
Dilip K, et. al. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 11, Issue 7, (Series-V) July 2021, pp. 32-41

www.ijera.com DOI: 10.9790/9622-1107053241 32 | P a g e

Design and Verification of AHB Protocol Using System Verilog
and Universal Verification Methodology (UVM)

Dilip K*, Vijaya Prakash A M*
* M.Tech, Department of ECE, Bangalore Institute of Technology, Karnataka, India
* Professor Department of ECE, Bangalore Institute of Technology, Karnataka, India

ABSTRACT :
Recently, VLSI technology has improved significantly and more transistors can be incorporated in a chip. A
System on-Chip (SOC) Configuration have number of blocks are integrated on a single chip. Numerous blocks
are integrated in single IC, but to access their function, they requires a powerful communication architecture.
This can only be achieved by using on-chip bus architecture to meet their requirements. Different Companies
has various on-Chip Bus architectures but one of the most suitable architecture is AMBA by ARM. AMBA
consist of three buses, namely, Advanced System Bus (ASB), Advanced Peripheral Bus (APB) and Advanced
High Performance Bus (AHB).when compared to other two buses AHB is high performance, high bandwidth
and for high clock frequency system modules the System designers select AHB as their primary choice. The
AHB (Advanced High-performance Bus) is a superior bus in AMBA (Advanced Microcontroller Bus
Architecture) family. It is a norm for intercommunication of modules in a framework. The AHB (Advance High
performance) bus Standards are characterized by ARM which supports for the communication of on-chip
memories, processors and interfaces of external off-chip memory. Here the basic blocks such as master, slave,
decoder, and arbiter are used to design and verify an AHB that supports multiples master and multiples slave.
The conventional way of verification is simulation based. As the Technology improves the complexity of IC’s
has been increased. Thus, time spent on verification has also been increased. The main focus is to design of
AHB protocol in Verilog and verify using Hardware verification language such as System Verilog and standard
Methodology such as Universal Verification Methodology (UVM). QuestaSim (Advanced verification tool from
Mentor Graphics) is an EDA tool used to simulate and verify the design and obtain Coverage report.
Keywords – AMBA, AHB, APB, ASB, OCB, SOC, UVM

Date of Submission: 10-07-2021 Date of Acceptance: 26-07-2021

I. INTRODUCTION
1.1 About AMBA bus
 The AMBA is an Advanced
Microcontroller Bus Architecture defined by ARM,
it is an open standard widely used for an on-chip bus
system. The standard is intends to simplify the
component design by allowing the use of
interchangeable parts the within the SoC style. It
promotes the use of holding parts, so that a
minimum of a neighborhood of the SoC can be
reconstructed, instead of having to rewrite it entirely
each time. AHB (Advanced High-performance Bus),
ASB (Advanced System Bus), and APB (Advanced
Peripheral Bus) are the bus groups defined in the
AMBA AHB. The AHB is employed for high-
performance, high frequency architecture. These
applications includes are ARM cores and high-speed
RAM inside the system, Nand Flash, DMA and
Bridge links. [1] The APB is used for connecting
external devices such as UART, keypad and timer,
and has low performance requirements, while it is

used for optimizing power consumption. AMBA is
the Standard bus-based microcontroller typical
feature a high-performance system hub bus (AHB or
ASB) that supports for external memory bandwidth,
including CPUs, on-chip memories, and other direct
data access (DMA) devices. For most of the
transmission between various units, such as CPUs,
on-chip memories, and DMA, the bus serves as a
high bandwidth interface.

 Fig.1: AMBA bus Block Diagram

RESEARCH ARTICLE OPEN ACCESS

Dilip K, et. al. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 11, Issue 7, (Series-V) July 2021, pp. 32-41

www.ijera.com DOI: 10.9790/9622-1107053241 33 | P a g e

1.2 Advance System Bus (ASB)
 The ASBs (Advanced system buses) are
used for defining high performance buses that can be
used in embedded microcontrollers with 16-bit and
32-bit architecture. An ASB provides a high
performance pipelined bus that can provide access to
multiple masters. The Flow of essential operations of
ASB is:
 • Master communicates with the bus.
• Arbiter observes master’s status.
• Then, master begins communicating with the bus.
• The decoder uses the accurate address lines to
 choose a bus slave.
• Then, a signal is given back to the bus master by

 the slave.

1.3 Advance Peripheral Bus (APB)
The Advanced Peripheral Bus (APB) is

utilized for connecting low bandwidth peripherals.
APB is a simple non-pipelined protocol that can be
utilized to communicate from a master to a multiple
slaves for read and write through the shared bus. [5]
The read and write bus shares the same set of signals
and no burst data transfers are supported.

1.4 Advance High Performance Bus (AHB)
 An AHB bus is a latest generation of
AMBA bus that is intended to handle the necessities
addresses the prerequisites of high performance
synthesizable design styles. It is a Standard system
bus that supports multiple bus masters and provides
high-bandwidth operation. AMBA AHB implements
the features needed for standard, high clock
frequency systems including:
• Burst transfers.
• Single-cycle bus master relinquishing.
• Single-clock edge operation.
• Non-tristate implementation.
• Wider information bus configurations (32/128
bits).
The AMBA AHB bus protocol is designed using a
central multiplexer interconnection design. By
design, all bus masters transmit address and control
signals indicating the data transfer they want to
perform and the arbiter determines which master has
its address and control signal based on that
information it is provided to all of the slaves. The
decoder is used to control the read data and response
signal from multiplexer, which chooses the proper
signals from the slave that is engaged in the transfer.

II. LITERATURE REVIEW
Design and verification of AMBA AHB

bus which consist of one master and multiple slave
designed in Verilog Hardware descriptive language
and shown the output for read and write operation.
[1] The Design under test is verified using the

system Verilog environment and obtained the
coverage report around 65%.This paper tells us the
coverage report obtained is less. The Questa sim is
the EDA tool used to obtain the simulation output.

The paper presents a Method for Designing
an efficient[2] master interface and slave interface
based on the finite state machines in Verilog
hardware description language and used the Mentor
graphics tool Model sim 10.03a to simulate and the
synthesis of the design is performed in Xilinx ISE
design tool. The completed AMBA AHB system is
then inspected for proper lossless communication
between master and slave interface. This article tells
us does not used the verification language such as
system Verilog.

In this the efficient design of an AMBA
controller is designed and tested [3] for read and
write operations using a Xilinx simulator. The read
and write operations using AMBA are illustrated
with simple examples.

As reported in paper [4], The AHB master
interface and arbiter interface are designed using the
finite state machines in Verilog hardware description
language and the design is simulated with the help of
Questa Sim. AMBA AHB system is then tested to
ensure that the master and the slave interfaces
communicate in the lossless manner

 The above review tell about the most of the
related work is on the Verilog hardware descriptive
language and the more work to be done in the
verification. The present work use the verification
language such as system Verilog and standard
methodology such as UVM (universal verification
methodology).

III. DESIGN METHODOLOGY
 The Design under Test (DUT) Block
diagram consist of multiple masters and slaves. The
masters are namely m1, m2, and m3 and slaves are
namely s1, s2, and s3. The master as address and
control signals such as HADDR, HTRANS,
HBURST and HSIZE. Slave as address and control
signal such as HADDR, HREADY and HRESP. The
block diagram of DUT as the blocks such as master,
slave, decoder and arbiter. The Arbiter consist of
both decoder and multiplexer.
 Initially the master as the data_1, data_2,
and data_3 each masters as the data and it is driven
by address and control signals. At the output of
master block the HWDATA_tb1, HWDATA_tb2
and HWDATA_tb3 are the write data transactions
obtained when wr=1; then the write data is send to
multiplexer based on the address on the decoder.
The arbiter perform the operation such that it does
not allows the masters to send the data to same slave
at a particular time for the particular address it

Dilip K, et. al. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 11, Issue 7, (Series-V) July 2021, pp. 32-41

www.ijera.com DOI: 10.9790/9622-1107053241 34 | P a g e

allows master m1 as the write data HWDATA_tb1 is
send to slave i.e. HSEL1, then the slave1 read the
data, rddata1 and send the response signal HRESP1
to the m1 through slave multiplexer based on the
address on the decoder that it complete the
transaction of data when m1 receive the response.
 For the next particular transaction the
initial three master m1, m2 and m3 as the data_1,
data_2 and data_3 are send and obtained the
HWDATA_tb1, HWDATA_tb2 and HWDATA_tb3
as the write data transactions, now the arbiter is
allows the m1 and m2 write data to transfer and the
write data is read by the slaves i.e HSEL1 and
HSEL2 when the wr=0 and obtained the output
rddata1, rddata2, and the slave as HRESP signal
which goes high and additional HREADY signal
indicates that the transaction of rddata1 and rddata2
are completed and ready to receive the other data.
 For the next transaction the initial three
master m1, m2 and m3 as the data1, data2 and data3
are send and obtained the HWDATA_tb1
,HWDATA_tb2 and HWDATA_tb3 as the write
data transactions, now the arbiter allows the m1 , m2
and m3 write data to transfer and the transaction
write data is read by the slaves i.e HSEL1 , HSEL2
and HSEL3 when the wr=0; and obtained the output
rddata1 , rddata2 and rddata3, and the slave as
HREADY signal indicates that the transaction of
rddata1 , rddata2 and rddata3 are completed and
ready to receive the other data from the masters.

Fig.2: AHB multi master and slave DUT

3.1 Components of AHB
The AHB bus as four components namely

3.1.1 AHB Master
3.1.2 AHB Slave

 3.1.3 AHB Arbiter
 3.1.4 AHB decoder

3.1.1 AHB Master

 The AHB bus master initiate the
read/write operations by providing address and
control information. The maximum of 16 masters are
allowed in our design we are using 3 masters.

Fig.3: AHB Master

 HRESETn: The bus reset signal it is used to

reset the system and the bus.
 HCLK: The clk is used for all bus transfers.
 HADDR [31:0]: The 32-bit address bus.
 HTRANS [1:0]: Indicates the type of transfer

such as idle, busy, sequential and non-
Sequential.

HTRANS

 Type

 Description

 00

 Idle

Master uses the idle
transfer when it does
not wish to perform
the data transfer the
slave must ignore
the data by sending
the OKAY response
to the master

 01

 Busy

The busy transfer
type used to insert
the idle cycle in
between the burst
and the master
address and control
reflect in the next
burst transfer the
slave must provide
the zero OKAY
state response to the
master

Dilip K, et. al. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 11, Issue 7, (Series-V) July 2021, pp. 32-41

www.ijera.com DOI: 10.9790/9622-1107053241 35 | P a g e

 11

 Non
sequential

The address and
control signal is not
related to previous
transfer and it of
single burst type or
fixed type burst

 10

 sequential

The remaining
transfer of burst is
related to sequential
the address and
control signal is
related to previous
and based on the
HSIZE[2:0] and
burst operation such
as wrap and
increment

Table.1: HTRANS Types

 HWRITE: when this signal is low indicate the

read Transfer and when it is high indicates the
write transfer.

 HSIZE [2:0]: indicate the size of transfer such as
Byte (8-bit), half-word (16-bit), word (32-bit) etc.

HSIZE
 [3]

HSIZE
 [2]

HSIZE
 [0]

 Size
(bytes)

Description

 0 0 0 1 Byte
 0 0 1 2 Half word
 0 1 0 4 word

Table.2: HSIZE type

 HBRUST [3:0]: Indicates Type of burst
operation such as fixed type, increment type and
4-beat wrap and 4-beat increment type [6]

 .
HBURST[2:0] Type Description
 b000 Fixed/Single Fixed burst
 b001 Single INCR Increment

 type
 b010 WRAP4 4-beat

 wrapping
 burst

 b011 INCR 4-beat
 Increment
 burst

Table.3: BURST type

 HWDATA [31:0]: The write data bus which is
used to transfer the data from master to the
slave during write operation.

3.1.2 AHB Slave
 The AHB slave response to the transfer
given by the master and the decoder is used to select
the slave based on the HSELx signal it is the slave
signal used to select the slaves and the response is

send to the master based on HRESP. There are two
types of response given to the master if the data is
successfully read by the slave it give OKAY
response for the slave if it unsuccessful it provide
ERROR response.

Fig.4: AHB Slave

 HRDATA [31:0]: The read data bus which is

used to read the data from the master when
HWRITE is low.

 HREADY: when the HREADY signal is high
indicates theat the transfer is finished by the
slave

 HRESP : it is response given to the if the
response is zero then the slave as completed the
transfer of data and indictes okay signal and if it
is one indicates error in the transfer.

 HREADYOUT: output of slave indicate the
status of transfer.

3.1.3 AHB Arbiter

Fig.5: AHB Arbiter

 The arbiter controls the three master write
data such as HWDATA_tb1, HWDATA_tb2 and
HWDATA_tb.It operation is to control the master
data such way that different master data should not
Send to the single slave.The arbiter work is to filter
or control the write data of master such a way that it
as to send the write data to a particular Slave.

Dilip K, et. al. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 11, Issue 7, (Series-V) July 2021, pp. 32-41

www.ijera.com DOI: 10.9790/9622-1107053241 36 | P a g e

3.1.4 AHB Decoder
 The below Figure 6 shows the AHB
decoder The AHB slave has its own slave select
signals i.e HSEL1, HSEL2, HSEL3 and this signal
indicates that the transfer is particularly for the
selected slave. This slave select signal is selected
based on the address of the decoder .Then the
transfer data is read by the slave and send the
response to the particular master and ready signal
goes high for that transfer of data. If the response is
low indicates okay transfer. If the responsre is high
indicates errror transfer.

Fig.6: AHB Decoder

IV. VERIFICATION METHODOLOGY
 Verification is the significant part in the
VLSI technology. Since it is used to find out the
bugs in the RTL design at the initial stage so the
overall Design should not prove any error. Here we
creating a System Verilog Environment and
Universal verification methodology (UVM)
Environment for an AHB design. The main intention
of creating verification environment is to generate
the stimulus to the Design under test (DUT), and
check the results to verify that the DUT function is
correct.

4.1 System Verilog Environment
 System Verilog is a Hardware Description
language (HDL) and Hardware Verification
Language (HVL) based on Verilog. While it has few
features to help with design, the purpose of language
is to verify of electronic designs. [7] Open Vera, a
language denoted by Synopsys, provides the
majority of verification functionality. System
Verilog as the IEEE standard P1800-2005.
 System Verilog is a special hardware
verification language and Hardware verification
language intended to be used in function
verification. It is used to provide the high level data
Structures accessible in object-oriented languages,
such as C++. The data structures empower a higher
level of abstraction and modeling of complex data
types. The System Verilog also as constructs
necessary for modeling hardware concepts such as
cycles, tri-state values, wires, same like Verilog

hardware languages. System Verilog can be used to
simulate and verify the Verilog HDL design by
applying the high level of test input as it is known to
be Hardware verification language (HVL). The
system Verilog as the test bench architecture which
consist of component such as basepkt, generator,
driver, monitor and scoreboard.

 Fig.7: System Verilog Environment

 The above Figure 7 shown is a System
Verilog environment. The Environment includes
Design under test (DUT) written in Verilog
Hardware descriptive language (HDL) and System
Verilog test bench that includes System Verilog
interface, simulation module and test program. In
system Verilog test bench, the basepkt contains the
all input and output are send as a packet through
mailbox to generator. The generator is utilized to
create constrained random test vectors. These
vectors are sent to the driver, and then through
interface can simulate the DUT. A monitor generates
verification reports for each state, transaction, and
model message. Using the Scoreboard to checks the
results of the driven and the monitor driving them
through mailboxes any changes in the modifications
that need to be done. The development of coverage
class based on the coverage plane and we will apply
the test cases and analyze the code coverage report.
System Verilog advantage is to use of object
oriented programming, which enables the reusability
of test bench components. The interface is used to
combine the DUT and the System Verilog test bench
which includes the test program.

4.2 Universal Verification Methodology (UVM)
 System verilog is a Hardware descriptive
and Hardware verification language just like verilog
and has its particular constructs, syntax and features.
But universal verification methodology is a structure
of system verilog classes from which we can built
fully functional test benches. The RTL (Register
transfer level) design is verified using the Standard

Dilip K, et. al. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 11, Issue 7, (Series-V) July 2021, pp. 32-41

www.ijera.com DOI: 10.9790/9622-1107053241 37 | P a g e

Methodology such as Universal Verification
Methodology. It comprises of base class library
coded in System Verilog. [7] The verification
engineer can make different verification components
by extending these classes. Additionally, UVM
provides several useful verification features such as
utilizing of macros for implementing complex
functions and factories for creating the objects. The
below Figure 8 is a UVM environment. The
environment includes interface and DUT with test
bench. The test bench environment consist of agent,
sequencer, and driver and monitor as sub
components.

Fig.8: UVM Environment

Sequence item: Using the uvm_sequence_item
class, the transactions are extended to send the
randomized data to a driver to be driven onto the
bus. The field automation macros are applied to
these members of the class as well.
Sequences: A sequence is a bulk of transaction. In
the sequence class, the users can make complex
stimulus. This sequences can be randomized,
extended to make another sequence and can be
combined.
Sequencer: The data flow between Sequences and
driver is signaled by the sequencer verification
component. The sequencer has a collection of
sequences combined with it called a sequence
library. The collection of sequences utilized by a
sequencer is called sequence library. This type of
component is also known to as a driver sequencer.
Driver: Driver collect the object from the sequencer
and drives it to the next lower level such as DUT
(Design under Test) through the interface. It is
generated by extending the uvm_driver.
Monitor: monitor samples the DUT signals through
the Virtual interface signals are converts into packet
level which is then sent to other components, such as
scoreboards for the analysis. It was generated by
extending the uvm_monitor.

Agent: The agent consist the verification
components such as driver, monitor, collector and
sequencer. It used to connect these components
using TLM connections. The agent as one of the
operating modes active or passive. In the active
mode of operation, the agent initiate driver,
sequencer and monitor where as in the passive mode
of operation initiate only monitor and configured
Environment: The Environment class consist all the
sub components such as agents, driver and monitor
etc. and configures them.
Testbench: The uvm_test class defines the test cases
for the test bench specified in the test. The Different
test cases is applied to enable the configuration of
the test bench and verification components. The
uvm_test is written by extended from the
uvm_component.

V. RESULTS AND DISCUSSION
5.1 Master1 to Slave1 data transfer

 The Figure 9 show below shows the
simulation output for master1 to slave1 data transfer.
When reset is high the master data is send to the
input of the arbiter. The arbiter comprises of both
decoder and multiplexer based on that arbiter filters
the other master write data and allows for the
master1 to send the data to the slave1 (HSEL1). The
slave1 read the data and obtain the output rddata1.
When slave1 complete the transfer of data. The
response signal goes low indicating to master that
the slave as completed the transfer of data and it is
ready to accept the other data by indication the
HREADY signal high.

Fig.9: Master1 to Slave1 data transfer

5.2 Multi master to Multi slave data transfer

 When reset is high the master data is send
to the input of the arbiter. The arbiter consist of both
decoder and multiplexer based on that the arbiter
filter it allows the masters to transfer the data to the

Dilip K, et. al. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 11, Issue 7, (Series-V) July 2021, pp. 32-41

www.ijera.com DOI: 10.9790/9622-1107053241 38 | P a g e

particular slaves the Figure 10 below shows
simulation result for activation of multi slaves.

Fig.10: Simulation Result for Activation of Multiple

Slaves

Figure 11 shown below shows the
simulation result for data transfer from multiple
master to multiple slave the arbiter allows the
multiple master to transfer the data to multiple slave
it control the master write data to send for the
particular slave without any mismatching of data.
The control and address related to slave will sends
the signal to the master after transferring of data.

Fig.11: simulation result for multi master and multi

slave

5.3 Simulation result for burst Operation

 Figure 12 shows the wrap 4 burst operation
(HBRUST=b010). The address bus get wrapped
when it reach it boundary size. The wrap4 burst
operation depends on the HSIZE (010=2). i.e. the
wrap4 as 4-beat each beat depend on the size of

transfer below figure we taken the size type word i.e.
the word as 4 bytes now 1-beat takes 4 bytes for 4-
beat it takes 16-bytes of data and address is wrapped
when it reached maximum. Initial transfer of burst as
transfer type non sequential (11) is given for stating
single burst later for next transfer sequential (10) is
related to the previous address and next burst
operation continuous sequentially when it each
address boundary again the address get wrapped to
initial boundary.

Fig.12: WRAP4 Burst operation

 Figure 13 shown below shows the

increment type of burst operation (HBRUST=b011)
the incr4 is type of burst operation with the HSIZE
(010) word size of 4 bytes and the address is
increment gradually based on the size of the bytes
and each address as the data is stored in the
particular address the data are stored in the each
address. The figure shows multi master and multi
slave increment 4 type of burst operation.

 Fig.13: INCR4 burst operation

Dilip K, et. al. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 11, Issue 7, (Series-V) July 2021, pp. 32-41

www.ijera.com DOI: 10.9790/9622-1107053241 39 | P a g e

5.4 System Verilog top module waveform

 Fig.14: System Verilog Test bench Environment

Figure 14 shows the system Verilog top module
waveform for multiple master and multiple slave.

5.5 Code coverage Report

Fig.15: Coverage report

Fig.16: cover point analysis report

Figure 15 and 16 shows the coverage report

and Cover point analysis Report. The coverage
report gives information about statement, Toggle

and coverage group it includes both code coverage
and Function coverage. The cover point analysis
report it is basically a functional coverage report.
The bins are created based on the constraints. And
applied the test cases if they met then that
functionality is said to be hit or covered. Here the
overall coverage report obtained is 100%.

5.6 UVM top module waveform

Fig.17: UVM testbench environment

Figure 17 shows the UVM testbech Waveform for
multiple master and slaves.

5.7 UVM report summary

Fig.18: UVM report summary

UVM report gives information about the

result obtained after Simulation of UVM test bench.
Figure 18 shown below the UVM report generated
after passing all the UVM phases. UVM_INFO in
the report conclude that there are 162 information
messages. The UVM report Summary explain the
design as no errors and it does not have fatal error.

Dilip K, et. al. International Journal of Engineering Research and Applications
www.ijera.com
ISSN: 2248-9622, Vol. 11, Issue 7, (Series-V) July 2021, pp. 32-41

www.ijera.com DOI: 10.9790/9622-1107053241 40 | P a g e

Because UVM_ERROR, UVM_WARNING and
UVM_FATAL is equal to 0.

VI. CONCLUSION AND FUTURE SCOPE

The paper gives an Overview of AMBA
bus Architecture and discussed the AHB protocol.
The AHB bus is designed which supports for
multiple masters and slaves. Which consist of basic
blocks such as master, slave, decoder and arbiter.
The AHB design Block is designed using Verilog
HDL and verified using the system Verilog and
Universal verification methodology. The Tool used
is Questa sim is an EDA tool used to simulate and
verify the design and obtained the coverage report.
Which says that the functionality is correct. The
UVM report summary also ensure that functional
Correctness of the design. In the present work we
have designed AHB which support for 3 master and
3 slaves. Developing the design which can support
for 16 master and 16 slaves could be the future work
of this project design.

REFERENCES
[1]. Dr. Priyanka Choudhury, Perrumalla Giridhar

“Design and Verification of AMBA AHB”,
1st International Conference on the Advanced
Technology in Intelligent Control,
Environment, Computing & Communication
Engineering (ICATIECE) in IEEE 2019.

[2]. P.Harishankar, Mr. Chosen Duari Mr.Ajay
Sharma, “Design and Synthesis of Efficient
FSM for Master and Slave Interface in
AMBA AHB”, International Journal of
Engineering Development and Research”,
IJEDR, Volume 2, Issue 3, ISSN: 2321-9939,
2014.

[3]. Shivakumar B.R Deeksha L, “Efficient
Design and Implementation of AMBA AHB
Bus Protocol using Verilog”, International
Conference on Intelligent Sustainable System,
(ICISS) in IEEE, 2019.

[4]. Mr. M. Naresh Kumar, K.Manikanta Sai
Kishore “Design and Implementation of
Efficient FSM for AHB Master and Arbiter”,
International Journal and magazines of
Engineering Technology, Management and
Research ISSN No. 2348-4845, 2015.

[5]. Shraddha divekar, Archana Tiwari
“Multichannel AMBA AHB with Multiple
Arbitration Technique”, International
Conference on Signal Processing and
Communication, Apr 3-5, 2014.

[6]. Jayapraveen and T.G. Priya “Design of
Memory Controller based on AMBA AHB
protocol”, “Elixir International Journal 51A,
Vol.2, pp. 11115-11119, 2012.

[7]. Chrisspear, System Verilog for Verification,
New York: Springer, Rath A.W, Esen. V and
Ecker.W, A transaction Oriented UVM-based
Library for Verification of analog behavior
Publication year: 2014 pages(s):806-811.

[8]. Divya M, Dr. K. A. Radhakrishna Rao “AHB

Design and Verification AMBA 2.0 using
System Verilog”, in IJARIIT Volume-4,
Issue-3, 2018.

