig.14. Results for auto-complete text

Dr. Jalaja S, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 12, Issue 10, October 2022, pp. 92-99

www.ijera.com DOI: 10.9790/9622-12109299 99 | P a g e

Fig.15. English to ASL letters translation by

robotic arm representing D and W respectively

VI. CONCLUSION
Impairment in hearing and speech has

always been a societal problem. The invention of

Sign-Language has served as a mode of

communication for them to be able to integrate into

society but is still faced with unequal opportunities

and compromises in society due to a lack of proper

communication. With fast-growing technology and

evolution, interference of technical agents is

undeniable to help the specially challenged people

to achieve equality among all kinds of people.

Modern virtual interpreters and onscreen display of

translated English language into Sign Language

seem to have mitigated the efficacy of

communication. In order to build equal

opportunities for hearing and speech impaired

community, an effort has been put to design a low-

cost interpreter to translate ASL to English and

vice versa with a relatively high accuracy and

sentiment analysis and auto-complete text features.

This high computational speed model can eliminate

the requirement of a learned translator and can be

used widely in educational and medical fields for

faster communication, thus helping provide quality

education and information to all people.

FUTURE SCOPE

To increase the mobility of the entire

project, raspberry Pi module could be utilized i.e.,

the ML/DL models could be dumped onto the

raspberry Pi. As an alternative to DenseNet, other

modern model architectures such as EfficientNet

and ResNet could be explored. The quality of

dataset used for training the ML/DL models could

be enhanced. Currently the project implements grid

search CV for hyper parameter optimization but

other heuristic search algorithms such as BFS or

DFS could be used to better guarantee convergence

to global minima.

REFERENCES
[1] Amitkumar Shinde, Ramesh Kagalkar,” Sign

Language to Text and Vice Versa

Recognition using Computer Vision in

Marathi,” National Conference on Advances

in Computing (NCAC 2015).

[2] Purva C. Badhe, Vaishali Kulkarni,” Indian

Sign Language Translator Using Gesture

Recognition Algorithm,” IEEE International

Conference on Computer Graphics, Vision

and Information Security (CGVIS 2015)..

[3] Rajesh Mapari, Govind Kharat ,” Hand

gesture recognition using Neural

Network,December,” International Journal

of Computer Science and Network. 2012

[4] S. Wu and H. Nagahashi, “Real-time 2D

hands detection and tracking for sign

language recognition,”8th International

Conference on System of Systems

Engineering.

[5] Geethu G Nath, Anu V S,” Embedded Sign

Language Interpreter System for Deaf and

Dumb People,” International Conference on

Innovations in information Embedded and

Communication Systems (ICIIECS). 2017

[6] Sajanraj T D, Beena M V,” Indian Sign

Language Numeral Recognition Using

Region of Interest Convolutional Neural

Network,” 2nd International Conference on

Inventive Communication and

Computational Technologies (ICICCT

2018).

[7] G.Anantha Rao, K.Syamala, P.V.V.Kishore,

A.S.C.S.Sastry,”Deep Convolutional Neural

Networks for Sign Language Recognition”

[8] Surejya Suresh, Mithun Haridas.T.P,

Supriya M.H.” Sign Language Recognition

System Using Deep Neural Network,”5th

International Conference on Advanced

Computing & Communication

Systems(ICACCS) 2019.

[9] Ragib Amin Nihal,Nawara Mahmood Broti,

Shamim Ahmed Deowan, Sejuti Rahman.

“Design and Development of a Humanoid

Robot for Sign Language Interpretation”

