
Kusumadhara S, et. al. International Journal of Engineering Research and Applications 

www.ijera.com 
ISSN: 2248-9622, Vol. 11, Issue 5, (Series-I) May 2021, pp. 61-73 

 

 
www.ijera.com                                 DOI: 10.9790/9622-1105016173                                61 | P a g e  

       
 

 

 

 

 

 

A Deep Feature Learning Model for Pneumonia Detection 

Applying a Combination of MRMR Feature Selection and 

Machine Learning Technique 
 

1
Kusumadhara S, 

2
Nishmitha K, 

3
Pavithra S, 

4
Pooja H J, 

5
Pratheeka A P 

1Associate Professor, Department of E&C, KVGCE, Sullia, 2345Final Year B.E, KVGCE, Sullia 

 

ABSTRACT – Pneumonia causes the death of around 

700,000 children every year and affects 7% of the 

global population. Chest X-rays are primarily used 
for the diagnosis of this disease. However, even for a 

trained radiologist, it is a challenging task to examine 

chest X-rays. There is a need to improve the 

diagnosis accuracy. In this work, an efficient model 

for the detection of pneumonia trained on digital 

chest X-ray images is proposed, which could aid the 

radiologists in their decision making process. A 

novel approach based on a weighted classifier is 

introduced, which combines the weighted predictions 

from the state-of-the-art deep learning models such 

as Convolution Neural Network, ResNet18, 
Xception, InceptionV3, DenseNet121, and 

MobileNetV3 in an optimal way. This approach is a 

supervised learning approach in which the network 

predicts the result based on the quality of the dataset 

used. Transfer learning is used to fine-tune the deep 

learning models to obtain higher training and 

validation accuracy. Partial data augmentation 

techniques are employed to increase the training 

dataset in a balanced way. The proposed weighted 

classifier is able to outperform all the individual 

models. Finally, the model is evaluated, not only in 
terms of test accuracy, but also in the AUC score. 

The final proposed weighted classifier model is able 

to achieve a test accuracy of 98.43% and an AUC 

score of 99.76 on the unseen data from the 

Guangzhou Women and Children’s Medical Centre 

pneumonia dataset. Hence, the proposed model can 

be used for a quick diagnosis of pneumonia and can 

aid the radiologists in the diagnosis process. 

 

KEYWORDS: Pneumonia; Chest X-ray Images; 

Convolution Neural Network (CNN); Deep 

Learning; Transfer Learning; Computer-aided 
Diagnostics. 

 

I. INTRODUCTION 

Pneumonia is an acute respiratory infection 

that affects the lungs. It is a fatal illness in which the 

air sacs get filled with pus and other liquid [1]. There 

are mainly two types of pneumonia: bacterial and 

viral. Generally, it is observed that bacterial 

pneumonia causes more acute symptoms. The most 

significant difference between bacterial and viral 

pneumonia is the treatment. Treatment of bacterial 
pneumonia is done using antibiotic therapy, while 

viral pneumonia will usually get better on its own 

[2]. It is a prevalent disease all across the globe. Its 

principal cause includes a high level of pollution. 

Pneumonia is ranked eighth in the list of the top 10 

causes of death in the United States [3]. Due to 

pneumonia, every year, 3.7 lakh children die in India, 

which constitutes a total of fifty percent of the 

pneumonia deaths that occur in India [4]. The disease 

frequently goes overlooked and untreated until it has 

reached a fatal point, especially in the case of old 
patients. It is the single largest cause of death in 

children (especially under the age of five) worldwide 

[5]. According to the WHO, “Every year, it kills an 

estimated 1.4 million children under the age of five 

years, accounting for 18% of all deaths of children 

under five years old worldwide. Pneumonia affects 

children and families everywhere but is most 

prevalent in South Asia and sub-Saharan Africa. 

Children can be protected from pneumonia. It can be 

prevented with simple interventions and treated with 

low-cost, low-tech medication and care” [2]. 
Therefore, there is an urgent need to do research and 

development on computer-aided diagnosis so that the 

pneumonia-related mortality, especially in children, 

can be reduced. 

One of the following tests can be done for 

pneumonia diagnosis: chest X-rays, CT of the lungs, 

ultrasound of the chest, needle biopsy of the lung, 

and MRI of the chest [6]. Currently, chest X rays are 

one of the best methods for the detection of 

pneumonia [7]. X-ray imaging is preferred over CT 

imaging because CT imaging typically takes 

considerably more time than X-ray imaging, and 
sufficient high-quality CT scanners may not be 

available in many underdeveloped regions. In 

contrast, X-rays are the most common and widely 

available diagnostic imaging technique, playing a 

crucial role in clinical care and epidemiological 

studies [8, 9].  
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There are several regions across the globe 

where there is a scarce availability of practiced 

healthcare workers and radiologists whose prediction 

on such diseases matter greatly [10–12]. Computer 

aided diagnosis using artificial intelligence based 

solutions is becoming increasingly popular these 

days [13, 14]. 

This facility can be made available to a 
large population at a minimal cost. Another issue 

with this disease is that sometimes, the features that 

describe the very existence of the disease often get 

mixed with other diseases, and hence, radiologists 

find it challenging to diagnose this disease. Deep 

learning techniques solve all these problems, and 

their accuracy in the prediction of the disease is the 

same and sometimes even greater than an average 

radiologist [15]. Among the deep learning 

techniques, convolutional neural networks (CNNs) 

have shown great promise in image classification and 
segmentation and therefore are widely adopted by the 

research community. Biomedical image diagnosis 

that uses the techniques of deep learning and 

computer vision has proven to be very helpful to 

provide a quick and accurate diagnosis of the disease 

that matches the accuracy of a reliable radiologist 

[16]. Currently, deep learning based methods cannot 

replace trained clinicians in medical diagnosis, and 

they aim to supplement clinical decision making. In 

this project, a model is presented based on the 

applications of deep learning and convolutional 

neural networks that are capable of classifying 
automatically that the patient has pneumonia or not. 

The proposed methodology uses a deep transfer 

learning algorithm that extracts the features from the 

X-ray image that describes the presence of disease 

automatically and reports whether it is a case of 

pneumonia. 

 

II. LITERATURE SURVEY 

Deep learning based methods are already 

being used in various fields [17–21]. Different 

authors have already proposed several biomedical 
image detection techniques. M.I.Razaak [22] 

discussed the challenges and the future of medical 

image processing. Much work has already been done 

for the detection of numerous diseases by using deep 

learning based techniques, as stated by Dinggang 

Shen [23]. 

Andre [24] presented a deep learning model 

for dermatologist-level classification of skin cancer, 

and F. Milletari [25] also proposed a methodology 

for the depiction of prostrate in MRI volumes using 

CNN. Grewal [26] used the technique of deep 

learning for brain hemorrhage detection in CT scans, 
and Varun [27] proposed a method for detecting 

diabetic retinopathy in retinal fundus photographs. Y. 

Bar [28] also discussed chest pathology detection by 

the techniques based on deep learning. Methods 

regarding the examination of the detection of disease 

by chest X-ray have also been worked on earlier by 

performing various examination techniques [29–31]. 

The chest X-ray images are passed through the 

evaluation process of scan line optimization such that 

it eliminates all the other body parts to avoid any 

error in diagnosis. The algorithm was described by S. 
Hermann [32]. Nasrullah et al. [33] used two deep 

three-dimensional (3D) customized mixed link 

network (CMixNet) architectures for lung nodule 

detection and classification. 

Yao L et al. [34] combined DenseNet and 

long-short term memory networks (LSTM) to exploit 

the dependencies between abnormalities. Several 

authors also have worked on pneumonia 

classification. Khatri et al. [35] proposed the use of 

EMD (earth mover’s distance) to identify infected 

pneumonia lungs from normal non-infected lungs. 
Rahib et al. [36] and Okeke et al. [37] used a CNN 

model for pneumonia classification. Some 

researchers have shown assuring results such as 

Cohen et al. [38] and Rajaraman et al. [39]. 

Rajaraman et al. [39] tried to explain the 

performance of customized CNNs to detect 

pneumonia and further differentiate between 

bacterial and viral types in pediatric CXRs 

Sirazitdinov et al. [40] used a region based 

convolutional neural network for segmenting the 

pulmonary images along with image augmentation 

for pneumonia identification. Lakhani and Sundaram 
[41] used the AlexNet and GoogLeNet neural 

networks with data augmentation and without any 

pre-training to obtain an area under the curve (AUC) 

of 0.94–0.95. Rajpurkar et al. [42] used CheXNeXt, a 

very deep CNN with 121 layers, to detect 14 

different pathologies, including pneumonia, in 

frontal-view chest X-rays. A localization approach 

based on pre-trained DenseNet-121, along with 

feature extraction, was used to identify 14 thoracic 

diseases in [43]. Saraiva et al. [44], Ayan et al. [45], 

and Rahman et al. [46] used deep learning based 
methods for pneumonia classification. Xiao et al. 

[47] proposed a novel multi-scale heterogeneous 

three dimensional (3D) convolutional neural network 

(MSH-CNN) based on chest computed tomography 

(CT) images. 

Xu et al. [48] used a hierarchical 

convolutional neural network (CNN) structure and a 

novel loss function, sin-loss, for pneumonia 

detection. Jaiswal et al. [49] used Mask-RCNN, 

utilizing both global and local features for pulmonary 

image segmentation, with dropout and L2 

regularization, for pneumonia identification. Jung et 
al. [50] used a 3D deep CNN (3D DCNN), which had 

shortcut connections. Vikash et al. [51] combined the 

outputs of different neural networks and reached the 
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final prediction using majority voting. None of the 

above-mentioned approaches except that of Vikash et 

al. [51] tried to combine predictions from different 

neural networks. 

The main contribution is a weighted classifier 

that integrates five deep learning models. The 

weights for each model are based on each model’s 

performance on the testing dataset. This paper is 
structured as follows: Section 3 deals with the 

methods used. A brief description of the methods 

used in this paper is given. The experimental dataset 

is introduced in Section 4. In Section 5, and the 

proposed methodology is discussed. In Section 6, the 

results obtained are discussed concerning different 

parameters. This section is followed by Section 7, 

containing the discussion, and Section 8, containing 

the conclusion of the project. 

 

III. PROBLEM DEFINATION 
In recent time, exploration of Machine 

learning (ML) algorithms in detecting thoracic 

diseases has gained attention in research area of 

medical image classification. Lakhani and Sundaram 

(2017) [12] proposed a method of detecting 

pulmonary tuberculosis following the architecture of 

two different DCNNs AlexNet and GoogleNet. Lung 

nodule classification mainly for diagnosing lung 

cancer proposed by Huang et al. [13] also adopted 

deep learning techniques. Performance of different 

variants of Convolutional Neural Networks (CNNs) 

for abnormality detection in chest X-Rays was 
proposed by Islam et al. [14] using the publicly 

available OpenI dataset [15]. For the better 

exploration of machine learning in chest screening, 

Wang et al. (2017) [16] released a larger dataset of 

frontal chest X-Rays. 

 

Recently, Pranav Rajpurkar, Jeremy Irvin, et 

al. (2017) [17] explored this dataset for detecting 

pneumonia at a level better than radiologists, they 

referred their model as ChexNet which uses 

DenseNet-121 layer architecture for detecting all the 
14 diseases from a lot of 112,200 images available in 

the dataset. After the CheXNet[17] model, Benjamin 

Antin et al.(2017) [18] worked on the same dataset 

and proposed a logistic regression model for 

detecting pneumonia. Pulkit Kumar, Monika Grewal 

(2017) [19] using the cascading convolutional 

networks contributed their research for multilabel 

classification of thoracic diseases. Zhe Li (2018) [20] 

recently proposed a convolutional network model for 

disease identification and localization. 

 

IV. PROPOSED SYSTEM 
This section deals with the detailed 

description of the applied methodology. The 

proposed pneumonia detection system using the 

’Densely Connected Convolutional Neural Network’ 

(DenseNet-169) is described in Figure 2. The 

architecture of the proposed model has been divided 

into three different stages - the preprocessing stage, 

the feature extraction stage and the classification 

stage. 

 

4.1: PRE – PROCESSING STAGE 
The primary goal of using Convolutional 

Neural Network in most of the image classification 

tasks is to reduce the computational complexity of 

the model which is likely to increase if the input are 

images. The original 3-channel images were resized 

from 1024×1024 into 224×224 pixels to reduce the 

heavy computation and for faster processing. All of 

the further techniques has been applied over these 

downsized images. 

 

4.2: THE FEATURE EXTRACTION STAGE  
Although, the features were extracted with 

different variants of pre-trained CNN models the 

statistical results obtained proposed DenseNet-169 as 

the optimal model for the feature extraction stage. 

Therefore, this stage deals with the description of 

DenseNet-169 model architecture and its 

contribution in feature extraction. 

The layers between these dense blocks are 

referred to as transition layers. Each transition layer 

in the network consists of a batch normalization layer 

and an 1×1 convolutional layer follow edbya 2×2 

average pooling layer that uses a stride of 2. As 
mentioned above there are 4 dense blocks, each of 

which contains 2 convolution layers first is of size 1 

× 1 followed by 3×3. The size of all the four dense 

blocks in DenseNet169 architecture pretrained on 

ImageNet is 6, 12, 32 and 32. Next to this is the final 

layer that is the classification layer which performs 

the global average pooling of 7×7 followed by a final 

fully-connected layer which uses ’softmax’ as the 

activation. 

 
  FIG 1. REPRESENT A FLOW DIAGRAM OF OUR 

METHODOLOGY APPLIED 



Kusumadhara S, et. al. International Journal of Engineering Research and Applications 

www.ijera.com 
ISSN: 2248-9622, Vol. 11, Issue 5, (Series-I) May 2021, pp. 61-73 

 

 
www.ijera.com                                 DOI: 10.9790/9622-1105016173                                64 | P a g e  

       
 

 

 

Architecture of DenseNet 169, Deep 

Convolutional Networks (DCNNs) have become the 

most productive frameworks for image recognition 

because of the presence of peculiar types of the 

convolutional and pooling layers. But as the network 

gets deeper the input information or gradient passing 

through most of the layers gets vanished by the time 

the last layer of the network is reached. DenseNets 
overcome this problem of gradient vanishing by 

connecting all the layers with equal featutre-sizes 

directly with each other. The chief motive of using 

DenseNet architecture as a feature extractor is that 

deeper the network more generic features can be 

obtained. The pre-trained Densely Connected 

Convolutional Neural Network of 169 layers 

(DenseNet-169) has been used for the feature 

extraction process. This model was proposed by 

Huang et al. (2016) [9] and the variant used in our 

study is trained on the large scale publicly available 
ImageNet dataset. The DenseNet169 architecture 

comprises of one convolution and pooling layer at 

the beginning, 3 transition layers, and 4 dense blocks. 

After these layers, the final layer i.e the 

classification layer is present. The first convolutional 

layer performs 7×7 convolutions with stride 2 

followed by a max pooling of 3×3 used with stride 2. 

Then the network consists of a dense block followed 

by 3 sets each of which consist a transition layer 

followed by a dense block. The dense connectivity as 

proposed by Huang et.al [9] in DenseNets are 

received by bringing in direct connections from any 
layer to any other layer in the network. The lst layer 

in the network receives the feature-maps of all the 

preceding layers thus ameliorating the flow of 

gradient throughout the entire network. This requires 

the concatenation of the feature-maps of the 

preceding layers which cannot be done unless all the 

feature-maps are of the same sizes but as the 

Convolutional Neural Networks primarily intend 

towards the down sampling of size of feature-maps, 

the DenseNets architecture is divided into multiple 

densely connected dense blocks mentioned above. 
 

4.3: EXTRACTION OF FEATURES 

The process of feature extraction from the 

model explained in this section 4.2.1 applies all the 

layers of the network except the final classification 

layer. The final feature representation obtained were 

interpreted as a 50176×1 dimension vector which 

then supplied as input to different classifiers. 

 

V. SOFTWARE REQUIREMENT 

SPECIFICATION 

A. Software Requirements 

 Operating System: Windows 8.1 Platform or 

Above 

 Programming Language:  Python 3.6.7 

 Framework: Jupiter Notebook 

 Cloud Platform: Google Cloud Engine 

(GCE) 

B. Hardware Requirements 

 Processor: Intel core i3 1.60GHz or above  

 Hard Disk: 250 GB 

 RAM: 4.00 GB  

 Input: Keyboard and Mouse  

 Output Device: High Resolution Monitor 

 

C. Functional Requirements 

 Data pre-processing: The purpose of pre-

processing is to check for missing values in the 

dataset. If any such values are found, It is replaced by 

mode of the corresponding values.  

 Feature Extraction: All 32 features are 

input to the feature selector. This module selects a 

subset from the actual feature set. This process is 
usually done to improve accuracy and reduce the 

training time when the number of feature is very 

large. 

 Hyper tuning module: It is here that the 

values of the parameters of the classifier are changed 

in order to increase the performance of the classifier. 

The parameters can be varied and the one which 

gives the better accuracy is selected as the model. 

 Results: Confusion Matrix, Log Loss. 

 

D. Non Functional Requirements 

 PERFORMANCE REQUIREMENT, low 
test log loss rate has been successfully achieved 

using XGBoost Classifier with Hyper Parameters for 

both .bytes and image files individually, and as well 

as after merging features of .bytes and image files. 

 

 SOFTWARE QUALITY 

REQUIREMENT, maximum possible accuracy has 

been achieved using XGBoost Classifier with 

hyperparameters using Random Search with log loss 

of 0.385, XGBoost Classifier with log loss of 0.0427, 

and Random Forest Classifier with log loss of 
0.4192. It generated the confusion matrix. It used 

minimal resources for training the dataset as well as 

obtaining the results. The module is reliable and can 

be used to classify most of the malware in the 

validation set. 

 

VI. DATA PREPROCESSING 

The dataset [55] comprised a total of 5836 

images (Table 1) segmented into two main parts, a 

training set and a test set. Both bacterial and viral 

pneumonia were considered as a single category, 
pneumonia infected. The dataset used in this study 

did not include any case of viral and bacterial co-

infection. All chest X-ray images were taken during 

the routine clinical care of the patients. Two expert 
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physicians then graded the diagnoses for the images 

before being cleared for training the AI system. The 

evaluation set was also checked by a third expert to 

account for any grading errors. The proportion of 

data assigned to training and testing was highly 

imbalanced. Therefore, the dataset was shuffled and 

arranged into training and test sets only. Finally, 

there were 5136 images in the training set and 700 
images in the test set. Eleven-point-nine-five percent 

of the complete dataset was used as the testing 

dataset. Figure 2 shows two chest X-ray images, one 

of a healthy person and the other of a person 

suffering from pneumonia. 

In our Project, The dataset is organized into 

3 folders (train, test, val) and contains subfolders for 

each image category (Pneumonia/Normal). There are 

5,863 X-Ray images (JPEG) and 2 categories 

(Pneumonia/Normal). 

Chest X-ray images (anterior-posterior) 
were selected from retrospective cohorts of paediatric 

patients of one to five years old from Guangzhou 

Women and Children’s Medical Centre, Guangzhou. 

All chest X-ray imaging was performed as part of 

patients’ routine clinical care. 

For the analysis of chest x-ray images, all 

chest radiographs were initially screened for quality 

control by removing all low quality or unreadable 

scans. The diagnoses for the images were then 

graded by two expert physicians before being cleared 

for training the AI system. In order to account for 

any grading errors, the evaluation set was also 
checked by a third expert. 

 

 
TABLE 1: DESCRIPTION OF THE 

EXPERIMENTAL DATASET. 

 

 
Fig No 2: CHEST XRAY OF (A) A HEALTHY 

PERSON AND (B) A PERSON SUFFERING FROM 

PNEUMONIA. 

 

The normal chest X-ray (left panel) depicts 

clear lungs without any areas of abnormal 

specification in the image. Bacterial pneumonia 

(middle) typically exhibits a focal lobar 

consolidation, in this case in the right upper lobe 
(white arrows), whereas viral pneumonia (right) 

manifests with a more diffuse ‘‘interstitial’’ pattern 

in both lungs. 

 

VII. BACKGROUND OF DEEP LEARNING 

METHODS 

7.1: CONVOLUTION NEURAL NETWORK 

 

LeCun et al. [52] first used CNN, in 1989, 

for handwritten zip code recognition. This is a type 

of feed-forward network. The main advantage of 
CNN compared to its predecessors is that it is 

capable of detecting the relevant features without any 

human supervision. A series of convolution and 

pooling operations is performed on the input image, 

which is followed by a single or multiple fully 

connected layers, as shown in Figure 1. The output 

layer depends on the operations being performed. For 

multiclass classification, the output layer is a softmax 

layer. The main disadvantage with deeper CNNs is 

vanishing gradients, which can be solved by using 

residual networks introduced in the following 

section. 
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FIG No. 3: CNN CONSISTING OF 

CONVOLUTION AND POOLING LAYERS AND 

FULLY CONNECTED SOFTMAX LAYERS AT 
THE END TO GIVE THE FINAL PREDICTION. 

 

7.2: TRANSFORM LEARNING 

In transfer learning, a model that is trained 

for a particular task is employed as the starting point 

for solving another task. Therefore, in transfer 

learning, pre-trained models are used as the starting 

point for some specific tasks, instead of going 

through the long process of training with randomly 

initialized weights. Hence, it helps with saving the 

substantial computer resources needed to develop 

neural network models to solve these problems. 
Pan and Yang [53] used domain, task, and 

marginal probabilities to propose a framework for 

better understanding the transfer learning. The 

domain D was defined as a two-element tuple 

consisting of the feature space, χ, with a marginal 

probability, P(X), where X is a sample data point. 

Hence, mathematically, domain D can be defined as, 

D =          
Here, χ is the space of all term vectors, xi is the ith 

term vector corresponding to some documents, and X 

is a particular learning sample (X = x1, • • •, xn, ∈ χ). 
For a given domain D, the given task T is defined as: 

 

 ={ , (  |x)} =  { , },  ={ 1,……,  },   ∈  
 

Where γ is the label space. η is a predictive function 

learned from the feature vector/label pairs (xi , yi ), 

where xi ∈ χ and yi ∈ γ. 

 

 (  ) =    
 

Here, η predicts a label for each feature vector 

 

Due to the lack of a sufficient dataset, 

training a deep learning based model for medical 

diagnosis related problems is computationally 

expensive, and the results achieved are also not up to 

the mark. Hence, pre-trained deep learning models, 

which were previously trained on ImageNet [54] 

dataset, were used in this paper. Further, all these 
pre-trained models were fine-tuned for pneumonia 

classification. All the layers of the architectures used 

were trainable. Further details, related to fine-tuning, 

and are discussed in Section 5.2. 

 

7.3: PRE TRAINED NEURAL NETWORK 

Five state-of-the-art deep learning networks, 

ResNet18, DenseNet121, InceptionV3, Xception, and 

MobileNetV2, were used in this study. They are 

briefly discussed in Appendix A at the end of the 
paper. 

 

7.4: PERFORMANCE METRICS FOR 

CLASSIFICATION 

All the models were tested on the test 

dataset after the completion of the training phase. 

Their performance was validated using the accuracy, 

recall, precision, F1, and area under the curve (AUC) 

score. All the performance metrics used in this paper 

are discussed below. 

In the below-mentioned definitions and 
equations, while classifying healthy and pneumonia 

patients, true positive (TP) denotes the number of 

pneumonia images identified as pneumonia, true 

negative (TN) denotes the number of normal images 

identified as normal (healthy), false positive (FP) 

denotes the number of normal images incorrectly 

identified as pneumonia images, and false negative 

(FN) denotes the number of pneumonia images 

incorrectly identified as normal. 

 

Accuracy: It tells us how close the measured value is 

to a known value. 
 

         = (   +   )/ (   +    +    +   ) 

 

Precision: It tells about how accurate the model is in 

terms of those which were predicted positive 

 

          =    / (   +   ) 

 

Recall: It calculates the number of actual positives 

the model was able to capture after labeling it as 
positive (true positive). 

 

       =    /(   +   ) 

 

F1: It gives a balance between precision and recall. 

 

 1 = 2 × (          ×       ) / (          + 

      ) 
 

AUC Score and ROC Curve: ROC (receiver 

operating characteristics) is a probability curve, and 

AUC (area under curve) represents the degree of 

reparability. The ROC curve is the plot of sensitivity 

(true positive rate) against specificity (false positive 

rate). 
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VIII. IMPLEMENTATION 

An optimum solution for the detection of 

pneumonia from chest X-rays is proposed in this 

paper. Data augmentation was used to address the 

problem of the limited dataset, and then, state-of-the-

art deep learning models, as discussed in Section 3, 

were fine-tuned for pneumonia classification. Then, 

predictions from these models were combined, using 
a weighted classifier (discussed afterward in this 

section), to compute the final prediction. The 

complete block diagram of the proposed 

methodology can be seen in Figure 3. 

After merging the features of .bytes and 

.asm file, malware files were reclassified using 

Random Forest (RF) classifier, XGBoost classifier, 

and XGBoost classifier with hyper parameter using 

Random Search, and we were able to achieve the Log 

loss of 0.04192, 0.0427 and 0.0385 respectively. 

The settings utilized in image augmentation 
are shown below in Table 2. The images after 

performing various augmentation techniques are 

shown below (Figure 4). Only one of these 

techniques was used to generate the augmented 

image. 

 
FIG NO.4: BLOCK DIAGRAM OF THE 

PROPOSED METHODOLOGY (DEEP LEARNING 

SYSTEM CONSISTS OF THE DATA PRE-

PROCESSING AND DATA AUGMENTATION 

BLOCK AND THE FINE-TUNING BLOCK; THE 

WEIGHTED CLASSIFIER GIVES THE FINAL 

PREDICTION). 

 

8.1: DATA PREPROCESSING AND 

AUGMENTATION 

Each image had to be preprocessed 
according to the deep neural network used. There 

were two important steps involved: resizing and 

normalization. Different neural networks require 

images of different sizes according to their defined 

architecture. ResNet18, DenseNet121, and 

MobileNetV2 expect images of size 224 × 224, while 

InceptionV3 and Xception require images of size 229 

× 229. All the images were also normalized 

according to the respective architectures. 

Adequate training of a neural net requires 

big data. With less data availability, parameters are 
undermined, and learned networks generalize poorly. 

Data augmentation solves this problem by utilizing 

existing data more efficiently. It aids in increasing 

the size of the existing training dataset and helps the 

model not to over fit this dataset. In this case, there 

were a total of 1283 images of the normal (healthy) 

case and 3873 images of the pneumonia case in the 

training dataset. Out of these, four-hundred images 

were reserved for optimizing the weighted classifier. 

This dataset was highly imbalanced. There were 

already enough images in the pneumonia case. 
Therefore, each image of only the normal (healthy) 

case was augmented twice. Finally, after 

augmentation, there were 3399 healthy chest X-ray 

images and 3623 pneumonia chest X-ray images. 

 
TABLE NO. 2: AUGMENTATION TECHNIQUES 

USED IN THE PROPOSED METHODOLOGY. 

 

 
FIG NO.5: RESULTANT IMAGE AFTER 

PERFORMING THE AUGMENTATION 

TECHNIQUE. 

 

8.2: FINE-TUNING THE ARCHITECTURES 

All the architecture details used in this paper 

are discussed in Appendix A. Raw chest X-ray 

images, after being pre-processed and normalized, 

were used to train the network. Then, data 

augmentation techniques were used to process the 

dataset more efficiently. All the layers of the 

networks used were trainable, and these layers 
extracted the features from the images. Some 

parameters must be set to train the network. An 
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interesting paper from UC Berkeley [56] came out, 

and according to it, stochastic gradient descent 

(SGD) had better generalization than adaptive 

optimizers. Therefore, SGD as the optimizer was 

used, and the model was trained for 25 epochs. The 

learning rate, the momentum, and the weight decay 

were set to 0.001, 0.9, and 0.0001, respectively 

(Table 3). These configurations were to make sure 
that the networks were fine-tuned for pneumonia 

diagnosis. 

 

 
TABLE NO.3: HYPER-PARAMETERS USED 

WHILE FINE-TUNING THE DEEP LEARNING 

MODELS 
 

8.3: WEIGHTED CLASSIFIER 

In this module of the proposed 

methodology, a weight (Wk) corresponding to each 

model was estimated. Wk can be defined as the belief 

in the k th model, with k being equal to 5 as 5 pre-

trained models were used in this paper. Wk has 

values between 0 and 1, and the sum of all weights is 

1 (Equation (9)). Each model, after it was fine-tuned, 

returned the probabilities for each class label, i.e., 2 

classes in the form of a matrix (Pk). A weighted sum 

of all these predictions arrays was calculated 
(Equation (8)). 

 

 1 1+ 2 2+ 3 3+•••+    =   

 1+ 2+ 3+•••+  =1 

     = − 1     ∑  =1   ×  ( ) + (1 −  ) ×    (1 −  ) 

 

Pk is the prediction matrix, with shape: 

number of optimization images * class labels 

(400*2), corresponding to each architecture. In 
Equation (8), the contribution of each model is 

weighted by a coefficient (Wk), which indicates the 

trust in the model. First, we obtained the Pk for every 

model for an unseen image set (400 images). Then, 

Equation (8) was optimized such that the 

classification error was minimized and Equation (9) 

was also satisfied. We used differential evolution 

[57] for global optimization of Equation (8). 

Differential evolution is a stochastic global search 

algorithm. It optimized Equation (8) by iteratively 

refining a candidate solution with regard to Equation 
(9). Hence, optimizing Equation (8) would provide 

the Wk values corresponding to each model. The 

value of Wk for the k th model depended on the 

respective models’ performance on the test dataset. 

The maximum iterations for differential evolution 

algorithms were kept to be 1000. With the help of Pf, 

the prediction of a class label could be computed. 

Classification loss corresponding to this Pf was 

reduced while optimizing Equation (8). Log loss 

(Equation (10), also known as logistic loss or cross-

entropy loss, was used as the loss function. In 

Equation (10), N denotes the size of the image set 
(400) and p denotes the probability that the given 

image is pneumonia infected. Figure 5 shows the 

process followed to find the optimal weight 

corresponding to each model. Figure 6 shows the 

weighted classifier used in the proposed 

methodology. 

 

 
FIG NO.6: WEIGHTED CLASSIFIER MODULE 

USED IN THIS PAPER (WEIGHTED 

PREDICTIONS FROM ALL THE MODELS ARE 

PASSED TO THE WEIGHTED CLASSIFIER, 

WHICH GIVES THE FINAL WEIGHTED 

PREDICTION). 
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FIG NO. 7: PROCEDURE FOLLOWED WHILE 

CALCULATING THE OPTIMAL WEIGHT 

CORRESPONDING TO EVERY MODEL. 
 

8.4: CLASS ACTIVATION MAPS 

Class activation maps (CAMs) [58] can help 

in demystifying the results of deep learning models. 

Traditionally, deep learning based methods are 

considered to be a black-box approach. For clinical 

decision making, it is necessary that the results of the 

deep learning model can be interpreted. CAMs can 

help in identifying the parts of the image on which 

the model was focusing while making the final 

prediction and hence can provide insights into the 
working of the model. Such an analysis can further 

help in hyperparameters tuning and gain 

understanding of the reason behind the failure of the 

model. For obtaining the class activation map, the 

network needed to be trained with the global average 

pooling (GAP) layer. After the GAP layer, a fully 

connected network was maintained, which was 

followed by the softmax layer, providing the class, 

such as pneumonia, as shown in Figure 7. CAMS 

class activation maps were generated for both 

bacterial and viral pneumonia for all the fine-tuned 

model and are discussed in detail in the results 
section. 

 

 
FIG NO.8 : GENERATION OF THE CLASS 

ACTIVATION MAP FOR FINE-TUNED DEEP 

LEARNING MODELS. THE LAYERS OF DEEP 

LEARNING MODELS ARE FOLLOWED BY THE 

GLOBAL AVERAGE POOLING LAYER (GAP) 

(⇒) AND THE SOFTMAX LAYER TO GIVE THE 
FINAL PREDICTION. FEATURES THAT ARE 

USED FOR PNEUMONIA DETECTION GET 

HIGHLIGHTED IN THE CLASS ACTIVATION 

MAP. 

 

IX. FINAL RESULT 
In this section, the experiments and 

evaluation techniques used in the paper to test the 

efficiency of the proposed model are presented. The 
chest X-ray image dataset, proposed in [55], was 

used. The Keras open-source deep learning 

framework with TensorFlow as the backend was 

used, first to load the pre-trained architectures on the 

ImageNet Dataset [54] and then fine-tune them for 

the task at hand. All the computation work was done 

on a Standard PC with8 GB RAM, NVIDIA GeForce 

GTX 1060 6 GB GPU, and Intel i7, seventh-

generation processor. 

 

9.1: RESULT IN TERMS OF TESTING 
ACCURACY AND TESTING LOSS 

To test and evaluate the performance of the 

proposed network, each experiment was conducted 

five times. Parameters and hyperparameters were 

tuned during the training. Figure 8 shows the training 

accuracy and training loss curves obtained while 

training the models for 25 epochs. The training 

accuracy for all the models exceeded 99%, and the 

training loss for all the models was below 0.03. 

Except for Xception, all the other models had similar 

training accuracy and training loss curves. Table 4 
summarizes the testing accuracy and testing loss for 

different networks and the final weighted classifier. 

DenseNet121 was able to attain the maximum testing 

accuracy and the minimum testing loss. Initially, all 

the weights of the weighted classifier were kept equal 

(W1 = W2 • • • W5 = 0.20). Hence, every model 
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contributed equally towards the final prediction. A 

test accuracy of 97.45 and a loss of 0.087 was 

obtained. Then, the optimum weights were estimated 

for every model. The value of these estimated 

weights is shown in Table 5. With these weights, the 

final weighted classifier was able to achieve a testing 

accuracy of 98.43, and the testing loss was 0.062. 

 

 
FIG NO. 9 : (A) TRAINING ACCURACY AND 

TRAINING LOSS CURVES FOR DIFFERENT 

ARCHITECTURES OVER THE TRAINING 

DATASET WHILE THE MODELS WERE 

TRAINED FOR 25 EPOCHS, (B) ZOOM-IN 
VERSION OF (A). 

 

 
TABLE NO.4: FINAL TESTING ACCURACY 

AND TESTING LOSS ACHIEVED BY ALL THE 

ARCHITECTURES AND THE WEIGHTED 

CLASSIFIER 

 

 
TABLE NO.5: WEIGHT VALUE (BELIEF OR 

TRUST VALUE) CORRESPONDING TO EVERY 
ARCHITECTURE 

 

In Table 4, it can be seen that when equal 

weights were assigned to every model, the testing 

accuracy of the weighted classifier was less than that 

of DenseNet121. This could be attributed to the fact 

that even the models with less testing accuracy were 

assigned the same weights as that to the models with 

higher testing accuracy. Finally, when optimum 

weights were calculated, the testing accuracy of the 

weighted classifier showed an improvement of 

0.98%. Table 5 shows that the weight assigned to 
every model depended on its performance on the test 

dataset. Hence, it could be said that the weight 

assigned to a model represented the belief or trust in 

that model. The maximum weight was assigned to 

DenseNet121, which was followed by ResNet18. 

All the test images were pre-processed 

similarly as the training images and hence had the 

same size as required by the respective architecture. 

The test images were of size 224 × 224 for 

ResNet18, DenseNet121, and MobileNetV2, while 

for InceptionV3 and Xception, they were of size 229 
× 229. The testing was also done on the same system 

on which training was done. The average inference 

time for all the models was 0.045 s (while the GPU 

was used), and for the weighted classifier, it was 

0.203 s. 

 

9.2: PERFORMANCE ANALYSIS 

To further test the robustness of the 

proposed methodology, the accuracy, recall, 

precision score, F1 score, and AUC score for all the 

models and the proposed weighted classifier were 

calculated. To calculate the mentioned scores, 
confusion matrices for all the architectures were 

obtained (Figure 9). With the help of the confusion 

matrix, the number of true positives, true negatives, 

false positives, and false negatives could be 

calculated, which further helped in checking the 

efficacy of the model. 

As the recall was increased, the precision 

decreased, and vice versa. In medical applications, all 

the patients who had the disease needed to be 

identified, and hence, the recall could be maximized. 
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A low recall could be accepted if the cost of a 

follow-up medical examination was not high. Hence, 

the F1 score could be used to find the optimal blend 

of precision and recall. 

 

 
FIG NO. 10 : CONFUSION MATRIX FOR (A) 

RESNET18, (B) DENSENET121, (C) 

INCEPTIONV3, (D) MOBILENETV2, (E) 

XCEPTION, AND (F) WEIGHTED CLASSIFIER 

ARCHITECTURES AND THE WEIGHTED 

CLASSIFIER OVER THE TESTING DATASET. 

FALSE POSITIVES WERE GREATER THAN THE 

FALSE NEGATIVES FOR ALL THE MODELS. 

 

In the plotted confusion matrices (Figure 9), 
it can be seen that the proposed weighted classifier 

outperformed all the individual models. The generic 

image features, learned by the deep learning models 

from ImageNet, served as a good initialization of the 

weights. The misclassification error for normal 

(healthy) images as pneumonia images was greater 

compared to pneumonia images as healthy images. 

This might be because the number of chest X-ray 

images of the normal (healthy) case was significantly 

lower compared to the pneumonia cases. 

Figure 10 shows the ROC curves for 
different architectures and the proposed classifier. 

The maximum AUC score (99.76) was achieved by 

the proposed classifier. All the models had a similar 

AUC/ROC curve. All the results are tabulated in 

Table 6. After analyzing the results, it can be said the 

weighted classifier gave the best results with an AUC 

score of 99.75, F1 score of 98.63, and test accuracy 

of 98.43. Hence, the proposed weighted classifier 

was able to combine the predictions from all the 

individual architectures in an optimum manner. The 

differences in the performance of other models were 

not significant. This might be because all the models 
used in this paper were deep learning based and were 

fine-tuned on the same insufficient dataset. 

 

 
FIG NO.11: . COMPARISON BETWEEN (A) THE 

AUC (AREA UNDER THE CURVE) AND (B) 

ROC (RECEIVER OPERATING 

CHARACTERISTICS) CURVES FOR DIFFERENT 

ARCHITECTURES AND THE WEIGHTED 

CLASSIFIER FOR THE TESTING DATASET. 
THE WEIGHTED CLASSIFIER (BROWN LINE), 

FOLLOWED BY DENSENET121 (YELLOW 

LINE), HAD THE HIGHEST AUC 

 

 
TABLE NO.6: ACCURACY, PRECISION, 

RECALL, F1 SCORE, AND AUC SCORE 

CORRESPONDING TO DIFFERENT 

ARCHITECTURES 

 

9.3: EXPLANATION OF THE RESULTS USING 

HEAT MAPS 

The activation maps were plotted for every 

individual network. These activation maps helped in 

localizing areas in the image most indicative of 

pneumonia. The activation maps were obtained for 
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the last convolutional layer of each network. In the 

case of bacterial pneumonia (Figure 11), all the 

networks detected the abnormal lung to predict the 

presence of pneumonia correctly. Viral pneumonia 

manifested with a more diffuse “interstitial” pattern 

in both lungs, which was detected by all the fine-

tuned architectures [59] (Figure 12). 

 

 
FIG NO.12: ACTIVATION MAPS FOR CHEST X-

RAYS HAVING BACTERIAL PNEUMONIA 
CORRESPONDING TO DIFFERENT 

ARCHITECTURES. ABNORMAL LUNGS, IN 

THE CASE OF BACTERIAL PNEUMONIA, 

WERE DETECTED BY THE DEEP LEARNING 

MODELS 

 

 
FIG NO.13: ACTIVATION MAPS FOR CHEST X-

RAYS HAVING VIRAL PNEUMONIA 

CORRESPONDING TO DIFFERENT 

ARCHITECTURES. VIRAL PNEUMONIA, WITH 
A MORE DIFFUSED “INTERSTITIAL” PATTERN 

IN BOTH LUNGS, WAS DETECTED BY THE 

DEEP LEARNING MODELS. 

 

9.4: COMPARATIVE ANALYSIS OF VARIOUS 

EXISTING METHODS 

The accuracy of various existing methods 

and the proposed methodology were compared. All 

the results mentioned in this section are reported by 

the authors in their respective studies. Rahib H. 

Abiyey et al. [36] used CNN and achieved a 
validation accuracy of 92.4%.  

The test dataset used was smaller compared 

to this paper. Okeke Stephen et al. [37] achieved a 

validation accuracy of 93.73% with their own CNN 

model. No other metric was published in either of 

these works. Cohen et al. [38] used a model based on 

DenseNet-121. They reported an AUC score of 

98.4%. Unfortunately, the other metrics were not 

reported in the paper. Rajaraman et al. [39] used 

customized CNNs to detect pneumonia and reported 

a test accuracy of 96.2%. M.Togacar et al. [60] 

combined features from different deep learning 

models for pneumonia classification and achieved an 

accuracy of 96.84%. Vikash et al. [51] combined the 

outputs of different neural networks and reached the 

final prediction using majority voting. They achieved 

an AUC score of 99.34. Saraiva et al. [44], Ayan et 

al. [45], and Rahman et al. [46] used deep learning 

based methods and achieved an accuracy of 94.4%, 

84.5%, and 98.0%, respectively. In all of these 
papers, the dataset used was of a similar size. All the 

studies other than Rahib H.Abiyey et al. [36] used 

image augmentation techniques. All the above-

discussed results are summarized in Table 7. 

 

X. FUTURE WORK 
The high test accuracy (98.43) and AUC 

score (99.76) showed that the proposed method could 

be used as a supplement in clinical decision making. 
It can only aid the radiologists in the decision making 

process; the final decision has to be made by an 

expert. The proposed weighted classifier, with 

optimum weights, showed an improvement of 0.98%, 

in terms of the testing accuracy, over the case in 

which equal weights were assigned to every model. 

The false positives were greater than the false 

negatives, and hence, the classification error of 

pneumonia suffering patients as healthy was 

comparatively lesser, which is ideally required in 

medical diagnosis. Further, the activation maps 
plotted in this paper showed that the deep learning 

based models used were able to identify pneumonia 

affected regions in the chest X-rays. When compared 

to DenseNet121, the proposed weighted classifier 

showed an improvement of 0.43% in terms of testing 

accuracy, which in the real world on a large test 

dataset would be a significant number. 

One of the limitations of this approach was 

the scarcity of available data. Usually, deep learning 

models are trained over thousands of images. 

Training deep neural networks with limited data 

might lead to overfitting and restricts the models’ 
generalization ability. Unlike large datasets like 

ImageNet, the variability in the chest X-ray data was 

several orders of magnitude smaller. The 

performance of the proposed methodology would 

only increase with the availability of more data. 

Another limitation was that the results of the deep 

learning models could not be properly explained. A 

deep understanding of the radiological features 

visible in chest X-rays is required for the diagnosis of 

the disease from the X-rays. The proper explanation 

of the final prediction of the model is also required, 
and this is one of the drawbacks of the deep learning 

based models. To this end, the activation maps were 

plotted, but further work is required. In the future, 

with better annotated datasets available, deep 

learning based methods might be able to solve this 

problem. 
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XI. CONCLUSION 

Pneumonia constitutes a significant cause of 

morbidity and mortality. It accounts for a 

considerable number of adult hospital admissions, 

and a significant number of those patients ultimately 

die (with a mortality rate of 24.8% for patients over 

75 years) [61]. According to the WHO, pneumonia 

can be prevented with a simple intervention and early 
diagnosis and treatment [4]. Nevertheless, the 

majority of the global population lacks access to 

radiology diagnostics [62]. Even when there is the 

availability of imaging equipment, there is a shortage 

of experts who can examine X-rays.  

Through this paper, the automatic detection 

of pneumonia in chest X-ray images using deep 

transfer learning techniques was proposed. The deep 

networks, which were used in our methodology, had 

more complex structures, but fewer parameters and, 

hence, required less computation power, but achieved 
higher accuracy. Transfer learning and data 

augmentation were used to solve the problem of over 

fitting, which is seen when there is insufficient 

training data, as in the case of medical image 

processing. Further, to combine different 

architectures efficiently, a weighted classifier was 

proposed. The experiments were performed, and the 

different scores obtained, such as the accuracy, 

recall, precision, and AUC score, proved the 

robustness of the model. The proposed model was 

able to achieve an accuracy of 98.857%, and further, 

a high F1 score of 99.002 and AUC score of 99.809 
affirmed the efficacy of the proposed model. Though 

many methods have been developed to work on this 

dataset, the proposed methodology achieved better 

results. In the future, it would be interesting to see 

approaches in which the weights corresponding to 

different models can be estimated more efficiently 

and a model that takes into account the patient’s 

history while making predictions. 
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