RESEARCH ARTICLE

OPEN ACCESS

Development of Rare-Earth Doped Multifunctional Materials for Spintronic Devices Applications

Gadwala Naveena, D. Ravinder

Department of Physics, Osmania University, Hyderabad, 500007, Telangana, India *Corresponding author: D. Ravinder

ABSTRACT

Bismuth doped neodymium nano crystalline ceramics having the chemical formula

 $Bi_{1-x}Nd_xFeO_3$ (Where x = 0, 0.01,0.02,0.03,0.04,0.05) were prepared by citrate gel auto combustion technique. Structural properties are carried out by using XRD and SEM.

Rhombohedrally distorted pervoskite crystal structure can be observed in all the samples that indicate the BFO phase formation. SEM images show the average grain size is in between 200nm-100nm and have spherical shape for BNFO all samples. Based on the research date the above rare earth doped neodymium ceramics for applications of spintronic devices.

Key words: Multifunctional Materials: Spintronic devices: Ceramics; Nano-Particles: Magnetic Materials : X-Ray Techniques: SEM

Date of Submission: 21-04-2021

Date of Acceptance: 06-05-2021

I. INTRODUCTION

Multiferrioc, materials combine more than one form of primary ferroic order parameters simultaneously in a single phase. The primary ferroics are Ferro magnets, ferroelectrics and Ferro elastics. Magnetization in these materials gets affected on application of electric field and converse is also true. Magneto electric coupling between electric and Magnetic order parameters has an intense interest in its implementation for device applications such as increase storage density of memories, more efficient process of storing and sensor applications [1, 2]. Among all the multiferroic materials bismuth ferrite is the only material at room temperature that exhibit strong ferro-electricity and G type anti-ferromagnetism (curie temperature T_c equal to 1103K and Neel temperature T_N equal to 643K) [3]. Ferro electricity in BiFeO₃ is due to the 6s lone pairs of Bismuth and magnetic behavior is due to partially filled d orbitals of iron [4]. Monodomain single crystal BiFeO₃ have rhombohedrally distorted pervoskite (ABO_3) structure with R3c space group with ions displaced along [111] direction [5-7]. By doping with rare earth at A-site of ABO₃ type or by replacing B-site ion with transition metal improves the magnetism and ferroelectricity properties in BFO [8-11].

II. EXPERIMENTAL DETAILS

The Bi-Nd nano ferrite powders were prepared with required amount of Bismuth nitrate,

Iron nitrate and Neodymium nitrate were mixed in deionized water under continues stirring. Citric acid in molar ratio of 1:3 with reference to precursors was mixed to the solution as gelating agent and stirred for 2 hours to get homogeneous mixture of metal nitrates. Ammonia was added to the above solution so that it maintains pH value equal to 7. Continuous heating of resultant solution on a hot plate is done at a temperature of 100[°]C till it dry by stirring continuously resulting in a viscous gel. Increase in temperature up to 200°C leads to ignition of gel. Loose powder is formed by burning the dried gel in a self propagating combustion manner and finally the grinded powder was calcinated at a temperature of 500°C for 5 hours.Structural Characterization of Nd doped BFO samples was done with the help of XRD by using PHILIPS XPERT-PRO with CuKα (□=1.5406 Å) radiation operated at 45kV with 40mA in 20 range between 20° to 80° . The crystalline size of the Nd-BFO nanoparticles was calculated using the scherrer formula [12]

$$D = \frac{0.9\lambda}{\beta \cos \theta}$$

The lattice parameters (a and c) based on hexagonal system calculated by using the equation $\sin^2 \theta =$

$$\frac{\lambda^2}{4} \left[\frac{4}{3} \left(\frac{h^2 + hk + l^2}{a^2} \right) + \frac{l^2}{c^2} \right]$$

Where

 θ = Bragg's angle, a & c = lattice parameters, hkl = miller indices given

 λ = wavelength of the incident radiation.

Micro structure and surface morphology have been studied by SEM [Model: EVO Cari Zeiss, Germany) instrument was used.

III. RESULTS AND DISCUSSION

The refined patterns of XRD for $Bi_{1-x}Nd_xFeO_3$ compounds are given in **fig 1**.

XRD pattern of prepared BNFO nano particles with x=0, 0.01, 0.02, 0.03, 0.04, 0.05 sintered at 500°C for 5 hours was observed. Rhombohedrally distorted pervoskite crystal structure can be observed in all the prepared samples that indicate BFO phase formation. Observations indicate a shift of main diffraction peaks towards angle of higher side with rise in neodymium concentration which may be because of substituting Nd³⁺ ions with smaller radius as compared to Bi³⁺ ions. The above pattern indicate two diffraction peaks at about $2\theta = 32^{\circ}$ in the host BFO gradually merging into sharp single peak with increase in Nd concentration which confirms transformation of phase from rhombohedral structure to orthorhombic structure, which is almost equal to Nd³⁺ ions substitution in pervoskite structure that results in crystal lattice distortion [16]. The computed values of lattice parameter(a,c) and crystal size are given in Table.!. It can be seen from the table that the values of lattice parameters and crystal are decreases with the neodymium content. The small values of crystal size (12.81nm-14.98 nm) of neodymium doped bismuth multifunctional materials are useful for spintronic devices.

Fig 2(a-f) shows the images of SEM for Bi-Nd nano-ceramics with x=0.00, 0.01, 0.02, 0.03, 0.04 and 0.05 respectively. These images indicate that grains have morphology of spherical shape for all samples. The size of grain is 200nm on average for BiFeO₃ and neodymium introduction reduces the average grain size of Bi_{1-x}Nd_xFeO₃ to 200nm – 100nm. The effect on grain size is due to the concentration of Nd. Due to volatile nature of Bi more number of oxygen vacancies are present in pure BiFeO₃. By doping Nd³⁺ in Bi, oxygen vacancies are suppressed which lead to the decrease in oxygen ion migration between grains causing a decrease in grain size.

IV. CONCLUSIONS:

Homogeneous and reactive nanostructured Bi_{1-x}Nd_xFeO₃ multifunctional ferrites were prepared by citrate-gel auto combustion method. XRD pattern shows rhombohedrally distorted pervoskite crystal structure indicates BFO phase formation.

The small values of crystal size (12.81nm-14.98 nm) of neodymium doped bismuth multifunctional materials are useful for spintronic devices. (SEM images show the average grain size is in between 200nm-100nm and have spherical shape for BNFO all samples.

ACKNOWLEDGMENT:

The authors are grateful Prof. Syed Rahman, Head, Department of Physics, Osmania University for his support. The authors also grateful to Department of Science and Technology, Science and Engineering Research Board ,DST,SERB (Grant No: EMR/2016/006907) for financial support.

REFERENCES

- T. Durga Rao, T. Karthik, Saket Asthan, Investigation of structural, magnetic and opticaproperties of rare earth substituted bismuth ferrite, Journal of Rare Earths 31(4) (2013) 370-375, https://doi.org/10.1016/S1002-0721(12)60288-9
- [2]. Nicola A. Spaldin, Manfred Fiebig, The Renaissance of Magnetoelectric Multiferroics, Materials Science 309(5733) 391-392, DOI: 10.1126/science.1113357
- [3]. M.H.Basiri H.Shokrollahi Gh.Isapour, Effects of La content on the magnetic, electric and structural properties of BiFeO₃, J. Magn. Magn. Mater. 354 (2014) 184-189, https://doi.org/10.1016/j.jmmm.2013.10.020
- [4]. L.E. Fuentes-Cobas, D. Chateigner, in Handbook of Magnetic Materials, 24 (2015) 1-436
- [5]. F. Kubel, H. Schmid, Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO₃, Acta Crystallographic. Section B46 (1990) 698-702

https://doi.org/10.1107/S0108768190006887

[6]. Jangid, S.K. Barbar, Indu Bala, M.Roy, Structural thermal electrical and magnetic properties of pure and 50% La doped BiFeO₃ ceramics, Physica B: Condensed Matter 407(18) (2012) 3694-3699, https://doi.org/10.1016/j.physb.2012.05.013 [7]. S.K.Pradhan, J.Das, P.P.Rout, S.K.Das, B.K.Mishra, D.R.Sahu, A.K.Pradhan, V.V.Srinivasu, B.B.Nayak, S.varma, B.K.Rahul, Defect driven multiferroicity in Gd doped BiFeO₃ at room temperature, J. Magn. Magn. Mater. 322(22) (2010) 3614-3622

https://doi.org/10.1016/j.jmmm.2010.07.00

- [8]. Pittala Suresh, S.Srinath, Study of structure and magnetic properties of rare earth doped BiFeO₃, Physica B: Condensed Matter 448 (2014) 281-284 https://doi.org/10.1016/j.physb.2014.03.040
- [9]. Masaki Azuma, Hironori Kanda, Alexei A, Yuichi Shimakawa, Mikio Takano, Magnetic and structural properties of BiFe_{1-x}Mn_xO₃, J. Magn. Magn. Mater. 310(2) (2007) 1177-1179

https://doi.org/10.1016/j.jmmm.2006.10.287

[10]. Yu-jie Zhang, Hong-guo Zhang, Jin-hua Yin, Hong-wei Zhang, Jing-lan Chen, Wen-qua wang, Guang-heng Wu, Structural and magnetic properties in Bi_{1-x}R_xFeO₃ (x=0–1, R=La, Nd, Sm, Eu and Tb) polycrystalline ceramics, J. Magn. Magn. Mater. 322(15) (2010) 2251-2255, https://doi.org/10.1016/j.jimmm.2010.02.020

https://doi.org/10.1016/j.jmmm.2010.02.020

[11]. Deepam Maurya, Harikishan Thota, Ashish Garg, Brajesh Pandey, Prem Chand and H C Verma, Magnetic studies of multiferroic Bi_{1-x}SmxFeO₃ ceramics synthesized by mechanical activation assisted processes, J. Phys.: Condens. Matter 21 (2009) 026007, http://dx.doi.org/10.1088/0953-8984/21/2/026007

- A. L. Patterson, The Scherrer Formula for X-Ray Particle Size Determination, Phys. Rev. 56 (1939) 978-982, https://doi.org/10.1103/PhysRev.56.978
- [13]. Bojan Stojadinovića, Zorana Dohčević-Mitrovića, Dimitrije Stepanenkoa, Milena Rosićb, Ivan Petronijevićc, Nikola Tasićd, Nikola Ilićd, Branko Matovićb, Biljana Stojanovićd, Dielectric and ferroelectric properties of Ho-doped BiFeO₃ nanopowders across the structural phase transition, Ceramics International 43 (2017) 16531– 16538, http://dx.doi.org/10.1016/j.ceramint.2017.09.

038 [14]. Iqbal, M. J., Ashiq. M. N. Gomez. P. H., Synthesis, physical, magnetic and electrical properties of Al-Ga substituted coprecipitated nanocrystalline strontium hexaferrite. J. Magn. Magn. Mater. 320 (2008) 881-886. DOI: 10.1016/j.jmmm.2007.09.005

[15]. C.B.Kolekar, P.N.Kumble and S.G.Kulkarni, Effect of Gd³⁺ substitution on dielectric behavior of copper-cadmium ferrites, Journal of Materials Science, 30 (22) (1995)5784-5788.

https://doi.org/10.1007/BF00356721

[16]. S. Mukherjee, Synthesis and Characterization of Bismuth Ferrite-Nickel Ferrite Nanocomposites, Interceram - International Ceramic Review 68 (2019) 42-51 https://doi.org/10.1007/s42411-019-0021-z

Fig 1 : XRD patterns for Bi _{1-X}Nd_X FeO ₃ (x = 0, 0.01,0.02,0.03,0.04,0.05)

D. Ravinder, et. al. International Journal of Engineering Research and Applications www.ijera.com

Composition (X value)	a(nm)	c(nm)	Crystalline size (nm)
0.00	0.565	1.385	14.98
0.01	0.564	1.384	14.84
0.02	0.563	1.379	13.77
0.03	0.561	1.361	13.56
0.04	0.560	1.378	13.08
0.05	0.559	1.380	12.81

ISSN: 2248-9622, Vol. 11, Issue 4, (Series-II) April 2021, pp. 30-34

Table 1 : Structural parameters for Bi _{1-x} Nd_x FeO ₃ (x = 0, 0.01,0.02,0.03,0.04,0.05)

D. Ravinder, et. al. International Journal of Engineering Research and Applications www.ijera.com ISSN: 2248-9622, Vol. 11, Issue 4, (Series-II) April 2021, pp. 30-34

Fig 2 (a-f) :SEM images of Bi_{1-x}Nd_xFeO₃ (x=0.00, 0.01, 0.02, 0.03, 0.04, 0.05)

Gadwala Naveena, et. al. "Development of Rare-Earth Doped Multifunctional Materials for Spintronic Devices Applications." *International Journal of Engineering Research and Applications (IJERA)*, vol.11 (4), 2021, pp 30-34.

www.ijera.com

DOI: 10.9790/9622-1104023034