
M.Bhavani, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 11, Issue 8, (Series-III) August 2021, pp. 18-24

www.ijera.com DOI: 10.9790/9622-1108031824 18 | P a g e

Design of Single Precision Floating Point Arithmetic Logic Unit

M.Bhavani*, G.Sirisha**, K.Siva Kumari***, B.Lalitha Rani****,

A.Charishma*****
*(Assistant Professor, Department of Electronics and Communication Engineering, Bapatla Women’s

Engineering College, Bapatla)

** (Department of Electronics and Communication Engineering, Bapatla Women’s Engineering College,

Bapatla,)

***(Department of Electronics and Communication Engineering, Bapatla Women’s Engineering College,

Bapatla,)

****(Department of Electronics and Communication Engineering, Bapatla Women’s Engineering College,

Bapatla,)

*****(Department of Electronics and Communication Engineering, Bapatla Women’s Engineering College,
Bapatla,)

Date of Submission: 24-07-2021 Date of Acceptance: 09-08-2021

I. INTRODUCTION

In the newest technology, Precision plays a

major part in more applications like Digital signal

processing. Floating point numbers [1] are used to

represent noninteger fractional numbers and are used

in most engineering and technical calculations.The

most commonly used floating point standard is the

IEEE Standard.According to this standard, floating

point numbers are represented with 32bits(single

precision). Floating point numbers are used in more

applications are such as telecommunications,
medical, imagining, radars etc.In this paper the

operations are executed on 32-bit floating point

numbers and the The logical method for Addition and

Subtraction operation is designed to getting better

performance which is required in signal computation

applications. The design of floating point ALU is

used to get the aim of small area. Then we use

Verilog hardware description language (VHDL) [2].It

is a user defined language .In VHDL we use two

approaches to get better performance .In the two

approaches, we use top down approach. Topdown

approach means stepwise design. The HDL is used to

characterize the performance of overall circuit with

respect to speed and area. In the ALU, The main

block of central processing unit (CPU) that handles
all format have 32 bits to represent a floating

arithmetic operations, logical operations etc.

 The IEEE 754 floating point standard

format has dividing into three main parts. They are

Sign(1 bit), Mantissa(8 bits), exponent(23 bits).

IEEE 754 floating point format:

 The IEEE 754 floating point format have 32

bits for representing a floating point number.

Fig 1: IEEE 754 floating point format

The standard format to represent floating

point numbers which has three major parts as shown

in figure1. They are sign, mantissa and exponent. The

sign bit carries 1-bit where ‘1’ and ‘0’represents a

ABSTRACT
The main aim of Floating point Arithmetic logic unit (ALU) is presented that in stepwise design, all arithmetic

operations like Addition, Subtraction, Multiplication and Division are combined to form a Floating point ALU

unit.These operations are executed on 32-bit floating point numbers. Each operation is executes individual to

each other.This unit uses the IEEE-754 single precision format.This paper presents the Design of 32-Bit floating

point Arithmetic logic unit. The methods of Addition,Subtraction,Multiplication and Division are simulated

Verilog HDL using Xilinx Software,14.7 Version.The logical method for Addition and Subtraction operation is

expanded in order to decrease the no.of gates used.The results shows that the RTL view and Synthesis reports.

Keywords: Delay, Floating point number, no.of LUTS, Verilog, Xilinx.

RESEARCH ARTICLE OPEN ACCESS

M.Bhavani, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 11, Issue 8, (Series-III) August 2021, pp. 18-24

www.ijera.com DOI: 10.9790/9622-1108031824 19 | P a g e

positive and negative number [2]. The mantissa is

also known as floating point number or significant, it

carries much no.of bits. which carries 23 bits. It

represents precision bits of numbers [2]. The

exponent carries 8 bits it represents both positive and

negative [2]. Floating point numbers are of four types

of exceptions. They are Overflow, Underflow,

Division by zero, Invalid operation [3].

II. OLDER DESIGNS

1. Floating point fused Add-Subtract

unit

Fig 1: Computer Architecture of Floating point fused

add subtract unit

The architecture of the fused add-subtract

unit is shown in figure 1. It is derived from the

floating-point add unit. The exponent difference,

significant shift and exponent adjustment functions

can be performed once with a single set In Fig 1

shows the architecture of the fused add-subtract unit,

the blocks with white background are the same

blocks used for a single floating-point add operation.

The blocks with green background are additional

blocks used to perform the subtract operation, and the
blocks with yellow background are similar to the

floating point add blocks, but with extended

functionality to calculate the sign and exponent for

the new subtract operation.

 It detects the effective operation based

on the signs of the two operands and the intended

operation [4]. It also generates guard and pre-sticky

bits that aid in the proper rounding of the final

results. In a parallel conventional implementation of

the fused add-subtract such as that two floating-point

adders are used to perform the operation [4]. This
approach is fast, however, the area and power

overhead is large because two floating point

add/subtract units are used.

 In a conventional implementation of

the fused add-subtract one floating-point

adder/Subtractor is used to perform the operation in

addition to a storage element to store the addition or

subtraction result. This approach is very efficient in

terms of area. However, due to the serial execution of

both operations, the time needed to get both results is

twice the time needed by the parallel approach. Also

since a storage element is used, it adds slightly to the
area and power overhead, through two floating-point

adders operating.

 Two inputs of 32 bits are applied at the

input of the unit. This unit passes 23 bit mantissa of

both the inputs to a multiplexer. The 8 bit exponents

are also given to an Exponent Comparison block.

This comparison block generates a control signal to

pass one of the mantissa of lower exponent value to

the shift register. Therefore for normalizing, the

result is given to a Rounding/Normalizing block. The

circuit has Rounding/Normalizing block for
normalizing the resulting number. In

addition/subtraction block, the result may overflows

and generates one carry/borrow bit. The rounding is

done by shifting the result to 1 bit right and raising

the exponent by 1. The exponent is raised in the

exponent adjustment block. The final rounded result,

adjusted exponent and the final sign bit are passed to

the output of the add-subtract unit i.e. sum and

difference.

M.Bhavani, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 11, Issue 8, (Series-III) August 2021, pp. 18-24

www.ijera.com DOI: 10.9790/9622-1108031824 20 | P a g e

2. Floating point fused Dot-Product unit

Fig 2: Computer architecture of floating point Dot-

Product unit

The architecture of the fused dot-product

unit is shown in figure 2. It is derived from the

floating-point add unit. The exponent difference,

significand shift and exponent adjustment functions
can be performed once with a single set of hardware,

with the results shared by both the add and the

subtract operations in fig.3. New add and normalize

blocks are needed for the new subtract operation. It

shows the architecture of the fused add-subtract unit,

the blocks with white background are the same

blocks used for a single floating-point add operation.

The blocks with green background are additional

blocks used to perform the subtract operation, are

similar to the floating point add blocks, but with

extended functionality to calculate the sign and
exponent for the new subtract operation. Since two

operations are explicitly performed for sum and

difference results (e.g., if the addition is used for the

sum, the subtraction is used for the difference), the

addition and subtraction are separately placed and

only one LZA and normalization (for the subtraction)

is required.

Assuming both sign bits are positive, the

addition and subtraction are performed separately.

Then, two multiplexers select the sum and difference

with the operation decision bit, which is the XOR of

the two sign bits. This will realize their Dot-product

format of multiplication and sum them again to make

as FDP for better than serial implementation. This

FDP will increase the efficiency of FFT

implementation.
In the FDP unit that is shown in above

figure, a multiplier tree, an aligner in addition to 4:2

reduction tree are added to a conventional FPM to

perform the dot-product operation. The remaining
components of the FPM are used as is which results

in a significant area reduction compared to the

conventional implementation [5]. Although it is not

especially attractive, a system could use this unit to

replace a floating-point adder and a floating-point

multiplier. If operands B and D are set to one, then

the unit will perform addition only with simple data

forwarding multiplexers for operands A and C to skip

the multiplication trees. The speed of the addition

will be one multiplexer delay more than a discrete

floating-point adder [5].
In these both architectures cannot peform all

arithmetic and logical operations. So we can perform

all arithmetic operations, We can use Arithmetic

logic unit (ALU).

III. PROPOSED METHOD

1. Architecture
Arithmetic unit performs Arithmetic

operations on floating point numbers consist of

addition, subtraction, multiplication and division. The

operations are done with algorithms similar to those

used on sign magnitude integers (because of the

similarity of representation) — example, only add

numbers of the same sign. If the numbers are of

opposite sign, must do subtraction.

The Addition, Subtraction, Multiplication

and division have been executed by the 32-bit

floating point ALU as shown in figure 1. Pre
Normalization blocks have been used. First block is

used for the addition/subtraction and other for

multiplication/division operations [6] . The Mantissa

part has been normalised by the post normalization

unit [6]. Then the final result is obtained. Two IEEE

754 32 bit operands have been taken to do the

arithmetic operations. Eventually the exceptions

occurred have been detected and handled by using

handling. The Exception handling are of two types.

They are one is Over flow and another one is

Underflow. First one is overflow that occurs in

Addition and underflow occurs in Subtraction.
Overflow is said to occur when the true

result of an arithmetic operation is finite is said to

occur when the true result of an arithmetic operation

is finite but larger in magnitude than the largest

floating point number which can be stored using the

given precision. Underflow is said to occur when the

true result of an arithmetic operation is smaller in

magnitude (infinitesimal) than the smallest

M.Bhavani, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 11, Issue 8, (Series-III) August 2021, pp. 18-24

www.ijera.com DOI: 10.9790/9622-1108031824 21 | P a g e

normalized floating point number which can be

stored. Overflow can’t be ignored in calculations

whereas underflow can effectively be replaced by

zero. These exceptions are handled by using

exception handling block. If there are no exceptions

then we get final result. In such cases, the result must

be rounded to fit into the available number of M

positions. The extra bits that are used in intermediate
calculations to improve the precision of the result are

called guard bits. It is only a tradeoff of hardware

cost (keeping extra bits) and speed versus

accumulated rounding error, because finally these

extra bits have to be rounded off to conform to the

IEEE standard.

Fig 1: Floating point ALU Architecture

2. Flowcharts

2.1 Addition and Subtraction

Fig 2.1: Flow chart for Addition and Subtraction

The flow chart for Addition and Subtraction

as shown in figure 2.1. Here duplet scopes be

allowed transpire occupy measure. One and other
ivalues exist matching indication, Both MSB bit

perhaps to ‘1’ or ‘0’ (Balnace of contrasy

forces).Although the pair of ivalues exist non

identical indications, especially be MSB of only

integer added is ‘1’ (positive) and the MSB of other

is ‘0’ (negative).In the first place require to inspect

effective indication of twain numbers if the signal of

pair digits possess are non identical execute two’s

complement for the MSB number having ‘1’.Behind

Adding performance takes place carry out one and

the other digits.
 First step is to take two floating point

numbers using IEEE 754 standards. Now we separate

mantissa, exponent and sign bits. Next we go to

exponent compare circuit. It performs the

comparision operation of two exponents. If we have a

exponent difference we perform left shift operation,

Otherwise just pass the values of exponent and

M.Bhavani, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 11, Issue 8, (Series-III) August 2021, pp. 18-24

www.ijera.com DOI: 10.9790/9622-1108031824 22 | P a g e

mantissa. There are two possibilities that may occur

while computing two 32-bit floating point numbers.

By depending on sign bit, we perform arithmetic

operation. If both operands are same sign, Their MSB

could be either ‘1’ or ‘0’ (Positive or Negative).

When both operands are of different signs, that is

MSB of one operand is ‘1’ (Positive) and the MSB of

other is ‘0’ (negative).We need to check the sign of
two floating point numbers. If the sign of both

numbers are different, then we perform one’s

complement plus one operation for having MSB is

‘1’. After Addition operation is executed. If we get

any exceptions like overflow or underflow .Then

overcome the exceptions by left shift the mantissa

until MSB becomes ‘1’ and decrement the exponent

by 1. Finally then combine the resultant mantissa,

exponent and sign bit to from the IEEE 754 format.

2.2 Multiplication

Fig 2.2: Flowchart for Multiplication

The algorithm of floating point

multiplication is shown in fig 2.2. First step is to take

the two floating point numbers using IEEE 754

standard. We have to check whether the multiplicand,
multipliers and or zeros or not. We perform Addition

and Subtraction operations, and then align the

mantissas. In such a way that both the exponents are

equal. In multiplication algorithm, there is no need to

align the mantissas. To get exponent output, add the

two exponents and the bias 127 is subtracted. The ex-

or operation is performed on the MSB bits to get the

sign bit. Multiply the mantissa parts of the two

numbers. We used fixed point signed magnitude

multiplication algorithm. Check the exception flags

are overflow, underflow have been determined.

Overflow means the corresponding register cannot

store the additional bit. After normalisation we got

the final output.

2.3 Division

Fig 2.3 :Flowchart for division

The flowchart for division as shown in

above figure 2.3.First step is to take the two floating

point numbers using IEEE 754 standard. We check

zeros or not. If BR is zero then we cannot possible to

perform division. If divisor is zero, we get division

by zero problem. Report the error message as divide
by zero. If BR is not equal to zero, that means divisor

is zero. Now check the value of dividend. It is present

in Ac register. Suppose dividend value is zero, then

result is also zero. No need to continue the process.

Otherwise perform the operation. Here QS is nothing

but the size of quotient and depends upon dividend

M.Bhavani, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 11, Issue 8, (Series-III) August 2021, pp. 18-24

www.ijera.com DOI: 10.9790/9622-1108031824 23 | P a g e

sign and divisor sign as same or different. It performs

exclusive or operation on dividend sign and divisor

sign. If they are same then the result is zero and they

are different, result will be one. Next we have to

check any overflow or underflow. So for that purpose

we have to subtract division from the dividend. In

order to perform the subtraction operation, we need

to add two’s complement of the division to dividend.
To overcome the overflow, we perform shift right

operation. To get exponent output, Subtract the two

exponents and the bias 127 is added. The ex-or

operation is performed on the MSB bits to get the

sign bit. Check the exception flags and overflow or

underflow have been determined. Divide the

mantissa parts of the two numbers. We have to

follow restoring algorithm. After normalisation we

got the final output.

IV. SIMULATION RESULTS AND

PERFORMANCE ANALYSIS

Fig 1: RTL view of 32-bit floating point ALU

The above figure 1 show the Register
Transfer Level (RTL) of Floating point ALU. It

describes how data is transformed as it is passed from

register to register .The transforming of the data is

performed by the combinational logic that exists

between the registers.

Fig 2: Simulation Outputs for 32-bit floating point

ALU

 The above figures 2 shows the simulation

output for 32- bit flaoting point ALU, is represented

in binary and unsigned decimal form. By depending

on selection lines to find the output.

Fig 4: Device utilisation of 32-bit floating point ALU

The above figure 4 shows the Device

utilisation of 32-bit floating point ALU, it is

presented that how much area is occupied . It takes

lesser area compared to older designs. Mainly this

figure 4 shows the no.of LUTs are 7,247. It is the

main aim to use Floating point ALU.

M.Bhavani, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 11, Issue 8, (Series-III) August 2021, pp. 18-24

www.ijera.com DOI: 10.9790/9622-1108031824 24 | P a g e

Fig 5: Power and Delay analysis of 32 bit floating

point ALU.

The above figure 5 shows the power and

Delay analysis of 32- bit floating point ALU, is
presented that power is 0.795W and delay is

102.556ns.

V. CONCLUSION
The implementation of a 32-bit floating

point arithmetic logic unit is done and efficient

algorithm for addition and subtraction is

implemented in order to reduce the no.of gate used.

For future enhancement, we use pipelining
technique.

ACKNOWLEDGEMENTS
We sincerely thank to my project guide,

who helped me in all aspects of my project to

complete in short term. We also thank Bapatla

Women’s Engineering College for providing

necessary facilities towards carrying out this work.

REFERENCES
[1]. Shanthala. N1, Nayana. M,

Chandrashekar.C, Dr. Siva Yella mp al li

“Basic operation performed on Arithmetic

Logic Unit (ALU) For 32-Bit Floating Point

Numbers”, International Journal of Applied

Engineering Research ISSN 0973-4562

Volume 12, Number 12 (2017) pp. 3248-

3252 Research india Publications.

http://www.ripublication.com

[2]. Swathi.A, G.Srinivasulu “ASIC

implementation of a High speed double

Presicion(64) floating point unit using

verilog”, International journal and magazine

of engineering, technology, management and

research ISSN 2348-4845

[3]. Dave Omkar R, Aarthy M, “ASIC

implementation of 32 and 64 Bit floating
point ALU using Pipelining”, International

Journal of computer applications(0975-

8887) volume 94-No. 17,May 2014

[4]. H.H. Saleh, ―H.Fused Floating-Point

Arithmetic for DSP,‖ PhD dissertation,Univ.

of Texas, 2008.

[5]. Jorge Tonfat, Ricardo Reis, ―Improved

Fused Floating Point Add-Subtract and

Multiply-Add Unit for FFT Implementation‖,

in 2014 2nd International Conference on

Devices, Circuits and Systems (ICDCS).
[6]. Ushasree G, R Dhanabal, Dr Srat Kumar

sahoo, “VLSI implementation of a High

Speed Single Precision Floating Point Unit

Using Verilog”, Proceedings of 2013 IEEE

conference on information and

communication technologies(ICT 2013)

[7]. Naresh Grover, M,K Soni, “Design of FPGA

based 32-bit Floating Point Arithmetic Unit

And verification of its VHDL code using

MATLAB”, I.J Information Engineering and

Electronics Buisiness, 2014,1,1-14 published

Online February in MECS
[8]. Sayali A. Bawankar, Prof. Girish. D.

Korde,” Design and Simulation of Floating

Point Adder,Subtractor & 24-bit Vedic

Multiplier”, International Jornal for

Research in Applied Science &Multiplier”,

International Journal for Research in

Applied Science & Engineering Technology

(IJRASET) ISSN: 2321-9653; IC Value:

45.98; SJ Impact Factor:6.887 Volume 5

Issue V11, July 2017-Available at

www.ijraset.com
[9]. Prashanth B, P.Anil Kumari, G

Sreenivasulu,” Design & Implementation of

Floating point ALU on a FPGA Processor”,

2012 International Conference on

Computing on Computing, Electronics and

Electrical Technologies[ICCEET]

[10]. Manisha Sangwan, A Anita Angeline,

“Design and Implementation of Single

Precision Pipelined Floating Point Co-

Processor”, 2013 International Conference

on Advanced Electronic Systems(ICAES).

http://www.ripublication.com/
http://www.ijraset.com/

