S. VibinSalimRaj, et. al. International Journal of Engineering Research and Applications www.ijera.com ISSN: 2248-9622, Vol. 11, Issue 10, (Series-II) October 2021, pp. 15-20

RESEARCH ARTICLE

OPEN ACCESS

On Somewhat G_{(gs)*} Continuous Function In Grill **Topological Spaces**

- ¹. S. VibinSalimRaj, ². V. Senthilkumaran, ³. Y. Palaniappan
- M.Phil, Scholar, Arignar Anna Government Arts College, Musiri, Tamilnadu, India
- 2. Associate Professor of Mathematics, Arignar Anna Government Arts College, Musiri, Tamilnadu, India.
- 3. Associate Professor of Mathematics (Retd.), Arignar Anna Government Arts College, Musiri, Tamilnadu, India

ABSTRACT

In this paper, we introduce and study a new class of somewhat continuous function. Its relation to various other somewhat continuous functions are investigated.

Keywords: operator ϕ , $G_{(gs)^*}$ closed set, somewhat $G_{(gs)^*}$ continuous function.

2010, AMS subject classification: 54B05, 54C05

Date of Submission: 30-09-2021 Date of Acceptance: 13-10-2021

INTRODUCTION I.

It is found from literature that during recent years many topologists are interested in the study of generalized types of closed sets. For instance, a certain form of generalized closed sets was initiated by Levine [9] whereas the notion of generalized *semi closed (g*s closed) set was studied by Veerakumar [12]. Following the trend, we have introduced and investigated a kind of generalized closed sets, the definition being formulated in terms of grills. The concept of grill was introduced by Choquet [3] in the year 1947. From subsequent investigations it is revealed that grills can be used as an extremely useful device for investigation of a number of topological problems.

II. PRELIMINARIES

Definition 2.1 : A nonempty collection G of nonempty subsets of a topological space X is called a grill [1] if

(i) $A \in G$ and $A \subseteq B \subseteq X \Rightarrow B \in G$ and

(ii) $A, B \subseteq X$ and $A \cup B \in G \Rightarrow A \in G$ or $B \in G$

Let G be a grill on a topological space (X, τ) . In [7] an operator $\phi : P(X) \rightarrow P(X)$ was defined by

 $\phi(A) = \{x \in X / U \cap A \in G, \forall U \in \tau(x)\}, \tau(x)$ denotes the neighborhood of x.

Also the map ψ : P(x) \rightarrow P(x), given by ψ (A) = $A \cup \phi(A)$ for all $A \in P(X)$.

Corresponding to a grill G, on a topological space (X, τ) there exists a unique topology τ_G on X given by

 $\tau_G = \{U \subseteq X \ / \ \psi(X \setminus U) = X \setminus U\} \text{ where }$ any $A \subseteq X, \psi(A) = A \cup \phi(A) = \tau_G - cl(A)$. Thus a subset A of X is τ_G -closed (resp. τ_G -dense in

itself) if $\psi(A) = A$ or equivalently if $\phi(A) \subset A$ (resp. $A \subset \phi(A)$)

In this paper, we introduce and investigge a new class of continuous functions namely somewhat $G_{(gs)}^{*}$ continuous function. Also we see its relations to other somewhat continuous functions.

Throughout the paper, by a space X we always mean a topological space (X, τ) with no separation properties assumed. If $A \subset X$, we shall adopt the usual notations int(A) and cl(A) respectively for the interior and closure of A in (X, τ). Again $\tau_G - cl(A)$ and τ_{G} -int(A) will respectively denote the closure and interior of A in (X, τ_G). Similarly, whenever we say that a subset A of a space X is open (or closed) it will mean that A is open (or closed) in (X, τ) . For open and closed sets with respect to any other topology on X, eg. τ_G , we shall write τ_G -open and $\tau_G\text{-}closed.$ The collection of all open neighborhoods of a point x in (X, τ) will be denoted by $\tau(x)$.

 (X, τ, G) denotes a topological space (X, τ) with a grill G.

Definition 2.2: Let (X, τ) be a topological space. A subset A of X is said to be

(1) semiclosed if int $cl(A) \subseteq A$

(2) generalized closed (g closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

(3) generalized semi closed (gs closed) of scl $A \subseteq U$ whenever $A \subseteq U$ and U is open in X.

(4) θ -closed if $A = \theta$ cl A where

 $\theta \operatorname{cl} A = \{ x \in X : \operatorname{cl}(U) \cap A \neq \phi ,$

 $\forall \ U \in \tau \ \text{and} \ x \in U \,\}$

(5) δ -closed if $A = \delta$ cl A where δ cl A = {x \in X; int cl (U) $\cap A \neq \phi$,

 $\forall U \in \tau \text{ and } x \in U \}$

The complements of the above closed sets are respective open sets.

Definition 2.3: A subset A of a topological space (X, τ) is said to be (gs)* closed set if cl(A) \subseteq U

whenever $A \subseteq U$ and U is gs open.

The complement of the above closed set is respective open sets.

Definition 2.4: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be

(1) gs continuous if $f^{-1}(U)$ is gs open in X, for every open set U of Y.

(2) θ continuous if $f^{-1}(U)$ is θ open in X, for every open set U of Y.

(3) δ continuous if $f^{-1}(U)$ is δ -open in X for every open set U of Y.

Definition 2.5:Let (X,τ) and (Y, σ) be topological spaces. A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called

(1) Somewhat continuous if for every $U \in \sigma$ and $f^{-1}(U) \neq \phi$, there exists an open set V in X such that

 $V \neq \phi$ and $V \subseteq f^{-1}(U)$

(2) Somewhat gs continuous if for every $U \in \sigma$ and $U \neq \phi$ there exists gs open set V in X such that $V \neq \phi$ and $V \subseteq f^{-1}(U)$

(3) Somewhat θ continuous if for every $U \in \sigma$ and $U \neq \phi$, there exists a θ open set V in X such that $V \neq \phi$ and $V \subseteq f^{-1}(U)$

(4) Somewhat δ continuous if for every $U \in \sigma$ and $U \neq \phi$, there exists a δ open set V in X such that $V \neq \phi$ and $V \subseteq f^{-1}(U)$

(5) Somewhat $_{(gs)}^*$ continuous if for every U $\in \sigma$ and U $\neq \phi$, there exists a $_{(gs)}^*$ open set V in X such that $V \neq \phi$ and $V \subseteq f^{-1}(U)$.

III. SOMEWHAT G_{(gs)*}CONTINUOUS FUNCTION

Definition 3.1:Let (X, τ, G) and (Y, σ) be any two topological spaces. A function $f: X \to Y$ is said to be somewhat $G_{(gs)}^*$ continuous if for every $U \in \sigma$ and $f^{-1}(U) \neq \phi$, there exists $G_{(gs)}^*$ open set V in X such that $V \neq \phi$ and $V \subseteq f^{-1}(U)$

Example 3.2: Let $X = \{a, b\} = Y$ $\tau = \{\phi, X\}, \sigma = \{\phi, \{a\}, Y\}$ $G = \{\{a\}, X\}$ Define $f = (X, \tau, G) \rightarrow (Y, \sigma)$ to be the identity function.

f is somewhat $G_{(gs)}^*$ continuous.

Theorem 3.3:

(1) Every somewhat continuous function is somewhat $G_{(gs)}^*$ continuous.

(2) Every somewhat gs continuous function is somewhat $G_{(gs)}^*$ continuous.

(3) Every somewhat θ continuous function is somewhat $G_{(gs)}^*$ continuous.

(4) Every somewhat δ continuous function is somewhat $G_{(gs)}^*$ continuous.

(5) Every somewhat $(gs)^*$ continuous function is somewhat $G_{(gs)}^*$ continuous.

Proof: Obvious.

The converse of the above statements neednot be true can be seen from the following example.

Example 3.4:Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, b\}, X\}$ $X = \{\{a, b\}, X\}$ Define $f : (X, \tau, G) \rightarrow (X, \tau)$ by f(a) = c, f(b) = b, f

Define $f: (A, t, G) \rightarrow (A, t)$ by f(a) = c, f(G) = 0, f(c) = a.f is somewhat G = * continuous but not somewhat

f is somewhat $G_{(gs)}^*$ continuous but not somewhat continuous as there exists no open set $V \neq \phi$ in X such that $V \subseteq f^{-1}(\{a\}) = \{c\}$

Example 3.5:Refer example 3.4

f is somewhat $G_{(gs)}^*$ continuous but not somewhat gs continuous as there exists no gs open set $V \neq \phi$ such that $V \subseteq f^1(\{a\}) = \{c\}$

Example 3.6: Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, X\}, G = \{\{b, c\}, X\}$

Let $f: (X, \tau, G) \rightarrow (X, \tau)$ be the identity function f is somewhat $G_{(gs)}^*$ continuous but not somewhat θ continuous as there exists as there exists no θ open set $V \neq \phi$ in X such that $V \subseteq f^{-1}(\{a\}) = \{a\}$

Example 3.7: Refer example 3.6

f is somewhat $G_{(gs)}^*$ continuous but not somewhat δ continuous as there exists to δ open set $V \neq \phi$ in X such that $V \subseteq f^{-1}(\{a\}) = \{a\}$

Example 3.8: Refer example 3.6

Define f to be f (a) = b, f (b) = c, f(c) = a f is somewhat $G_{(gs)}^*$ continuous but not somewhat $(gs)^*$ continuous as there exists no $(gs)^*$ open set $V \neq \phi$ in X such that $V \subseteq f^1(\{a\} = \{c\})$

Theorem 3.9:Let $f = (X, \tau, G) \rightarrow (Y, \sigma)$ and $g : (Y, \sigma) \rightarrow (Z, \eta)$ be any two functions. If *f* is somewhat $G_{(gs)}^*$ continuous and g is continuous function then $g \circ f$ is somewhat $G_{(gs)}^*$ continuous.

Proof: Let $U \in \eta$. Let $g^{-1}(U) \neq \phi$. As $U \in \eta$ and g is continuous, $g^{-1}(U) \in \sigma$. Suppose $f^{-1}g^{-1}(U) \neq \phi$. Since by hypothesis *f* is somewhat $G_{(gs)}^*$ continuous function, there exists a $G_{(gs)}^*$ open set V such that V $\neq \phi$ and $V \subseteq f^{-1}g^{-1}(U)$ That is $V \subseteq (g \circ f)^{-1}(U)$ This completes the proof.

Remark 3.10: In the above theorem, if f is continuous, and g is somewhat $G_{(gs)}^*$ continuous, then it is not necessary that $g \circ f$ is somewhat $G_{(gs)}^*$ continuous. The following example serves the purpose.

Example 3.11 :Let $X = \{a, b\}, \tau = \{\phi, X\}, G = \{\{b\}, X\}, \sigma = \{\phi, X\}, G' = \{\{a\}, X\}, \eta = \{\phi, \{a\}, X\}$

Let $f: (X, \tau, G) \rightarrow (X, \sigma)$ be identity function $g: (X, \sigma, G') \rightarrow (X, \eta)$ be identity function.

f is continuous g is somewhat $G_{(gs)}^*$ continuous g o *f* is not $G_{(gs)}^*$ continuous as there exists no $G_{(gs)}^*$ open set $V \neq \phi$ in (X, τ , G) such that $V \subseteq (g \circ f)^{-1}$ ({a}) = {a}

Definition 3.12:Let M be a subset of a topological space (X, τ, G) . Then M is said to be $G_{(gs)}^*$ dense in X, if there is no proper $G_{(gs)}^*$ closed set C in X such that $M \subseteq C \subseteq X$.

Theorem 3.13:Let $f : (X, \tau, G) \rightarrow (Y, \sigma)$ be a surjective function. Then the following are equivalent.

(i) f is somewhat $G_{(gs)}^*$ continuous function.

(ii) If C is closed subset of Y such that $f^{-1}(C) \neq X$, then there is a proper $G_{(gs)}^*$ closed subset D of X such that $D \supseteq f^{-1}(C)$

(iii) If M is $G_{(gs)}^*$ dense subset of X, then f(M) is a dense subset of Y.

Proof: (i) \Rightarrow (ii)

Let C be a closed subset of Y such that $f^{-1}(C) \neq X$. Then Y – C is open in Y such that $f^{-1}(Y - C) = X - f^{-1}(C) \neq \phi$. By hypothesis (i) there exists a $G_{(gs)}^*$ open set V in X such that $V \neq \phi$ and $V \subseteq f^{-1}(Y - C) =$ $X - f^{-1}(C)$. This implies $X - V \supseteq f^{-1}(C)$ and X - V = D is $G_{(gs)}^*$ closed in X. This proves (ii)

 $(ii) \Rightarrow (iii)$

Let Mbe $G_{(gs)}^*$ dense in X. We have to show f(M) is dense in Y. Suppose not, then there exists a proper closed set C in Y such that $f(M) \subseteq C \subseteq Y$. Clearly $f^{-1}(C) \neq X$. Hence by (ii), there exists a proper $G_{(gs)}^*$ closed set D such that $M \subseteq f^{-1}(C) \subseteq D \subseteq X$.

This contradicts the fact that M is $G_{(gs)}^*$ dense in X. Hence (iii)

Suppose that (ii) is not true. This means there exists a closed set C in Y such that $f^{-1}(C) \neq X$. But there is no proper $G_{(gs)}^*$ closed set D in X such that $f^{-1}(C) \subseteq$ D. This means $f^{-1}(C)$ is $G_{(gs)}^*$ dense in X. But in (iii)

 $f(f^{-1}(C)) = C$ must be dense in Y, which is a contradiction to the choice of C

 $(ii) \Rightarrow (i)$

Let $U \in \sigma$ and $f^{-1}(U) \neq \phi$. Then Y - U is closed and $f^{-1}(Y - U) = X - f^{-1}(U) \neq X$.

By hypothesis of (ii), there exists a proper $G_{(gs)}^*$ closed set D such that $D \supseteq f^{-1}(Y - U)$. This implies $X - D \subseteq f^{-1}(U)$ and X - D is $G_{(gs)}^*$ open and $X - D \neq \phi$.

Theorem 3.14:Let (X, τ, G) and (Y, σ) be any two topological spaces, A be an open set in X and $f: (A, \tau/A) \rightarrow (Y, \sigma)$ be somewhat $G_{(gs)}^*$ continuous function such that f(A) is dense in Y. Then any extension F of f is somewhat $G_{(gs)}^*$ continuous function.

Proof: Let U be any open set in (Y, σ) such that $F^{-1}(U) \neq \phi$. Since $f(A) \subseteq Y$ is dense in Y and $U \cap f(A) \neq \phi$, it follows that $F^{-1}(U) \cap A \neq \phi$. That is $f^{-1}(U) \cap A \neq \phi$. Hence by hypothesis on *f*, there exists a $G_{(gs)}^*$ open set V in A such that $V \neq \phi$ and $V \subseteq f^{-1}(U) \subseteq F^{-1}(U)$. This implies F is somewhat $G_{(gs)}^*$ continuous function.

The intersection of two $G_{(gs)}^*$ open sets need not in general a $G_{(gs)}^*$ open set. But in the following theorem we assume the intersection of two $G_{(gs)}^*$ open sets is $G_{(gs)}^*$ open.

Theorem 3.15:Let (X, τ, G) and (Y, σ) be any two topological spaces. $X = A \cup B$, where A and B are open sets in X.

 $f: (X, \tau, G) \rightarrow (Y, \sigma)$ be a function such that f/A and f/B are somewhat $G_{(gs)}^*$ continuous function. Then *f* is somewhat $G_{(gs)}^*$ continuous function.

Proof: Let U be any open set in (Y, σ) such that $f^{-1}(U) \neq \phi$. Then $(f/A^{-1})(U) \neq \phi$ or $(f/B)^{-1}(U) \neq \phi$ or both $(f/A)^{-1}(U) \neq \phi$ and $(f/B)^{-1}(U) \neq \phi$.

Case: 1 Let $(f/A)^{-1}(U) \neq \phi$

Since f is somewhat $G_{(gs)}^*$ continuous, there exists a $G_{(gs)}^*$ open set V in A such that $V \neq \phi$ and

 $V \subseteq (f/A)^{-1}(U) \subseteq f^{-1}(U)$. Since V is $G_{(gs)}^*$ is open in A and A is open in X, V is $G_{(gs)}^*$ open in X. Then f is somewhat $G_{(gs)}^*$ continuous function.

Case 2 : Let $(f/B)^{-1}(U) \neq \phi$. The rest of the proof is similar to case : 1.

Case 3: Let $(f/A)^{-1}(U) \neq \phi$ and $(f/B)^{-1}(U) \neq \phi$. The proof follows from both the cases 1 and 2 then *f* is somewhat $G_{(gs)}^*$ continuous function.

Definition3.16 :A topological space X is to be $G_{(gs)}^*$ separable, if there exists a countable subset B of X which is $G_{(gs)}^*$ dense in X.

Theorem 3.17: If *f* is somewhat $G_{(gs)}^*$ continuous function from X onto Y and if X is $G_{(gs)}^*$ separable then Y is separable.

Proof:Let $f: X \to Y$ be somewhat $G_{(gs)}^*$ continuous function such that X is $G_{(gs)}^*$ separable. Then by definition, there exist a countable subset B of X which is $G_{(gs)}^*$ dense in X. Then by theorem 3.13, f(B) is dense in Y. Since B is countable, f(B) is also countable which is dense in Y. Hence Y is separable.

Definition 3.18 : If X is a set and τ and σ are topologies for X, then τ is said to be weakly equivalent to σ provided if $U \in \tau$ and $U \neq \phi$, then there is an open set V in (X, σ) such that $V \neq \phi$ and $V \subseteq U$ and if $U \in \sigma$ and $U \neq \phi$, then there is an open set V in (X, τ, G) such that $V \neq \phi$ and $V \subseteq U$.

Definition3.19: If X is a set and τ and σ are topologies for X, then τ is said to be $G_{(gs)}^*$ weakly equivalent to σ provided if $U \in \tau$ and $U \neq \phi$, then there is a $G_{(gs)}^*$ open set V in (X, τ, G) such that V $\neq \phi$ and V $\subseteq U$ and if $U \in \sigma$ and $U \neq \phi$ then there is a $G_{(gs)}^*$ open set V in (X, τ, G) such that V $\neq \phi$ and V $\subseteq U$.

Theorem 3.20:Let $f : (X, \tau, G) \rightarrow (Y, \sigma)$ be somewhat continuous function and let τ^* be a topology for X, which is $G_{(gs)}^*$ weakly equivalent to τ . Then the function $f : (X, \tau^*, G) \rightarrow (Y, \sigma)$ is somewhat $G_{(gs)}^*$ continuous function.

Proof: Let U be any open sets in (Y, σ) such that $f^{-1}(U) \neq \phi$. Since by hypothesis $f: (X, \tau, G) \rightarrow (Y, \sigma)$ is somewhat continuous, by definition there exists an open set O in (x, τ, G) such that $O \neq \phi$ and $O \subseteq f^{-1}(U)$. Since O is an open set in (X, τ, G) such that $O \neq \phi$ and $S \subseteq f^{-1}(U)$. Since O is an open set in (X, τ, G) such that $O \neq \phi$ and since by hypothesis, τ is $G_{(gs)}^*$ weakly equivalent to τ^* by definition, there exists a $G_{(gs)}^*$ open set V in (X, τ^*, G) such that $V \neq \phi$ and $V \subseteq O \subseteq f^{-1}(U)$. Thus for any open set U in (Y, σ) such that $f^{-1}(U) \neq \phi$, there exists a $G_{(gs)}^*$ open set V in (X, τ^*, G)

G) such that $V \neq \phi$ and $V \subseteq f^{-1}(U)$. So $f: (x, \tau^*, G) \rightarrow (Y, \sigma)$ is somewhat $G_{(gs)}^*$ continuous function.

Theorem 3.21 :Let $f : (X, \tau, G) \rightarrow (Y, \sigma)$ be somewhat continuous surjection and let σ^* be a topology for Y, which is weakly equivalent to σ .

Then the function $f : (X, \tau, G) \rightarrow (Y, \sigma^*)$ is somewhat $G_{(gs)}^*$ continuous function.

Proof:Let U be any open set in (Y, σ^*) such that $f^{-1}(U) \neq \phi$ which implies $U \neq \phi$.Since σ and σ^* are weakly equivalent, there exist an open set W in (Y, σ) such that $W \neq \phi$ and $W \subseteq U$. Now, W is an open set such that $W \neq \phi$. This implies $f^{-1}(W) \neq \phi$ as f is a surjection. Now, by hypothesis, f: $(X, \tau, G) \rightarrow (Y, \sigma)$ is somewhat $G_{(gs)}^*$ continuous function. So, there exists a $G_{(gs)}^*$ open set V in X such that $V \neq \phi$ and $V \subseteq f^{-1}(W)$. Now, $W \subseteq U$ implies $f^{-1}(W) \subset f^{-1}(U)$. So, we have $V \subseteq f^{-1}(U)$, which implies f: $(X, \tau, G) \rightarrow (Y, \sigma^*)$ is somewhat $G_{(gs)}^*$ continuous function.

Definition 3.22: A function $f: (X, \tau) \to (Y, \sigma, G)$ is said to be somewhat $G_{(gs)}^*$ open function provided that for $U \in I$ and $U \neq \phi$, there exists a $G_{(gs)}^*$ open set V in Y such that $V \neq \phi$ and $V \subseteq f(U)$.

Example 3.23:Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, b\}, X\}$ G = {{a},{a,b},{a,c}, X}

Define $f: (X, \tau) \to (X, \tau, G)$ to be identify function f is somewhat $G_{(gs)}^*$ open function.

Theorem 3.24:

(1) Every somewhat open function is somewhat $G_{(gs)}^*$ open.

(2) Every somewhat (gs) open function is somewhat $G_{(gs)}^*$ open.

(3) Every somewhat τ_G open function is somewhat $G_{(gs)}^*$ open.

(4) Every somewhat $_{(gs)}^*$ open function is somewhat $G_{(gs)}^*$ open.

(5) Every somewhat θ open function is somewhat $G_{(gs)}^*$ open.

(6) Every somewhat δ open function is somewhat $G_{(gs)}^*$ open.

Proof: Obvious.

Converse of the above statements need not be true can be seen from the following examples.

Example 3.25:Refer example 3.6

Define $f: (X, \tau) \rightarrow (X, \tau, G)$ by f(a) = b, f(b) = c, f(c) = a

f is somewhat $G_{(gs)}^*$ open but not somewhat open as, there exists no open $V \neq \phi$ in X such that $V \subseteq f(\{a\}) = \{b\}$ **Example 3.26:**Let X = {a, b, c}, $\tau = \{\phi, \{a, b\}, X\}$ G = {{c}, {a,c}, {b,c}, X} Define $f : (X, \tau) \rightarrow (X, \tau, G)$ by f (a) = c, f (b) = c,

f(c) = bf is somewhat $G_{(gs)}^*$ open but not somewhat gs open as there exists no gs open set $V \neq \phi$ in X such that $V \subseteq f(\{a, b\}) = \{c\}$

Example 3.27:Let $X = \{a, b, c\}$

 $\tau = \{\phi, \{a, b\}, X\} G = \{\{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$ Define f: (X, τ) \rightarrow (X, τ , G) by f (a) = a, f (b) = a, f(c) = b

f is somewhat $G_{(gs)}^*$ open but not somewhat τ_G open as there exists no τ_G open set $V \neq \phi$ in X such that V $\subseteq f(\{a, b\}) = \{a\}$

Example 3.28:Refer example 3.6

Define f by f(a) = c, f(b) = b, f(c) = a f is somewhat $G_{(gs)}^*$ continuous but not somewhat $(gs)^*$ continuous as there exists no $(gs)^*$ open set $V \neq \phi$ in X such that $V \subseteq f(\{a\}) = \{c\}$

Example 3.29:Refer example 3.6

Define $f : (X, \tau) \to (X, \tau, G)$ to be the identity function.

f is somewhat $G_{(gs)}^*$ open but not somewhat θ open as there exists no θ open set $V \neq \phi$ such that $V \subseteq f(a) = \{a\}$

Example 3.30:Refer example 3.6

Define $f:(X, \tau) \to (X, \tau, G)$ to be the identity function f is somewhat $G_{(gs)}^*$ open but not somewhat δ open as there exists no δ open set $V \neq \phi$ such that $V \subseteq f(a) = \{a\}$

Theorem 3.31: If $f: (X, \tau) \to (Y, \sigma)$ is an open map and $g: (Y, \sigma) \to (Z, \eta, G)$ is somewhat $G_{(gs)}^*$ open map,then $g \circ f: (X, \tau) \to (Z, \eta, G)$ is somewhat $G_{(gs)}^*$ open map.

Proof: Let $U \in \tau$ Suppose that $U \neq \phi$.

Since *f* is an open map *f* (U) is open and *f* (U) $\neq \phi$. Since *g* is somewhat $G_{(gs)}^*$ open map and *f* (U) $\in \sigma$ such that *f* (U) $\neq \phi$, there exists $G_{(gs)}^*$ open set $V \in (Z, \eta, G)$ such that $V \subseteq g(f(U))$, which implies $g \circ f$ is somewhat $G_{(gs)}^*$ open.

Theorem 3.32: If $f : (X, \tau) \rightarrow (Y, \sigma, G)$ is a bijection, then the following are equivalent.

(1) f is somewhat $G_{(gs)}^*$ open map.

(2) If C is a closed subset of X such that $f(C) \neq Y$, then there exists a $G_{(gs)}^*$ closed subset D of Y such that $D \neq Y$ and $D \supseteq f(C)$ **Proof:**(1) \Rightarrow (2) Let C be any closed subset of X such that $f(C) \neq Y$. Then X – C is open in X and X – C $\neq \phi$. Since f is somewhat $G_{(gs)}^*$ open, there exists a $G_{(gs)}^*$ open set $V \neq \phi$ in Y such that $V \subseteq f(X - C)$. Put D = Y – V. Clearly D is $G_{(gs)}^*$ closed in Y. Let us prove D \neq Y. For if D = Y, then V = ϕ a contradiction.

Since $V \subseteq f(X - C)$, $D = Y - V \supseteq Y - [f(X - C) = f(C)]$

 $(2) \Rightarrow (1)$

Let U be any nonempty open set in X. Put C = X - U. Then C is a closed subset of X and f(X - U) = f(C) = Y - f(U) implies $f(C) \neq Y$. So, by (2), there is a $G_{(gs)}^*$ closed subset D of Y such that $D \neq Y$ and $f(C) \subset D$. Put V = Y - D.

Clearly V is $G_{(gs)}^*$ open and $V \neq \phi$. Further, $V = Y - D \subseteq Y - f(C) = Y - [Y - f(U)] = f(U)$.

Theorem 3.33:Let $f : (X, \tau) \to (Y, \sigma, G)$ be somewhat $G_{(gs)}^*$ open function and A be any open subset of X. Then $f/A : (A, \tau/A) \to (Y, \sigma, G)$ is also somewhat $G_{(gs)}^*$ open function.

Poof: Let $U \in \tau/A$ such that $U \neq \phi$. Since U is open in A and A is open in (X, τ) , U is open in (X, τ) . Since by hypothesis $f : (X, \tau) \rightarrow (Y, \sigma, G)$ is somewhat $G_{(gs)}^*$ open function, there exists a $G_{(gs)}^*$ open set V in Y such that $V \neq \phi$ and $V \subseteq f(U)$. Thus for any open set U in $(A, \tau/A)$ with $U \neq \phi$, there exists a $G_{(gs)}^*$ open set V in Y such that $V \neq \phi$ and V $\subseteq (f/A)$ (U). This implies f/A is somewhat $G_{(gs)}^*$ open function.

Theorem 3.34: Let (X, τ) and (Y, σ, G) be any two topological spaces and $X = A \cup B$, where A and B are open subsets of X and $f: (X, \tau) \rightarrow (Y, \sigma, G)$ be a function such that f/A and f/B are somewhat $G_{(gs)}^*$ open. Then *f* is also somewhat $G_{(gs)}^*$ open function.

Proof: Let U be any open subset of (X, τ) such that $U \neq \phi$.Since $X = A \cup B$, either $A \cap U \neq \phi$ or $B \cap U \neq \phi$ or both $A \cap U \neq \phi$ and $B \cap U \neq \phi$. Since U is open in $(X, \tau), U \cap A$ is open is $(X, \tau/A)$ and $U \cap B$ is open in $(X, \tau/B)$

Case : 1 Suppose that $U \cap A \neq \phi$, $U \cap A$ is open in τ/A . Since by hypothesis, f/A is somewhat $G_{(gs)}^*$ open function, there exists a $G_{(gs)}^*$ open set V in (Y, σ , G) such that $V \neq \phi$ and $V \subseteq f(U \cap A) \subseteq f(U)$. This implies *f* is somewhat $G_{(gs)}^*$ open function.

Case : 2 Suppose that $U \cap B \neq \phi$. The rest of the proof is same as case : 1.

Case : 3 Suppose that $U \cap A \neq \phi$ and $U \cap B \neq \phi$. Then *f* is obviously somewhat $G_{(gs)}^*$ open function from case 1 and case 2.

REFERENCES:

- S.P.Arya . and R.Gupta , "On strongly continuous mappings", KyungpookMath. J.14, 131–143, 1974.
- S.S.Benchalli and P.M Bansali, "Somewhat b continuous function in topological spaces". Int. J. Math Ana, 4, (46) (2010) 2287 – 2296.
- [3]. G.Choquet, "Sur les notions de filter et grill"ComptesRendus Acad. Sci. Paris, 224(1947), 171-173.
- [4]. Dhananjoy Mandal and M.N. Mukherjee, "On a type of generalized closed sets", Bol. Soc. Paran. Mat. 301 (2012), 67-76.
- [5]. J. Dontchev and T. Noiri, "Quasi Normal Spaces and πg-closed sets," Acta. Math Hunger, 89(3) (2000), 211–219.
- [6]. J. Dontchev and H. Maki, "On θ-generalized closed sets", Topology Atlass.
- [7]. S. Fomin, "Extensions of topological spaces", Ann. Math, 44 (1943), 471-480.
- [8]. K.R.Gentry, and H.B.Hoyle, "Somewhat continuous function," Czch. Math. J 21(1) (1991), 5–12.
- [9]. N. Levine, "Generalized closed sets in Topology", Rend. Circ. Mat, Palermo, (2), 19(1970), 89–96.
- [10]. B. Roy and M.N. Mukherjee, "On a typical topology induced by a grill,"Sooochow J. Math, 33(4) (2007), 771-786.
- [11]. D.Santhileela, and G.Balasubramanian, "Somewhat semi continuity and somewhat semi open functions", Bull. Cal. Math. Soc. 94(1) (2002) 41–48.
- [12]. M.K.R.S.Veerakumar,"Between closed and g closed sets, "Mem.Fac.Sci.KochiUniv.Math. Vol 21(2000),1-19