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ABSTRACT 
SSD (Single Shot Multibox Detector) is one of the most popular object detection detectors with high precision 

and fast speed. However, SSD’s feature pyramid detection method makes it hard to detects small objects. In this 

paper, we proposed an improved SSD named FFASSD, which includes a lightweight feature fusion module 

andanefficientchannelattentionmodule. FFASSD can especially improve the performance of SSDin small object 

detection. In the feature fusion module, features from different layers with different scales are concatenated 

together, the features of shallow layers are replaced by the generated new features to predict the final detection 

results. In the channel attention block, capturing local cross-channel interaction before the multi-scale feature 

maps being classified and regression. On the Pascal VOC 2007 test, FFASSD can achieve 79.8mAP (mean 

average precision) at the speed of45.5 FPS (frame per second) with the input size 300×300. In addition, the 

experimental result on COCO is also better than the conventional SSD with a large margin. FFASSDoutperforms 

a lot of state-of-the-art object detection detectors in both aspects of accuracy and speed.  
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I. INTRODUCTION 
Objectdetectionisoneofthemost 

fundamentaltasksincomputervision. In recent years, 

plentyof object detectors based on CNN 

withbetterperformance 

havereplacedtraditiononesinobjectdetection 

field.Theobject detection detectorsbasedonCNN can 

be roughly divided into two categories: one-stage 

detectors and two-stage detectors. The two-stage 

detectors’detection task was composedof two stages. 

In the first stage, heuristicsalgorithm(selective 

search[8]) or CNN (RPN[2]) is used to generate 

candidate bounding boxes (Region Proposal). In the 

second stage,the selected candidate regionsare used 

to perform classification and location regression. 

Although the detection accuracy is higher than the 

one-stage detector, two-stage detectorneeds much 

more time cost. The representative ones are R-

CNN[1], Fast-RCNN [2]and Faster-RCNN[3] 

proposed by Girshicket al.The one-stage 

detectorsplitsinputimageintolotsofcells, and only 

usesoneCNNto locate and classify the objects 

existed in each cell on the image. Therefore, the 

speed of detection is usually faster, but the precision 

of one-stage detectoris lower than that of the two-

stage detector.The representative one-stagedetectors 

includeYOLO[4], SSD[5], etc. 

However, 

itishardtofindabalancefromtheobjectdetectorswhichi

sbasedonCNN betweenrecognition and 

locationowningtothe contradiction 

betweendeepConvlayersand shallow 

Convlayers.The feature maps producedby shallow 

network havemore detailed information to locate 

objects. The feature mapsgenerated from deep 

network obtain more semantic information which is 

morehelpful to classification of targets but lose too 

much location information. In order to solve this 

problem, SSD detectoradopts multi-scale feature 

maps to detect objects. It makes VGG16[6] as the 

backbone network, the shallow layer Conv4_3 is 

usedto predict small objects, and the deep layer 

Conv8_2 is responsible for detecting large targets. 

This strategy 

seemslogicalbecausetheshallowfeaturemapcanprovi

demorelocation tohelp objects be well located and 

well recognized. 

Butthefeaturemapsofshallowlayerstill are lack of 

semantic information, which leads to poor 

performance onthedetectionofsmall objects. Besides, 

small objects also rely on the context information 

heavily [7]. Although many 

modificationalgorithmshave been proposed to 

improve the detection accuracy of SSD in small 

objects, the running speed ofdetection is greatly 

slowed down. It is difficult to find a balance 

between precision and speed for the detector. 

In order to improve the detection accuracy for 

small objectsand the speed is as fast aspossible. In 

this paper we proposed an improved SSD with 

feature fusionandchannelattention,named FFASSD 
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(Feature Fusion and Attention SSD).Firstly, to 

effectively combine the location information with 

the semantic information, we construct two feature 

fusion modules, which concatenated the feature 

maps from shallow layers and deep layers to form 

new feature maps. Secondly, we designed an 

attention module based on the local channels to 

catch the interaction information 

inthechanneldimensionofthefeaturemapsand learn 

the importance of thefeatures among each channel 

by assigning weight to the channels of the feature 

map. The experimental results show that FFASSD 

improves the detection ability of small objects 

greatly.Besides, itachieves a large performance 

improvement with sacrificing a small part of the 

speed. 

 

II. RELATED WORK 
2.1. Objectdetection with deeplearning 

The object detection is not only to locate 

each object in the image, but also to classify the 

recognized target. With the development of deep 

learning, object detector based on CNNhas begun to 

show the dramatic improvements in efficiency. R-

CNN [1] appliesselective search [8] or Edge boxes 

[9] to generate the region proposals, which are used 

to generate the region-based feature from a 

pretrained CNN and SVMs are adopted to do 

classification. SPPNet [10] uses a spatial pyramid 

pooling layer which allows the classification module 

to reuse the ConvNetfeature regardless of the input 

image resolutions. Fast R-CNN [2] introduces to 

train the ConvNet with both the classification and 

location regression loss end to end. Faster R-CNN 

[3] suggests replacing selective search with a region 

proposal network (RPN).RPN is used to generate 

the candidate bounding boxes (anchor boxes) and 

filter out the background regions at the same time. 

Then another small network is used to do 

classification and bounding box location regression 

based on these proposals. R-FCN [11] replaces ROI 

pooling in the Faster RCNN with a position 

sensitive ROI pooling (PSROI) to improve the 

detector’s quality with both aspects of accuracy and 

speed. Recently, Deformable Convolutional 

Network [12] proposes deformable convolution and 

deformable PSROI to enhance the RFCN further 

with better accuracy.  

Except for the two-stage detectors, there are 

also some efficient one-stage object detectors. 

YOLO (you only look once) [4] divides the input 

image into several grids and performs localization 

and classification on each part of the image. 

Benefited from this method, YOLO can run object 

detection at a very highspeed, but the accuracy is 

not satisfactory enough. YOLOv2 [13]and 

YOLOv3[14] areboth enhanced versions of YOLO. 

SSD [5] is another efficient one stage object 

detector. As illustrated in Fig.1(a), SSD predicts the 

class scores and location offsets for the default 

bounding boxes by two 3 3  convolutional layers. 

In order to detect objects with different scales, SSD 

adds a series of progressively smaller convolutional 

layers to generate pyramid feature maps and sets 

corresponding anchor size according to the receptive 

field size of the layers. Then NMS (non-maximum 

suppression) is used to post-process the final 

detection results. Because SSD detects objects 

directly from the plane ConvNet feature maps, it can 

achieve real-time object detection and process faster 

than most of the other state-of-the-art object 

detectors. In order to improve the accuracy, DSSD 

[15] suggests augmenting SSD+ResNet-101 with 

deconvolution layers to introduce additional large-

scale context. However, the speed is slow because 

of the model complexity. RSSD [16] uses rainbow 

concatenation through both pooling and 

concatenation to fully utilize the relationship 

between the layers in the feature pyramid to enhance 

the accuracy with a little speed lost. DSOD [17] 

investigates how to train an object detector from 

scratch and designs a DenseNet[41] architecture to 

improve the parameter efficiency. FSSD[18] was 

proposed to improve the accuracy of small object, 

features from different layers with different scales 

are concatenated together, followed by some down-

sampling blocks or bilinear interpolationblocks to 

generate new feature pyramid, which will be fed to 

multi-box detectors to predict the final detection 

results.In order to generate features with strong 

representational power for small object instances, 

MDSSD[19] add the high-level features with rich 

semantic information to the low-level features via 

deconvolution Fusion Block.  

 

2.2. Feature fusion module 

There are a lot of approaches which 

attempt to use multiple layers’ features to improve 

the performance of computer vision tasks. HyperNet 

[20], Parsenet [21], ION and FSSD [18]concatenate 

features from multiple layers before predicting the 

result. MDSSD [19] use element-wisesum to 

combine deep layers whichusing deconvolution 

withshallow layers. FCN [22], U-Net [23] and 

Stacked Hourglass networks [24] also use skip 

connections to associate low-level and high-level 

feature maps to fully utilize the synthetic 

information. SharpMask [25] and FPN [26] 

introduce top-down structure to combine the 

different level features together to enhance the 

performance.  

 

2.3. Attention mechanism 
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Attention mechanism has proven to be a 

potential means to enhance deep CNNs. SE-Net [27] 

presents for the first time an effective mechanism to 

learn channel attention and achieves promising 

performance. GSoP [28] introduces a second-order 

pooling for more effective feature aggregation. GE 

[29] explores spatial extension using a depth-wise 

convolution to aggregate features. CBAM [30] and 

scSE [31] compute spatial attention using a 2D 

convolution, then combine it with channel attention. 

Sharing similar philosophy with Non-Local (NL) 

neural networks [32], GC-Net [33] develops a 

simplified NL network and integrates with the SE 

block, resulting in a lightweight module to model 

long-range dependency. Double Attention Networks 

(A2-Nets) [34] introduces a novel relation function 

for NL blocks for image or video recognition. Dual 

Attention Network (DAN) [35] simultaneously 

considers NL-based channel and spatial attentions 

for semantic segmentation. ECA [36] aims at 

learning effective channel attention with low model 

complexity.All the above methods focus on 

developing sophisticated attention modules for 

better performance.  

 

III. ARCHITECTURE OF FFASSD 

ThearchitectureofFFASSDisshownin Fig. 1 (b). 

Based on SSD, there are two modulesbeing added as 

follow: 

Wedesigntwolightweightfeaturefusionmod

ules. The first Feature Fusion module (FF1) 

generate new feature map (fm1)by 

combiningconv4_3,conv6 and conv8_2. The second 

Feature Fusion module(FF2) produce new feature 

map (fm2) by merging conv6, conv7 and 

conv8_2.The new fusion features are rich in 

semantic information with relatively high resolution, 

providing a significant improvement on detection of 

small objects. 

Weinterceptachannelattentionblockbeforeth

emulti-

scalefeaturemapsbeingclassifiedandregression.We 

propose a local cross-channel interaction strategy 

without dimensionality reduction, which can be 

efficiently implemented via 1D convolution with an 

adaptively select kernel size, determining coverage 

of local cross-channel interaction.Throughthe 

proposed attention block, our network can learn to 

use global information to selectively emphasize 

informative features and suppress less useful ones, 

which improve the 

accuracywithjustalittlespeeddrop. 

 
(a) 
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(b) 

Figure 1. (a)is the SSD framework, (b) is our FFASSD framework. 

 

3.1 FeatureFusionModule 

As shown in Fig. 2, there are some 

approaches which have been proposed to solve the 

multi-scale objects detection problem. A top-down 

structure like (a) in Fig.2 is popular and has been 

proved working well in FPN [26], DSSD [15], and 

SharpMask [25]. But fusing features layer by layer 

is not efficient enough while there are many layers 

to be combined together.  FSSD [18]proposed a 

method like(b) in Fig.2 that features from different 

layers with different scales are concatenated 

together first and used to generate a series of 

pyramid features later.We adopted the structure 

like (c) in Fig.2, feature maps of shallow network 

were replaced by thefusionresultsofmulti-scale 

features.However, features of deep network 

whichtookpartinthe featurefusion still used 

toclassificationandregressiondirectly. 

 

 

 

 

 

 
 

 

 

 

Figure 2. (a) Feature fusion method adopted by 

(a) 

 
(b) 
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[15, 25, 26], features are fused from top to bottom 

layer by layer. (b) Method in[18], features from 

different layers with different scales are 

concatenated together first and used to generate a 

series of pyramid features later. (c) Our proposed 

feature fusion and feature pyramid generation 

method.  

(c) 

 

There are mainly two ways to merge 

different feature maps together: concatenation and 

element-wise summation. Element-wise summation 

requires that feature maps should have the same 

size which means we have to convert the feature 

maps to the same channels. Because this 

requirement limits the flexibility of fusing feature 

maps, we prefer to use concatenation. According to 

FSSD, concatenation can get a better result than 

element-wise summation[18]. So, we use 

concatenation to merge the features.  

In order to concatenate the features with 

different scales in a simple and efficient way, we 

adopt the following strategy. In the first feature 

fusion module (FF1) shown in Fig.3 (a), conv1 1
is applied to each of the source layers to reduce the 

dimension of feature channel firstly. We set the 

size of conv4_3’s feature map as the basic feature 

map size.As for the feature maps conv6 and 

conv8_2 whose size is smaller than 38 38 , we use 

bilinear interpolation to resize the feature maps to 

the same size with conv4_3. Then the three feature 

maps are concatenated together followed by a 

Batch Normalization layer to normalize the feature 

values. After Batch Normalization we use the conv

3 3 layer to reduce the channel, make the feature 

dimension is same with the basic feature map. 

The second feature fusion module like (b) 

in Fig.3, is basically the same as FF1, except that 

the input is changed from conv4_3, conv6 and 

conv8_2 to conv6, conv7 and conv8_2. The 

dimension of output is same with feature map 

conv6. 

Assuming    iX i C  are the source 

feature maps we want to fuse the feature fusion 

module can be described as follows:  

( )   
1 1

Y Conv X i C
i i
 


(1) 

C istherangeofinput, depending on the different 

feature fusion modules.In the Feature Fusion 

Module one (FF1), we set the range of input layers 

as conv4_3, conv6 and conv8_2, In FF2, the 

collectionofinput is conv6, conv7 and conv8_2. 

1 1Conv 
is a 1 1

convolutionlayertoreducethechanneldimension: 

           ( )  
   

( )   ( )  

Y size i basic sizei
Z i Ci BI Y size i basic sizei


 



(2) 

BI  means the operation of bilinear 

interpolation for up-sampling to resize smaller 

features.  iY doesn'tneedup-sampling,if i  is same 

size with the feature chosen to be base. Then all the 

features
iZ have the same size on spatial dimension. 

Sowe can use them to fusion by concatenation:  

    1,2 3X3 iF = Conv BN Concat Z    i C (3) 

Concat  is the operation of concatenation. 

BN  is a Batch Normalization layer. The 

transformed feature maps Z
i  are concatenated 

together followed by a Batch Normalization layer 

to normalize the feature values.  Then we use a 

3 3  convolution layer as a feature extractor which 

is same with SSD to generate new feature maps. 

We use the new feature maps replacing old basic 

feature maps in SSD to produce object detection 

results. 

 
(a) 
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(b) 

Figure 3. (a) is feature fusion module 1(FF1), (b) is feature fusion module 2 (FF2). 

 

 

3.2 ChannelAttentionModule 

The concatenation introducedin the feature 

fusion module of the design in section 3.1 causes 

the feature maps to be combined only in the 

channel dimension. But the information between 

cross-channelis still independent of each other. 

This sectionintroducedthechannel attention 

mechanism which can learn to use global 

information to selectively emphasize informative 

features and suppress less useful ones. 

The traditional channel attention mechanism 

SE Block [27], shown in Fig.4(a),first employs a 

global average pooling for each channel 

independently, then two fullyconnected (FC) layers 

with non-linearity followed by a Sigmoid function 

are used to generate channel weights. The two FC 

layers are designed to capture non-linear cross-

channel interaction, which involve dimensionality 

reduction for controlling model complexity. 

Although this strategy is widely used in subsequent 

channel attention modules [28, 29, 30], several 

empirical studies in ECA [36]have shownthat 

dimensionality reduction brings side effect on 

channel attention prediction, and it is inefficient 

and unnecessary to capture dependencies across all 

channels. 

Therefore, this paper proposes a K-

neighbor Channel Attention (KNCA) module, 

which avoids dimensionality reduction and 

captures cross-channel interaction in an efficient 

way. After channel-wise global average pooling 

without dimensionality reduction, KNCA module 

captures local cross-channel interaction by a 1D 

conv which considering every channel and its k 

neighbors.  

Let the output of one convolution block be
W H Cx    , where W , H and C are width, 

height and channel dimension (i.e., number of 

filters). Accordingly, the weights of channels in 

KNCA module can be computed as:  

       W H C

WW f gap x x    (4) 

where  is a Sigmoid function, 
Wf  is a function to 

capture the local interaction information between 

each channel and  
,

1, 1

1 W H

ij

i j

gap x X
WH  

  is 

channel-wise global average pooling (GAP). Let

 y gap x ,
Wf takes the form: 

 Wf y Wy (5) 

We design 𝑊  as C C in equation5 to 

replace two fully connected (FC) layers in SE 

Block, which cause huge increase in model 

complexity and computational burden.  
1 2

1 1 1

1 2

2 2 2

1 2

C

C

C

C C C

w w w

w w w

w w w

 
 
 
 
 
  





   



(6) 

In order to reduce model complexityfurther 

avoiding dimensionality reduction.We remake W 

like equation7. Clearly, W in equation7involves 

𝑘 × 𝐶 parameters, which is usually less than those 

of equation 6.  
1

1 1

1

2 2

1

0 0 0

0 0 0

0 0

k

k

C k C

C C

w w

w w

w w 

 
 
 
 
 
  

 

 

      

  

(7) 

As for equation7, the weight of  y𝑖 is 

calculated by only considering interaction between 

y𝑖  and its 𝑘 neighbors, i.e.:  

1

   
k

j j j k

i i i i i

j

W w y y


 
  

 
 (8) 

where k

i  indicates the set of k  adjacent channels 

of iy . 

A more efficient way is to make all channels 

share the same learning parameters, i.e.:  

1

   
k

j j j k

i i i i

j

W w y y


 
  

 
 (9) 

Note that such strategy can be readily 

implemented by a fast 1D convolution with kernel 

size of k, i.e.:  
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  1 kW Conv d y (10) 

where 1 kConv d indicates 1D convolution with 

kernel size of k . Here, the method in equation10 is 

called by K-neighbor Channel Attention (KNCA) 

module, which only involves k  parameters. As 

presented in table 1ofsection5.1, theSSD with 

KNCA moduleachieves similar results compared 

withthe SSDappendingSE block while having 

much lower model complexity, which guarantees 

both efficiency and effectiveness by appropriately 

capturing local cross-channel interaction.  

Fig. 4(b) illustrates the overview of KNCA 

module. After using GAP (global average pooling 

layer) to aggregate convolution features, 

KNCAmodule adaptively determines kernel size k 

and perform 1D convolution replacingthe FC layers 

in SE Block, which not required dimensionality 

reduction. Then we gain the collection of per-

channel modulation weights by a Sigmoid function. 

These weights are applied to the feature maps to 

generate the output of the KNCA module which 

can be fed directly into subsequent layers of the 

network.  

 
(a) 

 
(b) 

Figure 4. (a) is SE block proposed in [27], (b) is our KNCA block 

 

Since KNCA module aims at 

appropriately capturing local cross-channel 

interaction, so the coverage of interaction (i.e., 

kernel size k of 1D convolution) needs to be 

determined. The optimized coverage of interaction 

could be tuned manually for convolution blocks 

with different channel numbers in various CNN 

architectures. However, manual tuning via cross-

validation will cost a lot of computing resources. 

Group convolutions have been successfully 

adopted to improve CNN architectures [37], where 

high-dimensional (low-dimensional) channels 

involve long range (short range) convolutions 

given the fixed number of groups. Sharing the 

similar philosophy, it is reasonable that the 

coverage of interaction (i.e., kernel size k of 1D 

convolution) is proportional to channel dimension 

C. In other words, there may exist a mapping 

between k  and C :  

 C k (11) 

The simplest mapping is a linear function 

i.e.: C r k b   However,therelations 

characterized by linear function are too limited. On 

the other hand, it is well known that channel 

dimension C  (i.e., number of filters) usually is set 

to power of 2. Therefore, we introduce a possible 

solution by extending the linear function 

 f k = r* k+b  to a non-linear one, i.e.:  

 
r*k+b

C = f k = 2
 
 
  (12) 
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Then, given channel dimension C , kernel 

size k can be adaptively determined by  

 
log C -b

2k =ψ C =
r

odd

(13) 

where n odd  indicates the nearest odd number of 

n . In this paper, we set r and b to2and 1 throughout 

all the experiments, respectively. Clearly, through 

the mapping , high-dimensional channels have 

longer range interaction while low-dimensional 

ones undergo shorter range interaction by using a 

non-linear mapping.  

 

IV. TRAINING 
We use two size of images( 300 300 ,

512 512 ) as inputandadopt the well-trained SSD 

model as our pre-trained model. The training 

objective is the same as SSD. We use the center 

code type to encode the bounding boxes and have 

the same matching strategy, hard negative mining 

strategy and data augmentation with SSD. A 

predicted bounding box is correct if its intersection 

over union (IOU) with the ground truth is higher 

than 0.5. The batch size is 32 for 120k iterations. 

The initial learning rate is set to 0.001 and then 

divided by 10 at step 80k and 100k. All the 

experiments are implemented in Pytorch 1.0 on the 

machine with two 1080Ti GPUs. 

 

V. EXPERIMENTS AND COMPARISON 
In order to compare FFASSD with the conventional 

SSD fairly, our experiments are all based on 

VGG16[6] which is preprocessed like SSD [5]. We 

conduct experiments on PASCAL VOC 2007, 2012 

[38] and MS COCO dataset [39]. The performance 

is measured by mean average precision (mAP) on 

VOC2007 test and COCO test-dev2015 datasets. 

We compare the results with state-of-the-art deep 

convolutional networks about the mAP and 

inference speed. 

 
5.1 Ablation Study on PASCAL VOC2007 

In this Section, we 

investigatetheinfluenceofFeatureFusionmoduleand

ChannelAttentionblockonSSD. We compare the 

results on PASCAL VOC 2007 with input size 

300×300. In these experiments, the models are 

trained with the combined dataset from 2007 

trainval and 2012 trainval (VOC07+12) and tested 

on VOC 2007 test set. The results are summarized 

in Table 1. 

In Table 1, we compare the SSD with 

different module. While we only use SE block, the 

mAP on VOC2007 test set (row 5) is 78.2%. It is 

interesting that if we only replace the SE block by 

KNCA block, the mAP is 78.1% (row 6), but the 

fps is fasterthan SE block with a large margin of 41 

points. which means that the SSD with KNCA 

module achieves similar results compared with it 

appending SE Block while having much lower 

model complexity, which guarantees both 

efficiency and effectiveness by appropriately 

capturing local cross-channel interaction.The row 5 

shown that adopting Feature Fusion module 1(FF1) 

andFeature Fusion module 2 (FF2) both can get 

78.8%, which is higher than the results of SSD 

appending only FF1 or FF2.SSD with two Feature 

Fusion modules and KNCA block achieves the best 

performance, improving mAP to 79.8% (row 8). 

Table 1.Ablation Study on PASCAL VOC2007. 

Feature Fusion 

Module 1 (FF1) 

Feature Fusion Module 

2 (FF2) 

KNCA 

Block 

SE 

Block 
mAP(%) speed(fps) 

    77.5 120 

    77.9 76 

    78.4 76 

    78.8 65 

    78.1 84 

    78.2 43 
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    79.8 59.5 

 

5.2 ExperimentalResults on VOC2007 

Our results on VOC2007 test set are 

shown in Table 2. FFASSD300 can achieve 79.8% 

mAP, which improves 2.6 points compared with 

the conventional SSD300. In addition, the result of 

FFASSD300 is higher than DSSD321 and 

MDSSD300, itisnotedthat DSSD321 uses ResNet-

101 [40] as the backbone network, which has better 

performance compared with VGG16. Comparing 

with FSSD300, FFASSD300 improves the 

performance with 1.2 pointswith just a little speed 

drop.FFASSD512 also improves the SSD512 from 

78.5% to 81.5% with the aspect of accuracy, which 

is similar with DSSD512. FFASSD512 also 

exceeds RSSD512 by 1.2%, FSSD512 by 1.1% and 

MDSSD512 by 1.2%. 

BesidesFFASSD300 is faster (59.5 fps) than 

most of the object detection algorithms except for 

FSSD300, because of FSSD300 only joinedone 

feature fusion module onthebaseofSSDwithout any 

attention block. FFASSDfounda justice balance 

between precision and speed. 

Table 2.PASCAL VOC 2007 test detection results. 

method train data backbone network GPU speed(fps) mAP(%) 

Faster 

RCNN[3] 
07+12 ResNet-101 K40 2.4 76.4 

R-FCN[11] 07+12 ResNet-101 K40 5.8 79.5 

YOLOv2[13] 07+12 Darknet-19 Titan X 81 73.7 

SSD300[5] 07+12 VGG16 1080Ti 85 77.2 

SSD512[5] 07+12 VGG16 1080Ti 19 78.5 

DSSD321[15] 07+12 ResNet-101 Titan X 9.5 78.6 

DSSD513[15] 07+12 ResNet-101 Titan X 5.5 81.5 

RSSD300[16] 07+12 VGG16 Titan X 35 78.5 

RSSD512[16] 07+12 VGG16 Titan X 16.6 80.8 

FSSD300[18] 07+12 VGG16 1080Ti 65.8 78.8 

FSSD512[18] 07+12 VGG16 1080Ti 35.7 80.9 

MDSSD300 

[19] 
07+12 VGG16 1080Ti 38.5 78.6 

MDSSD512 

[19] 
07+12 VGG16 1080Ti 17.3 80.3 

FFASSD300 07+12 VGG16 1080Ti 59.5 79.8 

FFASSD512 07+12 VGG16 1080Ti 26.4 81.5 
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5.3 Experimental Results on MS COCO 

We use the MSCOCO data to prepare our dataset. 

The training set is the original trainval35k. We test 

FFASSDon the 2017test-dev set. The COCO test 

results are shown in Table 3.  

FFASSD300 achieves 28.0% mAPon the 

test-dev set, which is higher than the 

SSD300(25.1%)andFSSD300 

(27.1%).BesidesFFASSDperforms as well as 

DSSD300,it should be noted that FFASSD still 

takes VGG as the base network while DSSD swaps 

the backbone network for ResNet-101 which has a 

better performance than 

VGG.FFASSD512(32.8%)outperforms 

conventional SSD(28.8%) by 3 

pointsandexceedsFSSD(31.8%) by 1 point. Even 

though FFASSD512 is slightly lower than 

DSSD513. But FFASSD's AP on small objects is 

still higher than among all of the object detectors in 

table 3 with a large margin. This performance 

proves the effectiveness of FFASSD for small 

objects.  

Table 3.MS COCO test-dev 2017 detection results. 

Method 
Train 

data 

Backbo

ne 

networ

k 

 Avg. Precision, 

IoU: 

Avg. Precision, 

Area: 

Avg. Recall, 

#Dets: 

Avg. Recall, 

Area: 

0.5:0.9

5 
0.5 

0.7

5 
S M L 1 10 

10

0 
S M L 

Faster 

RCNN[3] 

trainval3

5k 

ResNet

-101 
21.9 42.7 - - - - - - - - - - 

R-

FCN[11] 

trainval3

5k 

ResNet

-101 
29.9 51.9 - 

10.

8 

32.

8 

45.

0 
- - - - - - 

YOLOv2[

13] 

trainval3

5k 

Darknet

-19 
21.6 44.0 

19.

2 
5.0 

22.

4 

35.

5 

20.

7 

31.

6 

33.

3 
9.8 

36.

5 

54.

4 

SSD300[5] 
trainval3

5k 
VGG16 25.1 43.1 

25.

8 
6.6 

25.

9 

41.

4 

23.

7 

35.

1 

37.

2 

11.

2 

40.

4 

58.

4 

SSD512[5] 
trainval3

5k 
VGG16 28.8 48.5       

30.

3 

10.

9 

31.

8 

43.

5 

26.

1 

39.

5 

42.

0 

16.

5 

46.

6 

60.

8 

DSSD321[

15] 

trainval3

5k 

ResNet

-101 
28.0 46.1 

29.

2 
7.4 

28.

1 

47.

6 

25.

5 

37.

1 

39.

4 

12.

7 

42.

0 

62.

6 

DSSD513[

15] 

trainval3

5k 

ResNet

-101 
33.2 53.3 

35.

2 

13.

0 

35.

4 

51.

1 

28.

9 

43.

5 

46.

2 

21.

8 

49.

1 

66.

4 

FSSD300[

18] 

trainval3

5k 
VGG16 27.1 47.7 

27.

8 
8.7 

29.

2 

42.

2 

24.

6 

37.

4 

40.

0 

15.

9 

44.

2 

58.

6 

FSSD512[

18] 

trainval3

5k 
VGG16 31.8 52.8 

33.

5 

14.

2 

35.

1 

45.

0 

27.

6 

42.

4 

45.

0 

22.

3 

49.

9 

62.

0 

FFASSD3

00 

trainval3

5k 
VGG16 28.0 48.0 

28.

8 
10.

8 
- - 

26.

3 

38.

6 

40.

8 

16.

8 
- - 

FFASSD5

12 

trainval3

5k 
VGG16 32.8 53.5 

34.

4 
15.

9 
- - 

28.

3 

43.

3 

45.

9 

24.

4 
- - 

 

VI. PERFORMANCE IMPROVEMENT 

IN FFASSD 
Our improved detector FFASSDperforms 

better than conventional SSD mainly in two 

aspects. Firstly, FFASSDperforms better on small 

objects. On the one hand, small objects can only 

activate smaller regions in the network compared 

with large objects and the location information is 

easy to be lost in the detection process. On the 

other hand, small object’s recognition relies more 

on the context around it. Because SSD only detects 

small objects from the shallow layers such as 

conv4_3, whose receptive field is too small to 

observe the morecontextinformationcompared with 

the deep layers, which leads to the SSD’s bad 

performance on small objects. FFASSD can 

observe all the objects synthetically benefited from 

the feature fusion module. As shown in Fig. 5 

column 1and column 2. FFASSDdetects more 
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small objects than SSD successfully. 

Secondly,FFASSDgains higher precision than 

SSD. For example, as illustrated in Fig.5 column 3, 

the SSD only detects twopersonsofthe three 

inthepicture. But FFASSDdetectsthemallatonce. 

 

VII. CONCLUSION AND FUTURE 

WORK 
In this paper, we proposed an enhanced 

SSD by applying two lightweight feature fusion 

modules and an efficient channel attention module 

on it. Firstly, we replace outputs of conv4_3 and 

conv7 by two new feature maps generated by 

twolightweightfeaturefusionmoduleswhich 

combine three different scale features.Secondly, we 

intercept a channel attention block by capturing 

local cross-channel interaction before the multi-

scale feature maps being classified and regression. 

Experiments on VOC PASCAL and MS 

COCOprove that FFASSDimproves the 

traditionalSSD a lot and outperforms several other 

state-of-the-art object detectors both in accuracy 

and efficiency with a simpleimprovement. 

In order to improve the detection 

performance, it is imperative to replace VGG [6] 

by more effective networks, such as ResNet [40] 

and DenseNet [41]. But how to improve the 

inference speed of these deep backbones will be 

our future work. In addition, there are still some 

false detections in our visualized results. Some 

examples are given in Fig. 6. We will investigate 

these issues in our future work as well.  

   
   

   
Figure 5. SSD300 vs FFASSD300. Both models are trained with VOC2007test set. The top row isthe results 

from the conventional SSD300 and the bottom row is from FFASSD300.  

 

 

 

 
Figure 6. The false detections of FFASSD300 on VOC2007 test set 
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