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ABSTRACT 
The gap factor γ of lattice problems (e.g., SVP, CVP, SIVP etc.) and sampling technique have an importance in 

lattice-based cryptography. In the ideal lattices, we introduce similar problems and expansion factor (like the gap 

factor in lattice problems). We also state some results related to ideal lattices. 

Keywords-Lattice, cryptographic primitive, hash function, expansion factor. 

I. INTRODUCTION 

Public key cryptography has a vital role in our daily 

life. The first idea is DH-Key Exchange Protocol 

introduced by W. Diffie and M. Hellman in 1976[3], 

which is based on the Discrete Logarithmic Problem 

(DLP) over a finite field, sayℤ𝑞 , where 𝑞 is a prime 

number. 

The best and well-known public key encryption 

scheme based on the factorization of integers known 

as RSA was introduced in 1978[17]. ElGamal[4] 

studied public key cryptosystem and a signature 

scheme based on discrete logarithms. Elliptic Curve 

Cryptography (ECC) was introduced independently 

by Miller in 1985[14], and later by Koblitz in 

1987[7] using the Elliptic Curve Discrete 

Logarithmic Problem (ECDLP) over a finite field. 

Most of these problems (factorization of integers, 

DLP and elliptic curve version of DLP) are based on 

number theoretic transformation. 

C. Gentry, C. Peikert and V. Vaikuntanathan[2] 

invented preimage sampleable trapdoor functions. 

They considered the value of error term large 

enough so that many preimages exist. M. Ajitai in 

1996[1] proposed the first worst-case to average-

case reduction for a lattice problem. Ajtai proved 

that solving some NP-hard lattice problems, e.g., 

Shortest Vector Problem (SVP), in the average case 

is as hard as solving the worst-case assumption and 

also formulated the SIS problem. 

However, the applications of cryptography that are 

related to SIS are inherently inefficient due to the 

size of the associated key or public data, 

whichmeans such schemes are essentially unable to 

achieve its maximum potential. In 1998, Hoffstein, 

Pipher and later by J. H. Silverman [6] developed 

the NTRU cryptosystem, which is a milestone in the 

history of cryptography. 

Also, in 2005 [18], O. Regev has proposed the LWE 

problem (Learning with Error) which is based on 

uniform distribution and error distribution) and have 

many applications and also used in public key 

cryptography and CCA secure cryptosystem. The 

secret key 𝑠 (say) is chosen uniformly at random 

from ℤ𝑞
𝑛  and error distribution like a Discrete 

Gaussian Distribution. If we choose the secret key 𝑠 

from the polynomial ring, then we have another 

version of LWE, called R-LWE problem. 

 

II. ALGEBRAICNOTATIONS 

By 𝐿 ⊂ ℝ𝑛 , we mean a lattice. The ring of 

polynomials with integer coefficients is denoted by 

ℤ 𝑥  and the quotient ring of polynomials is denoted 

by 𝑅 =
ℤ 𝑥 

 𝑓 𝑥  
, where 𝑓 𝑥  is monic irreducible 

polynomial of degree 𝑛. Every equivalence class 

 𝑔 +  𝑓  ∈
ℤ 𝑥 

 𝑓 𝑥  
 has a unique representative 

𝑔′ ∈  𝑔 +  𝑓   of degree less than 𝑛. This 

representative is denoted by  𝑔mod𝑓  and can be 

efficiently computed using the standard division 

algorithm. Every polynomial 𝑔 𝑥 = 𝑔0 + 𝑔1𝑥
1 +

⋯+ 𝑔𝑛−1𝑥
𝑛−1 have a representation in an 𝑛-

dimensional vector  𝑔0,𝑔1 ,… ,𝑔𝑛−1 . 
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The ring 
ℤ 𝑥 

 𝑓 𝑥  
 is endowed with the (infinity)norm 

||𝑔 + (𝑓)||𝑓 = ||𝑔mod𝑓||∞. The function ||. ||𝑓  also 

well-defined, that is, it does not depend on the 

choice of representative 𝑔. Further, we consider 𝑞 as 

a prime power of 2, where 𝑞 is a prime number. 

III. LATTICES 

In this section, we define the concept of minimum 

distance in lattices and a brief discussion of q-ary 

lattices. 

Definition: 3.1The 𝑚-dimensional lattice 𝐿 is a 

discrete additive subgroup of 𝑅𝑚 . Formally, 𝐿 is the 

set of all integer linear combinations  𝑥𝑖
∞
𝑖=1 𝑧𝑖 :𝑥𝑖 ∈

ℤ of 𝑛 linearly independent vectors 𝑧1 , 𝑧2,… , 𝑧𝑛 ∈
ℝ𝑚 , where 𝑛 ≤ 𝑚. The set of linearly independent 

vectors 𝑧1 ,… , 𝑧𝑛  is called a basis for the lattice, and 

can be compactly represented by the matrix 𝐵 

having the basis vectors as columns. 

We analogously define the notions of determinant, 

rank and the dual lattice, which are defined in vector 

spaces and also similar results of vector spaces, e.g., 

a lattice have more than one basis, that is, basis are 

not unique in the lattices. Lattices can also be 

represented as 𝐵𝑥: 𝑥 ∈ ℤ𝑛 , where 𝐵𝑥 is matrix-

vector multiplication. The lattice generated by 𝐵 is 

denoted 𝐿 𝐵 . 

The minimum distance in 𝑳 𝑩  

The minimum distance of a lattice 𝐿 𝐵  is the 

minimum distance between any two (distinct) lattice 

vector and equals the length of shortest nonzero 

lattice vector. The minimum distance can be defined 

with respect to any norm. 

For any 𝑝 ≥ 1,the 𝑙𝑝norm of a vectorxis defined by 

  𝑥  
𝑝

=    𝑥𝑖  
𝑝

𝑖

𝑝
 

and the corresponding minimum distance is defined 

as 

𝜆1
𝑝

min = | 𝑥 − 𝑦 |𝑝 : 𝑥 ≠ 𝑦 ∈ 𝐿 𝐵  

= min{||𝑥||𝑝 : 𝑥 ∈ 𝐿(𝐵)\{0}}. 

The notion of minimum distance can be generalized 

to define the 𝑖𝑡  successive minimum (in the 

𝑙𝑝norm) 𝜆𝑖
𝑝
 𝐿 𝐵   as the smallest radius 𝑟 such that 

the closed sphere 𝑆𝑝 0, 𝑟 = {𝑥: | 𝑥 |𝑝 ≤ 𝑟} contains 

𝑖 linearly independent lattice vectors, that is, 

λ𝑖
𝑝
 𝐿 𝐵  = min{ 𝑟:𝑑𝑖𝑚  𝑠𝑝𝑎𝑛 𝐿 𝐵 ∩

𝑆𝑝0,𝑟≥𝑖}. 

Recall that, the infinity norm is defined as 

  𝑥  
∞

= lim
𝑝→∞

  𝑥  
𝑝

= max 𝑥𝑖 . 

Also, the infinity norm is most natural and 

convenient norm when dealing with polynomials. It 

is easy to see that 𝜆1
𝑝
≤ 𝜆2

𝑝
≤,… ,≤ 𝜆𝑛

𝑝
. 

q-array Lattices 

The lattices 𝐿 𝐵  which satisfying the condition 

𝑞ℤ𝑛 ⊆ 𝐿 ⊆ ℤ𝑛  for a prime (possible) integer 𝑞. In 

other words, the membership of a vector 𝑥 in lattice 

𝐿 𝐵  is determined by 𝑥 mod𝑞. 

Definition: 3.2(q-ary Lattices)Given a matrix 

𝑀 ∈ ℤ𝑞
𝑛×𝑚 , where 𝑞, 𝑛 and 𝑚 are positive integers. 

The two 𝑚 dimensional q-ary lattice is defined as 

follows: 

𝐿𝑞 𝑀 = {𝑦 ∈ ℤ𝑚 : 𝑦 ≡ 𝑀𝑡𝑠 mod𝑞} 

for some 𝑠 in ℤ𝑛 . And 

𝐿𝑞
⊥ 𝑀 = {𝑦 ∈ ℤ𝑚 :𝑀𝑦 ≡ 0 mod𝑞}. 

Note that the first q-ary lattice is generated by the 

rows of 𝑀, while the second contains all vectors that 

are orthogonal mod𝑞 to the rows of 𝑀. 

The dual of the Lattices 𝐿 𝐵  in ℝ𝑚 , denoted by 𝐿∗, 

which is the lattice given by set of all vectors 

𝑧 ∈ ℝ𝑚  satisfying  𝑥, 𝑧 ∈ ℤ for all 𝑥 ∈ 𝐿. 

IV. THE GAUSSIAN SAMPLER 

The Gaussian Sampler is the most and well-known 

sampling algorithm in lattice based digital signature 

scheme are defined by 

𝐷𝐿,𝑠,𝑐 = exp  
−𝜋||𝑣 − 𝑐||2

𝑠2
 , 

where 𝑠 > 0 and 𝑐 ∈ ℝ𝑛  are parameters of the 

Discrete Gaussian Sampler akin to its standard 

deviation and mean. Here 𝑣 is the point of lattice 𝐿. 

If 𝐵 = {𝑏1 ,… , 𝑏𝑛 } is the basis of the lattice 𝐿, then 

the Gaussian Sampler depends only on the maximal 

length of 𝐵′𝑠 Gram-Schmidt vectors. 

The Sampler Component 

The quality of a discrete Gaussian sampler is 

determined by a tuple of three parameters 𝑠, 𝜆, and 
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𝜏, where 𝑠 is the standard deviation (adjusts 

dispersal of data from the mean), 𝜆 is the precision 

parameter (controls statistical difference between a 

perfect and implemented discrete Gaussian sampler), 

and 𝜏 is the distribution tail-cut (determines amount 

of the distribution that we would like to ignore). 

Each of these parameters affects the security and 

efficiency of the sampler. For encryption/decryption 

schemes, the value of 𝑠 = 3.33 is suggested. Digital 

signature sampling from a Gaussian Sampler 

involves a large value of deviation 𝑠 = 215. 

V. LATTICE PROBLEMS, PROBLEMS 

OF RING AND REDUCTION 

ALGORITHMS 

In this section, we study lattice problems, which are 

useful in the security proof of lattice based digital 

signature scheme. There are several lattices’ 

problems, we discuss some problems. Further, we 

study problems of ring and lattice reduction 

algorithms. We assume that all the lattice vectors are 

non-zero. 

 Worst Case Lattice Problems 

Definition: 5.1(Shortest Vector Problem (SVP)) 

Find a lattice vector 𝑥 whose length is shortest 

among all the lattice vectors, that is, 

  𝑥  ≤   𝑦   for all, 𝑦 ∈ 𝐿 𝐵 . 

Definition: 5.2(Closest Vector Problem (CVP)) 

Suppose 𝑝 ∈ ℝ𝑛  is the target vector, not necessarily 

lies in the lattices.Then find a vector 𝑥 ∈ 𝐿 𝐵  such 

that 

  𝑥 − 𝑝  ≤   𝑦 − 𝑝   for all 𝑦 ∈ 𝐿 𝐵 . 

The SVP and CVP problems are considered to be 

computationally hard to solve, with both classical 

and quantum algorithm. In the regard of these lattice 

problem, we state a conjecture. 

Conjecture: 5.3There does not exist any 

probabilistic polynomial time algorithm that 

approximates lattice problem to within polynomial 

factors. 

Thus, approximate versions of these problems are 

also considered. Let 𝐵 be the basis of the lattice 𝐿. 

Definition: 5.4(Approximate SVP) 

The approximate variation of SVP is to allow the 

gap function 𝛾 ≥ 1 in the sense, to find a non zero 

lattice vector 𝑥 ∈ 𝐿 𝐵  such that 

  𝑥  ≤ 𝛾  𝑦   for all 𝑦 ∈ 𝐿 𝐵 . 

Definition: 5.5(Approximate CVP) 

Find a non-zero lattice vector 𝑥 ∈ 𝐿 𝐵  such that 

  𝑥 − 𝑝  ≤ 𝛾  𝑦 − 𝑝   for all 𝑦 ∈ 𝐿 𝐵 . 

Definition: 5.6(Shortest Independent Vector 

Problem (SIVP)) 

Find a set 𝑆 ⊂ 𝐿 𝐵  of 𝑛 linearly independent 

vectors such that   𝑆  ≤ 𝜆𝑛 . 

We also define Approximate SIVP (using 𝛾 in 

SIVP). The approximate version, say, Approximate 

SVP should be significant easier than the SVP and 

CVP. Even the best algorithms are often impractical 

for sufficiently large value of the gap factor 𝛾. 

Problems of Ring 

We give the notion of 𝑅-SIS (also called 𝑓-SIS) over 

the ring 𝑅 =
ℤ𝑞  𝑥 

 𝑓 
. 

Definition: 5.7(f-SIS) 

Suppose 𝑚 uniformly random polynomials 𝑎1 ,… , 𝑎𝑚  

are given, then to find the elements 𝑦1 ,… , 𝑦𝑚  with 

small coefficients such that  𝑎𝑖
𝑚
𝑖=1 𝑦𝑖 = 0 in the 

ring 
ℤ𝑞  𝑥 

 𝑓 
. 

We also define another problem of rings 𝑅 as 

follows: 

Definition: 5.8(Generalized Compact Knapsack 

Problem) 

Given 𝑚 random elements 𝑎1 ,… , 𝑎𝑚  in the ring 𝑅 

and a target 𝑡 ∈ 𝑅, find 𝑧1 ,… , 𝑧𝑚 ∈ 𝐷 such that 

 𝑎𝑖
𝑚
𝑖=1 𝑧𝑖 = 𝑡. where 𝐷 is a fixed subset of 𝑅. 

Lattice Reduction Algorithm 

The Fundamental theorem of linear algebra states 

that any finite dimensional vector space has a basis. 

Also, we know that every finite dimensional 

Euclidean space has an orthogonal basis. On the 

other hand, a lattice may not have an orthogonal 

basis. The goal of lattice reduction is to get a lattice 

basis, which is not far from being orthogonal. 

A. LLL Algorithm 

  The best reduction algorithm for lattice 

problem is the LLL algorithm, developed in 

1982 [8], an approximation algorithm to the 

shortest vector problem (SVP), by A. K. 
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Lenstra, H. W. Lenstra and L. Lovasz. This 

algorithm takes as input a basis of a lattice and 

outputs a lattice basis consisting of smaller 

vectors called a reduced basis. The LLL 

algorithm is a polynomial time algorithm for 

SVP and for most other basic lattice problems 

that achieves an approximation factor of 2𝑂 𝑛 , 
where 𝑛 is the dimension of the lattices. In 

1987, C. P. Schnorr presented an extension of 

the LLL algorithm with a better approximation 

factor. 

B. Babai’s Nearest Plane Algorithm 

  The Babai’s nearest plane algorithm uses 

induction on the dimension 𝑛 of the lattice. 

The idea is as follows, consider a plane (vector 

space) generated by  𝑛 − 1  lattice vectors. 

Find the translated plane at each lattice point. 

Choose the one which is nearest to the target 

vector. Inductively apply the algorithm to the 

sub-lattice generated by those  𝑛 − 1  vectors 

and to the new translated target vector. 

  More precisely, let 𝑈 = span {𝑏1 ,… , 𝑏𝑛−1} and 

let 𝐿′ = 𝐿 ∩ 𝑈 be the sub-lattice spanned by 

{𝑏1 ,… , 𝑏𝑛−1}. Now to find a vector v such that 

plane U+v is nearest to the target vector w. 

Now take the new target vector w’’ = w’ - v, 

where w’ is projection of w to the plane U+v. 

Inductively work out closest vector v’ to w’’ in 

𝐿′ and output v + v’. 

The GGH Cryptosystem 

Goldreich, Goldwasser and Halevi (GGH) proposed 

a cryptosystem [5] using the closest vector problem 

(CVP), that is, GGH’s security depends on the 

difficulty of the CVP. Intuitively, CVP involves 

finding the lattice point to an arbitrary point. In a 

GGH key pair, a public key is a “bad" basis and a 

private key is a “good" basis. A “good " basis is 

close to orthogonal with short basis vectors. There 

exist algorithms for approximating CVP for a 

“good" basis. One such algorithm is called Babai’s 

closest vector algorithm. 

Babai’s algorithm takes a point 𝑤 and a set of basis 

vector [𝑣1 ,… , 𝑣𝑛]𝑡  as input, where 𝑡 denotes the 

transpose. The algorithm then solves𝑤 = 𝑡1 ⋆ 𝑣1 +
⋯+ 𝑡𝑛 ⋆ 𝑣𝑛 , where [𝑡1,… , 𝑡𝑛]𝑡  are real number 

coefficients. Babai’s algorithm then approximates a 

solution to CVP by rounding all coefficients 

𝑡1,… , 𝑡𝑛  to their nearest integer. 

For short and approximately orthogonal bases, 

Babai’s algorithm work well and likely returns the 

closest lattice point to 𝑤 and for “bad" bases, 

Babai’s algorithm is likely to return a lattice point 

that is not close to 𝑤. 

How does GGH use CVP? 

GGH takes advantage CVP’s assumed difficulty for 

“bad" bases to create an asymmetric key pair. GGH 

key pair consists of two bases for the same lattice, 

one public basis and one private basis. A plaintext 

message is encoded as a vector with integer 

coefficients and ciphertext is a vector that is not a 

lattice point. 

1. STRUCTURES OF IDEAL LATTICES 

In this section, we give brief details of various kind 

of lattices using the quotient polynomial ring. The 

properties of ideal lattices are studied in many 

papers, for example see [9,10,11,12,15,16]. First, we 

state the hash function and collision resistant hash 

function. We also define the expansion factor in the 

quotient polynomial ring, which is a powerful tool in 

the ideal lattices. 

Hash Function 

Given a ring 𝑅 =
ℤ𝑞  𝑥 

 𝑓 
, where 𝑓 ∈ ℤ 𝑥  is a monic, 

irreducible polynomial of degree 𝑛 and 𝑞 is a prime 

integer of order roughly 𝑛2, generate 𝑚 random 

elements 𝑎1 ,… , 𝑎𝑚 ∈ 𝑅, where 𝑚 is a constant. The 

order 𝑚-tuple  =  𝑎1 ,… , 𝑎𝑚  ∈ 𝑅𝑚  is our hash 

function. It will map elements in 𝐷𝑚 , where 𝐷 is a 

strategically chosen subset of 𝑅. 

For an element 𝑏 =  𝑏1 …𝑏𝑚  ∈ 𝐷𝑚 , the hash value 

is  𝑏 =  𝑎𝑖
𝑚
𝑖=1 𝑏𝑖 . Notice that the size of the key 

(hash function) is 𝑂 𝑚𝑛 log𝑝 = 𝑂 𝑛 log𝑛 , and the 

operation 𝑎𝑖 . 𝑏𝑖  can be done in time 

𝑂 𝑛 log𝑛 loglog𝑛  by using the fast Fourier 

transform, for appropriate choice of the polynomial 

𝑓. Since 𝑚 is a constant, hashing requires time 

𝑂 𝑛 log𝑛 loglog𝑛 . 

To prove, our hash function is collision resistant, we 

will show that, if there is a polynomial time 

algorithm that succeeds with some non-negligibly 

probability in finding 𝑏 ≠ 𝑏′ ∈ 𝐷𝑚  such that 

 𝑏 =  𝑏′ , for a randomly chosen hash function 

 ∈ 𝑅𝑚 . Then a certain problem called the shortest 

polynomial problem, which is solvable in 

polynomial time for every ideal of the ring 
ℤ 𝑥 

 𝑓 
. 

Ideal Lattices 

Suppose 𝑓 𝑥  be a monic polynomial of degree 𝑛 in 

ℤ 𝑥  and we consider the quotient polynomial ring 
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ℤ 𝑥 

 𝑓 
. This becomes a lattice via the coordinate 

embedding. Fix a basis 𝑥0 , 𝑥1 ,… , 𝑥𝑛−1 for ℝ𝑛  and 

consider the linear map 𝜙 defined by 𝜙:
ℤ 𝑥 

 𝑓 
→ ℝ𝑛  

such that 𝜙 𝑥𝑖 = 𝑥𝑖 . Since, we can pick any 

coefficients from ℤ to define a polynomial in 
ℤ 𝑥 

 𝑓 
, 

then the image 𝐿 = 𝜙 𝐽 ⊂ ℝ𝑛  is called an ideal 

lattice, where 𝐽 is an ideal of the ring 
ℤ 𝑥 

 𝑓 
. As the 

name suggests, this is also a lattice and has rank 𝑛. 

Cyclic Lattices 

D. Micciancio[13] defined a cyclic lattice to be a 

lattice 𝐿 such that if the vector  𝑎1,… , 𝑎𝑛−1, 𝑎𝑛 ∈ 𝐿 

then the vector  𝑎𝑛 , 𝑎1 … , 𝑎𝑛−1  is also in the lattice 

𝐿. Such lattices correspond to ideals in 
ℤ 𝑥 

 𝑥𝑛−1 
. 

Micciancio gave a construction of an efficient family 

of one-way functions with security based on the 

worst-case hardness of approximating 𝜆1 𝐿  in 

cyclic lattices. The ring 
ℤ 𝑥 

 𝑥𝑛−1 
 is called cyclotomic 

ring and has several useful properties enabling fast 

computation. The cyclotomic ring is also a basis for 

the NTRU cryptosystem [6]. 

Integer Lattices 

Let 𝑓 ∈ ℤ 𝑥  be a monic polynomial of degree 𝑛 and 

consider the quotient polynomial ring 
ℤ 𝑥 

 𝑓 
. Using the 

standard set of representatives  𝑔 mod𝑓 :𝑔 ∈ ℤ 𝑥  
and our identification of polynomials with vectors, 

the quotient ring 
ℤ 𝑥 

 𝑓 
 is isomorphic (as an additive 

group) to the integer lattice ℤ𝑛 . Any ideal 𝐽 ⊆
ℤ 𝑥 

 𝑓 
 

defines a corresponding integer sub lattice 𝐿 𝐽 ⊆
ℤ𝑛 . Note that, not every integer lattice 𝐿 𝐵 ⊆ ℤ𝑛  

can be represented in this form. Thus, we define 

ideal lattices as lattice that admit suchrepresentation. 

Definition: 6.1(Integer Lattices) 

An ideal lattice is an integer lattice 𝐿 𝐵 ⊂ ℤ𝑛  such 

that, 𝐿 𝐵 = {𝑔 mod𝑓:𝑔 ∈ 𝐽} for a monic 

irreducible polynomial 𝑓 𝑥 ∈ ℤ 𝑥  of degree 𝑛 and 

an ideal 𝐽 ⊆
ℤ 𝑥 

 𝑓 
. 

It turns out that, the relevant properties of 𝑓 for the 

resulting function to be collision resistant are: 

a. 𝑓 should be an irreducible 

polynomial. 

b. The ring norm ||𝑔||𝑓  is not much 

bigger than ||𝑔||∞ for any polynomial 

𝑔. 

The first property implies that every ideal of the ring 
ℤ 𝑥 

 𝑓 
 defines a full-rank lattice in ℤ𝑛 . 

Remark: 6.2If 𝑓 𝑥 = 𝑥𝑛 − 1 be a reducible 

polynomial then the corresponding lattice is not an 

ideal lattice. 

Consider the ideal lattice 𝐿 𝐵 = {𝑔 mod𝑓:𝑔 ∈ 𝐽} 

and the ideal 𝐽 ⊆
𝑍 𝑥 

 𝑓 𝑥  
. Then a vector is in the ideal 

lattice if and only if its corresponding polynomial is 

in the ideal, that is, 

 𝑓0,… , 𝑓𝑛−1 ⊆ 𝐿 𝐵 ⇔ 𝑓0 + 𝑓1𝑥 + ⋯+ 𝑓𝑛−1𝑥
𝑛−1

∈ 𝐽. 

Now, we give a result [11, Lemma 3.2] related to a 

property of ideal lattices. 

Lemma: 6.3Every ideal lattice of 
ℤ 𝑥 

 𝑓 
, where 𝑓 is a 

monic irreducible integer polynomial of degree 𝑛, is 

isomorphic to a full rank lattice in ℤ𝑛 . 

The second property is crucial for the security 

purpose, if the ratio 
||𝑔||𝑓

||𝑔||∞
 have small value, then it is 

suitable for the cryptographic function. We elaborate 

on the second property by defining a quantitative 

parameter (the expansion factor) that captures the 

relation between ||. ||𝑓  and||. ||∞ 

The Expansion Factor 

We note that, when we reduce a polynomial 𝑔mod𝑓, 

the maximum coefficients of 𝑔 can increase by quite 

a bit, and thus ||𝑔||𝑓  could be a lot bigger than 

||𝑔||∞. For example, if 𝑓 𝑥 = 𝑥𝑛 − 2𝑥𝑛−1, then 

𝑥2𝑛 = 2𝑛+1𝑥𝑛−1 mod𝑓 . 

On the other hand, if 𝑓 𝑥 = 𝑥𝑛 − 1, we can never 

have such an exponential growth of coefficients. We 

capture this property of 𝑓 𝑥  by defining the 

expansion factor of 𝑓 𝑥  as follows: 

𝐸𝐹 𝑓, 𝑘 = max
𝑔∈ℤ 𝑥 ,𝑑𝑒𝑔  𝑔 ≤𝑘 𝑑𝑒𝑔  𝑓 −1 

||𝑔||𝑓

||𝑔||∞
. 

Now, we give a theorem related to expansion factor, 

which gives a tight bounds for 𝐸𝐹 .   of certain 

polynomial. 

Theorem: 6.4The following conditions hold: 

a. 𝐸𝐹 1 + 𝑥 + ⋯+ 𝑥𝑛−1, 𝑘 ≤ 2𝑘. 

b. 𝐸𝐹 1 + 𝑥𝑛 , 𝑘 ≤ 𝑘. 
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Ideal Lattice Problem 

Definition: 6.5In the approximate Shortest 

Polynomial Problem  𝑆𝑃𝑃𝛾 𝐼  , we are given an 

ideal 𝐼 ⊂
ℤ 𝑥 

𝑓 𝑥 
 where 𝑓 is a monic polynomial of 

degree 𝑛 and we are asked to find a 𝑔 ∈ 𝐼 such that 

𝑔 ≠ 0 and ||𝑔||𝑓 ≤ 𝛾𝜆1
∞(𝐼). 

As for the shortest vector problem, we can consider 

the restriction of SPP to specific classes of ideals. 

We will write 𝑓-SPP for SPP restricted to ideals of 

the ring 
ℤ 𝑥 

𝑓 𝑥 
. Now, we define the incremental version 

of SPP. In this version, we are not looking for the 

shortest polynomial, but for a polynomial that is 

smaller than the one given to us. 

Definition: 6.6In the approximate Incremental 

Shortest Polynomial Problem  𝐼𝑛𝑐𝑆𝑃𝑃𝛾 𝐼,𝑔  , we 

are given an ideal 𝐼 and a 𝑔 ∈ 𝐼 such that ||𝑔||𝑓 ≥

𝛾𝜆1
∞(𝐼) and are asked to return an  ∈ 𝐼 such that 

||||𝑓 ≠ 0 and ||||𝑓 ≤
||𝑔||𝑓

2
. 

We define the restricted version of IncSPP in the 

same way as the restricted version for SPP. Let us 

give a lemma which shows that if 𝐼 is an ideal of 
ℤ 𝑥 

 𝑓 
, where 𝑓 is monic and irreducible polynomial 

then 𝜆𝑛
∞ 𝐼 cannot be much bigger than 𝜆1

∞ 𝐼 . 

Lemma: 6.7For all ideals 𝐼 of 
ℤ 𝑥 

 𝑓 
, where 𝑓 is 

monic, irreducible, polynomial of degree 𝑛, we have 

𝜆𝑛
∞ 𝐼 ≤ 𝐸𝐹 𝑓, 2 𝜆1

∞ 𝐼 . 

Proof:Let 𝑔 be a polynomial in 𝐼 of degree less than 

𝑛 such that ||𝑔||∞ = 𝜆1
∞(𝐼). Consider the polynomial 

𝑔,𝑔𝑥,… ,𝑔𝑥𝑛−1. By Lemma 6.3, these polynomials 

are linearly independent. Since the maximum degree 

of any of this polynomial is 2𝑛 − 2, 

||𝑔𝑥𝑖||𝑓 ≤ 𝐸𝐹(𝑓, 2)||𝑔𝑥𝑖||∞ ≤ 𝐸𝐹(𝑓, 2)||𝑔||∞
= 𝐸𝐹(𝑓, 2)𝜆1

∞(𝐼) 

for all 0 ≤ 𝑖 ≤ 𝑛 − 1. 

Remark: 6.8 The collision resistant hash function 

has importance in cryptographic application under 

some suitable choices of parameters. Sometimes, we 

call these parameters as instantiation parameters. 
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