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ABSTRACT 

Due to the saturation of the physical spaces intended for construction in large urban centers, it has been chosen 

to verticalise the buildings as an alternative for cities to support demographic growth. As a building gains height, 

the action of the wind, for example, causes significant effects, resulting in an increase in the requesting efforts 

when applied simultaneously with the other acting actions. These effects, called second-order effects, if not 

considered in the structural design, can compromise the overall stability of the structure and consequently the 

local stability of the structural elements. Therefore, this study aims to analyze the effect of the second-order 

geometric elastic in plane steel frames with rigid beam-column connections, components of the structural 

systems of buildings with multiple floors, using the Direct Stiffness Method (DSM) with use of the geometric 

stiffness matrix, in comparison with the Moment Amplification Method (MAM), proposed by same normative 

codes as an approximate method of second-order elastic analysis. For this purpose, computational codes based 

on the theories of the aforementioned methods were implemented. After observing the parametric study, the 

results using the MAM were satisfactory as long as the maximum horizontal displacement of the top of the 

columns relative to the base did not exceed the limit value (H/400). 
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I. INTRODUCTION 

Due to population growth and the fact that 

the physical spaces available for the implementation 

of new commercial and residential enterprises in 

large metropolises are becoming increasingly 

saturated, the process of building verticalization has 

been chosen to meet the demand, giving rise to 

increasingly tall and slender buildings. 

In the structural system of a building, 

composed of an association of frames, substructures 

exist that, due to their high lateral stiffness, are 

responsible for supporting the horizontal actions 

acting on the structure. These substructures that 

provide the building with greater stability are called 

bracing substructures and are classified according to 

the type of beam-column connection used. Three 

basic types of bracing substructures are identified: 

rigid frame, lattice frames and shear walls. 

Evidently, in addition to supporting horizontal 

stresses, the bracing substructures also transmit the 

gravitational loads to the foundations [1]. 

Therefore, it is known that in buildings with 

multiple floors, the action of the wind causes 

significant effects, resulting in an increase in the 

stresses applied when applied simultaneously with 

the other actions acting on the structure. Thus, to 

ensure a good performance of the structural system 

chosen for the building, it is essential to perform a 

very detailed structural analysis, which according to 

[1], provides responses of the structure, when 

requested by a set of actions, through equilibrium 

relationships, to verify the stability of the structure 

regarding the ultimate limit state and the service 

limit state. 

In this analysis, it is verified whether the 

structure fulfill all the requirements of local and 

global stability, thus ensuring that throughout its 
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useful life, its elements do not exceed its resistant 

capacity, which can be achieved with the increase in 

deformations as a result of the actions. 

The structural analysis of the elastic nature 

can be processed in 1st-order theory, also known as 

geometric linear analysis, or in 2nd-order theory, 

known as nonlinear geometric analysis. The main 

characteristic of linear geometric analysis is to 

obtain stresses and displacements of the structure 

considering it in its undisturbed position. In contrast, 

the nonlinear geometric analysis establishes the 

equilibrium of the structure considering it in its 

deformed position, thus obtaining soliciting forces 

and displacements more consistent with the reality 

of slender structures. It is important to note that the 

study of the overall stability of structures should be 

done in 2nd order theory, as it is in this that the 

effects of excessive displacements are considered. 

Research developed by [2], [3], [4], [5], [6] 

and [7] describe the using different approximate 

analytical methods for 2nd-order as the Fictitious 

lateral forces; Gamma-z coefficient (γz); Method of 

Amplification of Forces (factors B1 and B2); Iterative 

Gravity Loading Method and the P-Δ effect; two 

Iterative Cycles Method; Fictitious displacement; 

Negative Stiffness Method; Stability Functions and 

the Equivalent Column Method. 

A precise way to evaluate the 2nd-order 

effects in structural systems composed of frame 

associations is by considering the axial force in the 

translational transverse strains of the structural 

element based on the direct stiffness method (DSM), 

considering the geometric stiffness matrix. On the 

other hand, the [8] allows that through two first-

order analyses, the second-order effects are 

considered in an approximate manner through the 

Moment Amplification Method (MAM). Because of 

what has been mentioned, it is up to the design 

engineer to choose the method that best represents 

the real physical behavior of the structure, depending 

on its characteristics and sensitivity to 2nd-order 

effects, in order to obtain increasingly efficient and 

safe structures. Therefore, this study proposes to 

analyze the effect of the 2nd-order elasticity in plane 

steel frames with rigid beam-column connections 

formed by full web profiles through a comparative 

study between the direct stiffness method (DSM) 

and the amplification method (MAM). 

I.1 DIRECT STIFFNESS METHOD (DSM) 

The method of structural analysis used is 

the displacement method, in which the fundamental 

parameters of the solution are displacements (linear 

and angular) of the nodes of the verified structural 

model. The displacement method aims to 

approximate its methodology to the procedures 

usually adopted in computer programs. This version 

of the displacement method is known as the direct 

stiffness method or matrix analysis of structures. 

I.2 MOMENT AMPLIFICATION METHOD 

(MAM) 

According to [8], when using the Moment 

Amplification Method (MAM), the structure under 

analysis, subjected to a combination of calculation 

actions, called the Original Structure (Fig. 1a), is 

transformed into the sum of two other structures, as 

shown in Fig. 1. One of the structures considered 

contains the total load applied to the original 

structure, but with its nodes prevented from moving 

laterally, by means of fictitious horizontal retainers 

placed on each floor, this structure is called 

Structure nt (“no translation”, i.e., without lateral 

displacement) (Fig. 1b). Conversely, the other 

structure is only subjected to the effect of the 

reactions of the fictitious containments, applied in 

the opposite direction in which it acts in the nt 

structure, at the same points where such 

containments were placed.”, i.e., with lateral 

displacement) (Fig. 1c). 

 

 
(a) Original Structure (b) Structure nt (c) Structure lt 

Fig. 1: Representation of the model for analysis. 

The nt and lt structures are used to obtain 

the amplification coefficientsB1 andB2. The 

coefficient B1 considers the local effect P-δ in the 

bending moment value (single requesting force 

influenced by this effect), therefore applying only 

the nt structure. The coefficient B2 considers the 

global effect P-∆ in the value of the bending moment 

and the axial force (the two requesting forces 
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influenced by this effect), thus applying only the 

structure lt. 

After obtaining the amplification factors, it 

becomes possible to calculate design 

forces/moments and use them as the result of a 

second-order analysis. Equations (1), (2) and (3), 

defined below, are used to calculate the 2nd-order 

axial calculation force, the 2nd-order calculation 

bending moment and the 2nd-order calculation shear 

force, respectively for analysis via MAM: 

Nsd,2 = Nnt + B2Nlt (1) 

where Nnt and Nlt are the axial forces for the 

calculation of the nt and lt structures obtained in the 

first-order elastic analysis, respectively. 

Msd,2 = B1Mnt + B2Mlt (2) 

where Mnt and Mlt are the bending moments 

requesting the calculation of the nt and lt structures 

obtained in the first-order elastic analysis, 

respectively. 

Vsd,2 = Vnt + Vlt (3) 

where Vnt and Vlt are the shear forces requesting the 

calculation of the nt and lt structures obtained in the 

first-order elastic analysis, respectively. 

As described in the literature [9] and [10], 

there are many practical cases where second-order 

moments may be calculated by amplifying the first-

order moments, however, the total moments are not 

simply a direct amplification of the first-order 

moments for the second-order moments do not 

necessarily have the same distribution as the first-

order moments. 

 

I.2.1 Coefficient B1 

It is adopted/calculated as follows: if the 

requesting axial force in the bar is tensile, one 

should consider B1 equal to 1.0 because it does not 

cause an increase in the bending moment value. 

Conversely, if the calculated axial force is of 

compression, the coefficient B1 is calculated 

according to Equation (4): 

B1 =
Cm

1 − |
Nsd,1

Ne
|

≥ 1 (4) 

whereNe is the axial force that causes the elastic 

buckling by bending the bar in the plane of action of 

the bending moment, calculated with the actual 

length of the bar, considering, if applicable, the 

initial imperfection of the material;Nsd,1 is the axial 

compressive force requesting calculation in the bar 

considered, in first order analysis(Nsd,1  =

 Nnt,sd,1  +  Nlt,sd,1); and Cm is a coefficient of 

equivalence of moments. A value of 1.0 is 

conservatively adopted if there are transverse forces 

between the ends of the bar in the flexion plane 

(Fig. 2a); otherwise, it should be calculated 

according to Equation (5), as shown below: 

Cm = 0,60 − 0,40
M1

M2

 (5) 

where M1 M2⁄  is the relationship between the 

smallest and largest bending moments that require 

calculation in the nt structure in the flexion plane at 

the supported ends of the bar, taken as positive when 

the moments cause reverse curvature (Fig. 2b) and 

negative when they cause simple curvature (Fig. 2c). 

In Equation (5), we adopt (M1 = M1,nt,sd e M2 =

M2,nt,sd), with M2,nt,sd  ≥ M1,nt,sd. 

 

Fig.2: Representation of the case in which    

Cm = 1 and determination of the relationship 

M1,nt,sd M2,nt,sd⁄ . 

 

I.2.2 Coefficient B2 

It is calculated by Equation (6), shown below: 

B2 =
1

1 −
1

Rs

∆h

h

∑ Nsd

∑ Hsd

 (6) 

whereRs an adjustment coefficient that depends on 

the characteristics of the system resistant to 

horizontal actions, taken equal to 0.85 in the 

structures where all the bracing substructures are 

rigid frames, and equal to 1.0 for the other 

structures; ∆h the relative horizontal displacement 

between the upper and lower floors (interfloor 

displacement) of the floor considered, obtained in 

the structure lt; ∑ Nsd the total gravitational load that 

acts on the floor considered, encompassing the loads 

acting on the bracing substructures and on the 

elements that do not belong to these substructures; 

and ∑ Hsd the shear force in the floor, produced by 
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the acting horizontal calculating forces, used to 

determine ∆h and obtained in the structure lt; ℎ the 

height of the floor considered. 

II. DEVELOPED COMPUTATIONAL 

CODES 

In the code itself, the elastic analyses of the 

1st and 2nd-order for plane steel frames are 

presented, and their design is based on the direct 

stiffness method (DSM), considering or not 

considering the geometric stiffness matrix. Through 

the aforementioned implementation, it is possible to 

obtain the internal forces in the members, the 

reactions in the supports and the displacements 

(linear and angular) in the nodes of reticulated 

structures. 

The code was prepared in the MATHCAD 

14 software, which, for its compilation, receives an 

input file containing some parameters of the 

discretized bars of the studied frames. 

The necessary information of the structure 

bars are length (L), cross-sectional area (A), web 

area (Aweb), inertia moment (I) (around the axis on 

which the flexion acts), longitudinal modulus of 

elasticity (E), transverse elasticity modulus (G) and 

the loads to which they are subjected (in the case of 

the bar being a column, its weight that acts in the 

longitudinal direction of the bar enters as an axial 

load in the calculations). 

Fig. 3 shows a schematic of the calculation 

routine performed by the computational code that 

processes the elastic analysis with geometric 

nonlinearity in the plane steel frames. 

 
Fig. 3: Routine for calculating the code that 

performs the second-order elastic analysis. 

 

In another specific code, the two first-order 

elastic analyses considered by the MAM are 

presented, and their conception is also based on the 

DSM, considering only the linear stiffness matrix. 

Through the aforementioned code, the ordering 

forces of the 2nd-order acting on the plane steel 

frames are obtained in an approximate manner. Its 

preparation was also performed in MATHCAD 14 

software, which, for its compilation, receives the 

same input file. 

A schematic of the calculation routine 

performed by this computational code is shown in 

Fig. 4. 

 
Fig. 4: Routine for calculating the code that 

performs the approximate 2nd-order elastic 

analysis. 

Both computational codes developed to 

perform the 2nd-order similar elastic analyses use 

the technique of dividing the structure into finite 

elements, which considers each beam and each 

column as a discretized element and then determines 

the stiffness matrices of these elements and the 

entire structure [11]. 

II.1 STIFFNESS MATRIX OF THE PLANE FRAME FINITE 

ELEMENT 

The possible displacements (angular and 

linear) at the ends of a typical plane frame element, 

also called the degrees of freedom of the finite 

element, are shown in Fig. 5, which correspond to 

the displacements of an element under axial 

deformation (ui and uf) together with the 

displacements of an element under flexion(vi, vf, θi, 

and θf). 



Douglas Mateus de Lima, et. al. International Journal of Engineering Research and Applications 

www.ijera.com 

ISSN: 2248-9622, Vol. 12, Issue 1, (Series-III) January 2022, pp. 18-38 

 

 
www.ijera.com                                DOI: 10.9790/9622-1201031838                                 22 | P a g e  

        

 

 

 

 
Fig. 5: Degrees of freedom of a plane frame 

element. 

Considering a plane structure formed by 

straight bars, each of these can be analyzed as being 

elastically supported so that the forces can be 

evaluated from the displacements of the extremes. 

Then, for each member, an oriented orthogonal 

reference is defined so that one of its axes is along 

the member axis, that is, a Local Coordinate System 

(LCS). Thus, for the beam finite element established 

in Fig. 5, it is possible to define six degrees of 

freedom {𝐝}, which are related to six elastic 

reactions {𝐑e} (Fig. 6) in the LCS, through: 

{𝐑e} = [𝐊e]{𝐝} + {𝐑e
F} (7) 

where {𝐑e} is the vector of elastic reactions; [𝐊e] is 

the linear stiffness matrix; {𝐝} is the vector of nodal 

displacements; and {𝐑e
F} is the vector of fixed-end 

reactions. 

 
Fig. 6: Elastic reactions in a plane frame element. 

The stiffness constants of the linear 

stiffness matrix of the finite element of the beam can 

be calculated from the flexibilities (considering the 

axial deformation energy, by shearing and by 

bending), which in turn can be calculated using the 

Principle of Virtual Work (PVW) [6]. 

The geometric stiffness matrix is also 

defined [𝐊e,g] of the beam finite element to consider 

the effect of the axial force on the deformations of 

the plane frame because the presence of the axial 

forces generally causes a reduction in the rigidity of 

the structure, causing an increase in its elastic 

deformations. From the PVW applied to the 

definition of the finite element method, the 

geometric stiffness matrix will be defined by the 

following index expression: 

(Ke,g)
ij

= ∫ NN(x)ψi
′(x)ψj

′(x)

L

0

 dx (8) 

where NN(x) is the normal force function in the 

finite element analysis; L is the length of the bar; and 

ψi(x) is the i-th function of shape, defined by: 

 ψ1(x) = 1 −
x

h
 

(9) 

 ψ2(x) = 1 − 3 (
x

h
)

2

+ 2 (
x

h
)

3

 

 ψ3(x) = −x + 2
  x2

h
−

 x3

 h2
 

 ψ4(x) =
x

h
 

 ψ5(x) = 3 (
x

h
)

2

− 2 (
x

h
)

3

 

 ψ6(x) =
x2

h
−

x3

 h2
 

 

being, however, (𝐾𝑒,𝑔)
1,2

, (𝐾𝑒,𝑔)
1,3

, (𝐾𝑒,𝑔)
1,5

, 

(𝐾𝑒,𝑔)
1,6

, (𝐾𝑒,𝑔)
4,2

, (𝐾𝑒,𝑔)
4,3

, (𝐾𝑒,𝑔)
4,5

, (𝐾𝑒,𝑔)
4,6

 

and their respective symmetric NULL, because the 

case in which there is no interaction between the 

axial and flexional degrees of freedom is considered, 

due to the regime of small deformations. 

The tangential stiffness matrix of the finite 

element of the bar used [𝐊𝐞,𝐓] is generically given 

by: 

[𝐊𝐞,𝐓] = [𝐊𝐞] − [𝐊𝐞,𝐠] (10) 

II.2 GLOBAL STIFFNESS MATRIX OF THE PLANE 

FRAME 

To assemble the global stiffness matrix of 

the plane frame, a systematic procedure is used to 

conveniently add the stiffness contributions of each 

member of the structure bar to obtain a stiffness 

matrix that relates the forces and nodal 

displacements of the entire structure. the structure. 

One way to assemble the global stiffness matrix is to 

establish the equilibrium conditions of the actions in 

each node of the structure with respect to each 

degree of freedom of the global coordinate system 

(GCS) due to the elastic reactions of the elements 

that compete in this system. node, as well as the 

possible external actions applied directly to the 

nodes. Each equilibrium equation results in a row of 

the global stiffness matrix, which is symmetric and 

has the number of rows and columns equal to the 

number of degrees of freedom of the structure. 
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In Fig. 7, is shown as an example, a plane 

frame with three floors, in which an arbitrary 

numbering is indicated, and the displacements 

(linear and angular) are considered positive in the 

direction that are indicated in Fig. 8. 

 
Fig. 7: Plane frame with three floors with 

arbitrary numbering of bars and nodes. 

 

 
Fig. 8: Arbitrary numbering of the degrees of 

freedom of the frame of Fig. 7. 

 

After defining the numbering, we analyze, for 

example, the actions related to node 1 (Fig. 9) to 

obtain their equilibrium equations, considering that 

there are no external loads applied to the node. 

Therefore, the expression of equilibrium of 

vertical forces is given by: 

 

Nf
1 + Vi

4 + Ni
6 = 0 ⇒ 

(11) 
⇒ −r1ui

1 + r1uf
1 + Nf

F1 + t4vi
4 − b4θi

4

− t4vf
4 − b4θf

4 + Vi
F4

+ r6ui
6 − r6uf

6 + Ni
F6

= 0  

 

 
Fig. 9: Representation of the corresponding 

elastic reactions that balance node 1 of the plane 

frames of Fig. 7. 

 

The equilibrium expression of bending moments 

is given by: 

 

Mf
1 + Mi

4 + Mi
6 = 0 ⇒ 

(12) 

⇒ −b1vi
1 + a1θi

1 + b1vf
1 + k1θf

1 + Mf
F1

− b4vi
4 + k4θi

4 + b4vf
4

+ a4θf
4 + Mi

F4 − b6vi
6

+ k6θi
6 + b6vf

6 + a6θf
6

+ Mi
F6 = 0 

 

The expression of equilibrium of horizontal 

forces is given by: 

 

Vf
1 − Ni

4 + Vi
6 = 0 ⇒ 

(13) 

⇒ −t1vi
1 + b1θi

1 + t1vf
1 + b1θf

1 + Vf
F1

− r4ui
4 + r4uf

4 − Ni
F4

+ t6vi
6 − b6θi

6 − t6vf
6

− b6θf
6 + Vi

F6 = 0 

 

Moving from LCS to GCS and ordering their 

terms, Equations (11), (12) and (13) are, 

respectively: 
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(r1 + t4 + r6)V1 − b4θ1 − t4V2 − b4θ2

− r6V4

= −(Nf
F1 + Vi

F4 + Ni
F6) 

(14) 

  

−b4V1 + (k1 + k4 + k6)θ1 − (b1 − b6)U1

+ b4V2 + a4θ2 + a6θ3

− b6U3

= −(Mf
F1 + Mi

F4 + Mi
F6) 

(15) 

−(b1 − b6)θ1 + (t1 + r4 + t6)U1 − r4U2

+ b6θ4 − t6U3

= (Vf
F1 − Ni

F4 + Vi
F6) 

(16) 

 

Equations (14), (15) and (16) can be linked to 

the matrix form in the Global Coordinate System 

(GCS) of the frames, as follows: 

{𝐅} = [𝐊𝐆]{𝐃} (17) 

where {𝐅} is the vector of the nodal forces of the 

structure in the GCS; [𝐊𝐆] is the tangential stiffness 

matrix of the structure in the GCS; and {𝐃} is the 

vector of nodal displacements of the structure in the 

GCS. 

Using the same procedure for the other degrees 

of freedom of the plane structure, the remainder of 

the global tangential stiffness matrix is obtained. 

In the process of copying the developed 

computational codes, the structure is discretized as 

follows: the elements are numbered from left to right 

and from bottom to top, starting the numbering by 

element 1 (one) until the nth element of the 

structure. The same configuration is adopted for the 

numbering of the structure nodes, starting at node 1 

(one) and continuing until the i-th node. 

III. TECHNICAL SPECIFICATIONS OF 

THE STEEL USED FOR THE 

PROFILES 

ASTM A572 Gr. 50 steel was considered for the 

laminated profiles used for the beams and columns 

of the frames, whose physical and mechanical 

properties are: 

• Longitudinal modulus of elasticity (E): 

200,000 MPa; 

• Modulus of Elasticity Modulus (G): 

77,000 MPa; 

• Yelding stress (fy): 345 MPa; 

• Rupture stress(fu): 450 MPa. 

IV. ACTIVE ACTIONS 

For the analyses performed in the parametric 

studies of the frames, the floor plan of a model 

building was used (Fig. 10), considering the 

variation in the number of columns and the number 

of floors. 

The permanent loads considered, acting on the 

slabs of the model building, are described below 

(Table 1): 

 

Table 1: Permanent loads in the slabs. 

Own weight * (ribbed slab D = 31 cm) 

g1,k = 4.03 kN/m2 

Coating (regularization) 

g2,k = 0.05 ∙ 21 = 1,05 kN/m2 

Floor (finishing) 

g3,k = 1.00 kN/m2 

Sum of the permanent loads in the slabs 

∑ g𝑘 = 6.08 kN/m2 

* The self-weight of the slabs was taken from an ATEX BRAZIL 

catalog. 

Regarding the variable loads, an overload was 

considered q𝑘 = 3 kN/m2. In a simplified way, we 

considered all the slabs of the standard pavements, 

supported on their four ends (Fig. 11). 

 

 
Fig. 11: Type representation of the slab areas of 

influence. 

Therefore, the contribution area of the slab in 

the beams that support it, calculated using the plastic 

hinges method, will be: 

 

A =
8 ∙ 4

2
= 16 m2 (18) 
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Fig. 10: Floor plan of the model building considered. 

 

Then, the linear, permanent and variable loads, 

respectively, applied by the slab to the beams are: 

gw1,k =
6,08 ∙ 16

8
= 12.16 kN/m (19) 

w1,q,k =
3 ∙ 16

8
= 6.00 kN/m (20) 

The beams of the building are made of steel, 

with a W 410 x 85 profile, and support, in addition 

to the loads imposed by the slabs and their own 

weight, 20 cm thick and 359 cm high wall loads. For 

the central beams of the standard pavement, for 

example, the distributed permanent load is shown in 

Table 2: 

Table 2: Permanent load distributed in the beam. 

Reaction of slabs 

gw1,k = 2 ∙ 12.16 = 24.32 kN/m 

Wall 

gw2,k = 0.20 ∙ 3.59 ∙ 13 = 9.33 kN/m 

Self -weight (I profile 410 x 85) 

gw3,k = 0.85 kN/m 

Sum of the permanent loads in the beam 

∑ gwk = 34.50 kN/m 
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Then, the distributed calculation load (wg,d) 

acting on the central beams, used to calculate the 

calculation effort, is: 

 

gwd = 1.4 (34.50 + 6.00) = 56.70 kN/m (21) 

All the considerations established in this study 

were made with the purpose of adopting, in the 

parametric studies of the subsequent item, loads 

close to those that act on the beams of the real 

buildings. For practical reasons, it was adopted as 

the characteristic distributed load and calculation in 

the beams to calculate the displacements and forces 

of calculation of the 1st and 2nd-order acting on the 

frames, respectively, gwk = 35.00 kN/m and 

gwd = 60.00 kN/m. 

V. PARAMETRIC STUDY 

The parametric study developed in this study 

consisted of analyzing the behavior of the forces and 

displacements of the 1st- and 2nd-order, in two 

families of distinct steel plane frames, with rigid 

beam-column connections, via DSM and MAM. For 

the studied structures, the number of columns (frame 

with 4 and 8 columns) was fixed, and the number of 

floors was varied (frame with 1, 2, 4, 8, 16 and 32 

floors). As the number of floors of the frame varied, 

the profiles of its bars were altered to stiffen the 

structure. In Table 3, the profiles adopted for the 

beams and columns of the frames in each situation 

analyzed are shown. 

Table 3: Structural configuration of the analyzed 

plane frames. 

No. of 

columns 

No. of 

floors 

Profile 

Column Beam 

4 

1 CS 250x52 W 410x85 

2 CS 250x66 W 410x85 

4 CS 350x135 W 410x85 

8 CS 450x227 W 410x85 

16 CS 550x395 W 410x85 

32 CS 650x525 W 410x85 

8 

1 CS 250x52 W 410x85 

2 CS 250x66 W 410x85 

4 CS 350x135 W 410x85 

8 CS 450x227 W 410x85 

16 CS 550x395 W 410x85 

32 CS 650x525 W 410x85 

V.1 PLANE STEEL FRAME WITH RIGID CONNECTIONS 

AND 4 COLUMNS 

In Fig. 12, a plane frame model with 4 columns 

and n floors is shown, which represents the family of 

plane frames with 4 columns studied. 

The order adopted for the numbering of its bars 

is shown in (Fig. 12a), and the external calculation 

load used in the calculation of the requesting forces 

acting on it are shown in (Fig. 12b). 

 

 

 
Fig. 12: Illustration of a plane frame model with 4 columns in pavement. 

 

V.2 PLANE STEEL FRAME WITH RIGID CONNECTIONS 

AND 8 COLUMNS 

In Fig. 13, a plane frame model with 8 columns 

and n floors is shown, which represents the family of 

plane frames with 8 columns studied. 

 

 

The order adopted for the numbering of its bars 

is shown in (Fig. 13a), and the external calculation 

load used in the calculation of the requesting forces 

acting on it are shown in (Fig. 13b).
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Fig. 13: Illustration of a plane frame model with 8 columns in pavements. 

 

VI. RESULTS AND DISCUSSIONS 

VI.1 PLANE STEEL FRAME WITH RIGID 

CONNECTIONS AND 4 COLUMNS 

In this topic, the results obtained from the 1st- 

and 2nd-order elastic analyses via DSM and 

approximate 2nd-order elastic analysis via MAM 

will be presented in plane steel frames with rigid 

beam-column connections of 4 columns. 

Table 4 shows the values of the 1st and 2nd-

order displacements, the degree of lateral 

displacement of the structure and the amplifier factor 

B2 (per floor) for frames with 1, 2, 4, 8, 16 and 32 

floors. 

 

It is observed that the structures are classified, 

according to the degree of displacement of the 

structure, as of small displacement (for the frames 

with 1, 2, 4 and 8 floors), medium displacement (for 

the frame with 16 floors) and great displacement (for 

the 32-storey frame). Conversely, the classification, 

according to the amplification factor B2 (adopted by 

[8] as a parameter for the evaluation of the structures 

regarding the sensitivity to lateral displacements), is 

small displacement (for the frame with 1 floor), 

medium displacement (for the frames with 2, 4 and 8 

floors) and great displacement (for the frames with 

16 and 32 floors). 

 

Table 4: Results of 1st- and 2nd-order displacements, degree of lateral displacement and amplifier factor B2, 

obtained by pavement, of the plane frame with 4 columns. 

Floor ∆𝐡,𝟏(M) ∆𝐡,𝟐(M) ∆𝐡,𝟏/∆𝐡,𝟐 B2 

1 Floor 

0 0.00E+00 0.00E+00 - - 

1 3.74E-04 3.88E-04 1.0380 1.0503 

Maximum Value 1.0380 1.0503 

2 floors 

0 0.00E+00 0.00E+00 - - 

1 0.0020 0.0021 1.0450 1.0856 

 0.0028 0.0029 1.0480 1.1083 

Maximum Value 1.0480 1.1083 

4 floors 

0 0.00E+00 0.00E+00 - - 

1 0.0023 0.0024 1.0410 1.0720 

2 0.0053 0.0055 1.0440 1.1063 

3 0.0075 0.0078 1.0420 1.0577 

4 0.0081 0.0085 1.0430 0.9759 

Maximum Value 1.0440 1.1063 
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8 floors 

0 0.00E+00 0.00E+00 - - 

1 0.0040 0.0042 1.0650 1.0927 

2 0.0110 0.0120 1.0750 1.1860 

3 0.0180 0.0200 1.0770 1.1784 

4 0.0250 0.0270 1.0760 1.1578 

5 0.0310 0.0330 1.0740 1.1259 

6 0.0350 0.0280 1.0720 1.0964 

7 0.0380 0.0410 1.0700 1.0491 

8 0.0390 0.0420 1.0690 0.9742 

Maximum Value 1.0770 1.1860 

16 Floors 

0 0.00E+00 0.00E+00 - - 

1 0.0077 0.0087 1.1290 1.1320 

2 0.0240 0.0280 1.1490 1.3338 

3 0.0450 0.0520 1.1600 1.4177 

4 0.0670 0.0780 1.1660 1.4430 

5 0.0890 0.1040 1.1690 1.4286 

6 0.1100 0.1290 1.1690 1.3955 

7 0.1300 0.1520 1.1680 1.3550 

8 0.1490 0.1740 1.1650 1.3127 

9 0.1670 0.1940 1.1620 1.2710 

10 0.1820 0.2110 1.1580 1.2312 

11 0.1950 0.2260 1.1550 1.1937 

12 0.2070 0.2380 1.1510 1.1590 

13 0.2160 0.2490 1.1490 1.1269 

14 0.2240 0.2560 1.1460 1.0968 

15 0.2290 0.2620 1.1440 1.0567 

16 0.2330 0.2660 1.1430 0.9338 

Maximum Value 1.1690 1.4430 

32 floors 

0 0.00E+00 0.00E+00 - - 

1 0.0190 0.0250 1.3250 1.2246 

2 0.0640 0.0880 1.3740 1.7498 

3 0.1240 0.1750 1.4080 2.2561 

4 0.1930 0.2770 1.4330 2.6632 

5 0.2670 0.3870 1.4510 2.8965 

6 0.3430 0.5020 1.4640 2.9665 

7 0.4200 0.6180 1.4720 2.9228 

8 0.4970 0.7330 1.4770 2.8171 

9 0.5730 0.8470 1.4790 2.6850 

10 0.6480 0.9580 1.4780 2.5464 

11 0.7210 1.0650 1.4760 2.4114 

12 0.7930 1.1680 1.4720 2.2843 

13 0.8630 1.2670 1.4680 2.1666 

14 0.9310 1.3620 1.4620 2.0585 

15 0.9970 1.4520 1.4560 1.9594 

16 1.0600 1.5370 1.4500 1.8685 

17 1.1210 1.6180 1.4430 1.7851 

18 1.1790 1.6940 1.4360 1.7084 

19 1.2350 1.7660 1.4300 1.6377 

20 1.2870 1.8320 1.4230 1.5724 

21 1.3370 1.8940 1.4170 1.5119 

22 1.3830 1.9510 1.4110 1.4559 

23 1.4260 2.0030 1.4050 1.4039 

24 1.4650 2.0510 1.4000 1.3556 

25 1.5010 2.0940 1.3950 1.3108 

26 1.5340 2.1320 1.3900 1.2694 

27 1.5620 2.1660 1.3860 1.2315 

28 1.5870 2.1950 1.3830 1.1972 

29 1.6090 2.2200 1.3800 1.1656 
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30 1.6270 2.2410 1.3770 1.1359 

31 1.6410 2.2580 1.3760 1.0953 

32 1.6540 2.2730 1.3740 0.8234 

Maximum Value 1.4790 2.9665 

Fig. 14 shows the behavior of the structure 

regarding lateral displacements along its entire 

height for the elastic analyses in the 1st and 2nd 

order. It can be seen that the frames with 1, 2, 4 and 

8 floors had a maximum horizontal displacement at 

the top of the columns lower than the maximum 

allowed by [8], while the frames with 16 and 32 

floors had a maximum horizontal displacement at 

the top of the columns higher than the maximum 

allowed by the standard. 

   
(a) 1 Floor (b) 2 floors (c) 4 floors 

   
(d) 8 floors (e) 16 floors (f) 32 floors 

Fig. 14: Graphs of lateral displacement versus height of the plane frame with 4 columns. 
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The calculation forces acting on the bars of 

the 1st floor of each of the structures studied with 4 

columns were also analyzed after performing the 

1st- and 2nd-order elastic analysis via DSM and the 

approximate 2nd-order elastic analysis via MAM. It 

was observed that the results obtained from the 

analyses (rigorous and approximate) of the 2nd order 

are very close to each other when compared to the 

frames with 1, 2, 4 and 8 floors, which was 

expected, since these structures displace very little 

laterally. The 16-storey frame, which had lateral 

displacement close to twice as allowed by the 

standard, showed coherence in the results of the 

shear and normal forces, while the bending moments 

acting on its bars showed a difference in their results 

of less than 10% for the analyses (rigorous and 

approximately) of the 2nd-order. The 32-storey 

frame, which had a second-order lateral 

displacement greater than seven times that allowed 

by the standard, showed discrepancies in all results. 

VI.2 PLANE STEEL FRAME WITH RIGID 

CONNECTIONS AND 8 COLUMNS 

In this topic, the results obtained from the 1st- 

and 2nd-order elastic analyses via DSM and 

approximate 2nd-order elastic analysis via MAM 

will be presented in plane steel frames with rigid 

beam-column connections of 8 columns. 

Table 5 shows the values of the 1st- and 

2nd-order displacements, the degree of lateral 

displacement of the structure and the amplification 

factor B2 (per floor) for frames with 1, 2, 4, 8, 16 

and 32 floors. 

It is observed that the structures are 

classified, according to the degree of displacement 

of the structure, as of small displacement (for the 

frames with 1, 2, 4 and 8 floors), medium 

displacement (for the frame with 16 floors) and great 

displacement (for the 32-storey frame). Conversely, 

the classification, according to the amplification 

factor B2 (adopted by [8] as a parameter for the 

evaluation of the structures regarding the sensitivity 

to lateral displacements), is small displacement (for 

the frame with 1 floor), medium displacement (for 

the frames with 2, 4 and 8 floors) and great 

displacement (for the frames with 16 and 32 floors). 

Fig. 15 shows the behavior of the structure 

regarding lateral displacements along its entire 

height for the elastic analyses in the 1st and 2nd-

order. The frames with floors 1, 2, 4, 8 and 16 had a 

maximum horizontal displacement at the top of the 

columns lower than the maximum allowed by [8], 

while the 32-storey frame had a maximum 

horizontal displacement at the top of the columns 

higher than the maximum allowed by the standard

  

Table 5: Results of 1st- and 2nd-order displacements, degree of lateral displacement and amplifier factor B2, 

obtained per floor, of the plane frame with 8 columns. 

Floor ∆𝐡,𝟏(M) ∆𝐡,𝟐(M) ∆𝐡,𝟏/∆𝐡,𝟐 B2 

1 Floor 

0 0.00E+00 0.00E+00 - - 

1 -3.20E-04 -2.46E-05 0.7680 1.0645 

Maximum Value 0.7680 1.0645 

2 floors 

0 0.00E+00 0.00E+00 - - 

1 0.0011 0.0011 1.0460 1.1117 

2 0.0009 0.0010 1.0740 1.0706 

Maximum Value 1.0740 1.1117 

4 floors 

0 0.00E+00 0.00E+00 - - 

1 0.0012 0.0012 1.0410 1.0873 

2 0.0024 0.0025 1.0470 1.1092 

3 0.0034 0.0036 1.0440 1.0672 

4 0.0031 0.0033 1.0530 1.0328 

Maximum Value 1.0530 1.1092 

8 floors 

0 0.00E+00 0.00E+00 - - 
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1 0.0040 0.0020 1.0660 1.1072 

2 0.0019 0.0054 1.0790 1.1961 

3 0.0050 0.0089 1.0810 1.1880 

4 0.0083 0.0120 1.0800 1.1622 

5 0.0110 0.0150 1.0770 1.1268 

6 0.0140 0.0170 1.0740 1.0949 

7 0.0160 0.0180 1.0720 1.0524 

8 0.0170 0.0180 1.0740 1.0189 

Maximum Value 1.0810 1.1961 

16 Floors 

0 0.00E+00 0.00E+00 - - 

1 0.0036 0.0041 1.1320 1.1472 

2 0.0110 0.0130 1.1540 1.3575 

3 0.0200 0.0230 1.1650 1.4425 

4 0.0300 0.0350 1.1710 1.4596 

5 0.0390 0.0460 1.1730 1.4378 

6 0.0490 0.0570 1.1730 1.4003 

7 0.0570 0.0670 1.1710 1.3572 

8 0.0650 0.0760 1.1680 1.3132 

9 0.0730 0.0850 1.1640 1.2705 

10 0.0790 0.0920 1.1610 1.2298 

11 0.0850 0.0980 1.1570 1.1913 

12 0.0900 0.1030 1.1530 1.1548 

13 0.0940 0.1080 1.1500 1.1201 

14 0.0970 0.1110 1.1470 1.0895 

15 0.0990 0.1130 1.1460 1.0552 

16 0.0990 0.1140 1.1460 1.0007 

Maximum Value 1.1730 1.4596 

32 floors 

0 0.00E+00 0.00E+00 - - 

1 0.0088 0.0120 1.3270 1.2454 

2 0.0290 0.0400 1.3760 1.8178 

3 0.0560 0.0780 1.4100 2.3633 

4 0.0860 0.1230 1.4350 2.7662 

5 0.1180 0.1710 1.4530 2.9598 

6 0.1500 0.2200 1.4650 2.9840 

7 0.1830 0.2700 1.4720 2.9039 

8 0.2160 0.3180 1.4760 2.7742 

9 0.2480 0.3660 1.4770 2.6282 

10 0.2800 0.4120 1.4750 2.4828 

11 0.3100 0.4570 1.4720 2.3454 

12 0.3410 0.5000 1.4670 2.2187 

13 0.3700 0.5400 1.4610 2.1029 

14 0.3980 0.5790 1.4550 1.9975 

15 0.4250 0.6160 1.4480 1.9015 

16 0.4520 0.6510 1.4410 1.8139 

17 0.4770 0.6840 1.4340 1.7337 

18 0.5000 0.7140 1.4270 1.6601 

19 0.5230 0.7430 1.4200 1.5924 

20 0.5450 0.7700 1.4130 1.5299 

21 0.5650 0.7940 1.4070 1.4721 

22 0.5830 0.8170 1.4000 1.4185 

23 0.6000 0.8370 1.3940 1.3687 

24 0.6160 0.8560 1.3890 1.3225 
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25 0.6300 0.8720 1.3840 1.2794 

26 0.6430 0.8860 1.3790 1.2392 

27 0.6540 0.8990 1.3750 1.2015 

28 0.6630 0.9090 1.3710 1.1660 

29 0.6710 0.9180 1.3680 1.1327 

30 0.6770 0.9250 1.3660 1.1046 

31 0.6820 0.9310 1.3640 1.0772 

32 0.6850 0.9340 1.3640 0.9718 

Maximum Value 1.4770 2.9840 

 

 

   
(a) 1 Floor (b) 2 floors (c) 4 floors 
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(d) 8 floors (e) 16 floors (f) 32 floors 

Fig. 15: Graphs of lateral displacement versus height of the plane frame with 8 columns. 

 

The calculation forces acting on the bars of 

the 1st floor of each of the structures studied with 8 

columns were also analyzed after performing the 

1st- and 2nd-order elastic analyses via DSM and the 

approximate 2nd-order elastic analysis via MAM. 

It was observed that the results obtained 

from the second-order (rigorous and approximate) 

analyses are very close to each other, with the values 

of the approximate elastic analysis sometimes 

showing values higher than those of the rigorous 

analysis when compared to the frames with 1, 2, 4, 8 

and 16 floors, which was expected, since these 

structures moved very little laterally. The 32-storey 

frame, which had a second-order lateral 

displacement greater than three times that allowed 

by the standard, showed a discrepancy in all results, 

as also seen in the 4-columnand 32-storey frame 

analyzed in item 6.1 of this study. 

VI.3 DETAILED ANALYSIS OF THE STRESSES 

ACTING ON THE BOTTOM OF THE MOST 

COMPRESSED COLUMN OF THE ANALYZED 

FRAMES 

 

VI.3.1 Plane steel frame with rigid connections 

and 4 columns 

Table 6 shows the results of the bending 

moment acting on the bezel of the most compressed 

column (bar 4) of the column with 4 columns for 

situations with 1, 2, 4, 8, 16 and 32 floors. 

 

Table 6: Comparison of the bending moment of the 

calculation obtained by first and second-order elastic 

analysis and by the MAM acting in the bottom of bar 

4 (most compressed column) of the frame with 4 

columns for the various situations studied. 

Floor 

1st Order 
2nd Order 

DSM MAM 

𝐌𝐬𝐝,𝟏(kN.m) 𝐌𝐬𝐝,𝟐(kN.m) 𝐌𝐬𝐝,𝟐(kN.m) 

1 -5.448E+01 -5.504E+01 -5.455E+01 

2 -4.765E+01 -4.883E+01 -4.896E+01 

4 -9.127E+01 -9.408E+01 -9.505E+01 

8 -2.039E+02 -2.191E+02 -2.222E+02 

16 -7.024E+02 -8.446E+02 -8.151E+02 

32 -2.799E+03 -4.728E+03 -3.618E+03 

 

In Figs. 16 and 17, the graphical comparison 

between the bending moment values shown in Table 

6 is shown as a function of the number of floors that 

the frame has, obtained by the 1st and 2nd-order 
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elastic analysis via DSM and approximate elastic 

analysis via MAM. 

 
Fig. 16: Calculation bending moment curves 

obtained by 1st and 2nd-order elastic analysis 

and by the MAM, acting on the bottom of bar 4 

(most compressed column) of the frame with 4 

columns, for the various situations studied. 

 

 
Fig. 17: Comparative graph of the results shown 

in Table 6. 

 

Table 7 shows the results of the shear force 

acting on the bottom of the most compressed column 

(bar 4) of the column with 4 columns for situations 

with 1, 2, 4, 8, 16 and 32 floors. 

 

Table 7: Comparison of the shear force obtained by 

1st and 2nd-order elastic analysis and by the MAM, 

acting in the bottom of bar 4 (most compressed 

column) of the frame with 4 columns, for the various 

situations studied. 

Floor 

1st Order 
2nd Order 

DSM MAM 

𝐕𝐬𝐝,𝟏(kN) 𝐕𝐬𝐝,𝟐(kN) 𝐕𝐬𝐝,𝟐(kN) 

1 4.216E+01 4.221E+01 4.216E+01 

2 3.343E+01 3.347E+01 3.343E+01 

4 5.607E+01 5.627E+01 5.607E+01 

8 8.357E+01 8.405E+01 8.357E+01 

16 1.532E+02 1.535E+02 1.532E+02 

32 3.789E+02 3.345E+02 3.789E+02 

 

In Figs. 18 and 19, the graphical comparison 

between the shear force values shown in Table 7 is 

shown as a function of the number of floors that the 

frames have, obtained by the 1st and 2nd-order 

elastic analysis via DSM and approximate elastic 

analysis via MAM. 

 

 
Fig. 18: Calculation shear curves obtained by 1st 

and 2nd-order elastic analysis and by the MAM 

acting on the bottom of bar 4 (most compressed 

column) of the frame with 4 columns for the 

various situations studied. 

 

 
Fig. 19: Comparative graph of the results shown 

in Table 7. 

 

Table 8 shows the results of the normal force 

acting on the bottom of the most compressed column 

(bar 4) of the column with 4 columns for situations 

with 1, 2, 4, 8, 16 and 32 floors. 

 

Table 8: Comparison of the normal calculation effort 

obtained by the 1st- and 2nd-order elastic analysis 

and by the MAM, acting in the crimping of bar 4 

(most compressed column) of the frame with 4 

columns, for the various situations studied. 

Floor 

1st Order 
2nd Order 

DSM MAM 

𝐍𝐬𝐝,𝟏(kN) 𝐍𝐬𝐝,𝟐(kN) 𝐍𝐬𝐝,𝟐(kN) 

1 -2.104E+02 -2.104E+02 -2.104E+02 

2 -4.443E+02 -4.444E+02 -4.445E+02 

4 -9.783E+02 -9.794E+02 -9.796E+02 
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8 -2.128E+03 -2.140E+03 -2.139E+03 

16 -4.938E+03 -5.100E+03 -5.039E+03 

32 -1.354E+04 -1.725E+04 -1.476E+04 

 

In Figs. 20 and 21, the graphical comparison 

between the normal force values shown in Table 8 is 

shown as a function of the number of floors that the 

porch has, obtained by the 1st and 2nd-order elastic 

analyses via DSM and approximate elastic analysis 

via MAM. 

 

 
Fig. 20: Curves of the normal force obtained by 

1st and 2nd-order elastic analysis and by the 

MAM, acting in the bottom of bar 4 (most 

compressed column) of the frame with 4 columns, 

for the various situations studied. 

 

 
Fig. 21: Comparative graph of the results shown 

in Table 8. 

 

VI.3.2 Plane steel frame with rigid connections 

and 8 columns 

 

Table 9 shows the results of the bending 

moment acting on the bottom of the most 

compressed column (bar 8) of the column with 8 

columns for situations with 1, 2, 4, 8, 16 and 32 

floors. 

 

Table 9: Comparison of the bending moment of 

calculation obtained by 1st and 2nd-order elastic 

analysis and by the MAM, acting in the bottom of 

bar 8 (most compressed column) of the frame with 8 

columns, for the various situations studied. 

Floor 

1st Order 
2nd Order 

DSM MAM 

𝐌𝐬𝐝,𝟏(kN.m) 𝐌𝐬𝐝,𝟐(kN.m) 𝐌𝐬𝐝,𝟐(kN.m) 

1 -5.149E+01 -5.199E+01 -5.143E+01 

2 -4.351E+01 -4.436E+01 -4.464E+01 

4 -7.425E+01 -7.596E+01 -7.695E+01 

8 -1.309E+02 -1.387E+02 -1.420E+02 

16 -3.608E+02 -4.297E+02 -4.218E+02 

32 -1.326E+03 -2.227E+03 -1.745E+03 

 

In Figs. 22 and 23, the graphical comparison 

between the bending moment values shown in 

Table 9 is shown as a function of the number of 

floors that the frame has, obtained by the 1st and 

2nd-order elastic analysis via DSM and approximate 

elastic analysis via MAM. 

 

 
Fig. 22: Calculation bending moment curves 

obtained by 1st and 2nd-order elastic analysis 

and by the MAM, acting on the bottom of bar 8 

(most compressed column) of the frame with 8 

columns, for the various situations studied. 

 

 
Fig. 23: Comparative graph of the results shown 

in Table 9. 

 

Table 10 shows the results of the shear force 

acting on the bottom of the most compressed column 

(bar 8) of the column with 8 columns for situations 

with 1, 2, 4, 8, 16 and 32 floors. 
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Table 10: Comparison of the shear force obtained by 

1st and 2nd-order elastic analysis and by the MAM, 

acting in the bottom of bar 8 (most compressed 

column) of the frame with 8 columns, for the various 

situations studied. 

Floor 

1st Order 
2nd Order 

DSM MAM 

𝑽𝒔𝒅,𝟏(kN) 𝑽𝒔𝒅,𝟐(kN) 𝑽𝒔𝒅,𝟐(kN) 

1 4.058E+01 4.062E+01 4.058E+01 

2 3.174E+01 3.174E+01 3.174E+01 

4 5.091E+01 5.104E+01 5.091E+01 

8 6.791E+01 6.831E+01 6.791E+01 

16 1.032E+02 1.045E+02 1.032E+02 

32 2.131E+02 2.094E+02 2.131E+02 

 

In Figs. 24 and 25, the graphical comparison 

between the shear force values shown in Table 10 is 

shown as a function of the number of floors that the 

frames have, obtained by the 1st- and 2nd-order 

elastic analysis via DSM and approximate elastic 

analysis via MAM. 

 

 
Fig. 24: Calculation shear curves obtained by 1st 

and 2nd-order elastic analysis and by the MAM, 

acting in the bottom of bar 8 (most compressed 

column) of the frame with 8 columns, for the 

various situations studied. 

 

 
Fig. 25: Comparative graph of the results shown 

in Table 10. 

 

Table 11 shows the results of the normal force 

acting on the bezel of the most compressed column 

(bar 8) of the column with 8 columns for situations 

with 1, 2, 4, 8, 16 and 32 floors. 

 

Table 11: Comparison of the normal calculation 

effort obtained by 1st- and 2nd-order elastic analysis 

and by the MAM, acting in the bottom of bar 8 

(most compressed column) of the frame with 8 

columns, for the various situations studied. 

Floor 

1st Order 
2nd Order 

DSM MAM 

𝑵𝒔𝒅,𝟏(kN) 𝑵𝒔𝒅,𝟐(kN) 𝑵𝒔𝒅,𝟐(kN) 

1 -2.089E+02 -2.088E+02 -2.088E+02 

2 -4.409E+02 -4.409E+02 -4.409E+02 

4 -9.671E+02 -9.675E+02 -9.675E+02 

8 -2.071E+03 -2.077E+03 -2.077E+03 

16 -4.595E+03 -4.665E+03 -4.643E+03 

32 -1.116E+04 -1.265E+04 -1.171E+04 

 

Figs. 26 and 27 show the graphical comparison 

between the values of normal force present in 

Table 11 as a function of the number of floors that 

the frame has, obtained by the 1st- and 2nd-order 

elastic analysis via DSM and approximate elastic 

analysis via MAM. 

 

 
Fig. 26: Curves of the normal force obtained by 

1st and 2nd-order elastic analysis and by the 

MAM acting in the bottom of bar 8 (most 

compressed column) of the frame with 8 columns 

for the various situations studied. 
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Fig. 27: Comparative graph of the results shown 

in Table 11. 

VII. CONCLUSION 

Considering the observed results of the 

previously studied plane frames, the method 

proposed by [8], which is based on amplifier factor 

B1 and B2, was satisfactory as long as the maximum 

horizontal displacement of the top of the column 

relative to the base, verified in the service limit state 

of excessive displacements of the structure, did not 

exceed the limit value (H/400). For lateral 

displacements of the top of the structure higher than 

the limit established by the Brazilian standard, the 

2nd-order requesting forces obtained through the 

MAM become divergent from the same 2nd-order 

requesting forces obtained through the 2nd-order 

elastic analysis via DSM using the geometric 

stiffness matrix, which is the methodology used by 

the structural analysis software. 

It is suggested for future studies that the same 

comparative analysis be performed in steel spatial 

frames of a real project. 
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