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I. INTRODUCTION 
It is found from literature that during recent 

years many topologists are interested in the study of 

generalized types of closed sets.  For instance, a 

certain form of generalized closed sets was initiated 

by Levine [9] whereas the notion of generalized 

*semi closed (g*s closed) set was studied by 

Veerakumar [12]. Following the trend, we have 

introduced and investigated a kind of generalized 

closed sets, the definition being formulated in terms 

of grills.  The concept of grill was introduced by 

Choquet [3] in the year 1947.  From subsequent 

investigations it is revealed that grills can be used as 

an extremely useful device for investigation of a 
number of topological problems. 

 

II. PRELIMINARIES 
Definition 2.1 : A nonempty collection G of non-

empty subsets of a topological space X is called a         

grill [1] if  

(i) A G and A B X  B G and 

(ii) A, B X and A B G  A G  or 

B G  

Let G be a grill on a topological space (X, ). In [7] 

an operator   : P(X)   P(X) was defined by  

(A) {x X / U A G, U (x)}, (x)        

denotes the neighborhood of x.   

Also the map   : P(x)   P(x), given by (A) = 

A (A)   for all A P(X) . 

Corresponding to a grill G, on a topological space 

(X, ) there exists a unique topology G on X given 
by  

G {U X / (X \ U) X \ U}     where 

for any 

GA X, (A) A (A) cl(A)       – . 

Thus a subset A of X isG-closed (resp. G-dense in 

itself) if (A)  = A or equivalently if (A) A   

(resp. A (A))   

In this paper, we introduce and investiage a 

new class of continuous functions namely somewhat 
G(gs)* continuous function. Also we see its relations 

to other somewhat continuous functions. 

Throughout the paper, by a space X we always 

mean a topological space (X, ) with no separation 

properties assumed. If A X , we shall adopt the 

usual notations int(A) and cl(A) respectively for the 

interior and closure of A in (X, ). Again G – cl(A) 

and G-int(A) will respectively denote the closure 

and interior of A in (X, G).  Similarly, whenever we 
say that a subset A of a space X is open (or closed) 

it will mean that A is open (or closed) in (X, ).  For 
open and closed sets with respect to any other 

topology on X, eg. G, we shall write G-open and 

G-closed. The collection of all open neighborhoods 

of a point x in (X, ) will be denoted by (x). 

(X, , G) denotes a topological space (X, ) with a 
grill G. 
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Definition 2.2: Let (X, ) be a topological space.  A 
subset A of X is said to be  

(1)  semiclosed if int cl(A)   A 

(2)  generalized closed (g closed) if cl(A)   U 

whenever A   U and U is open in X. 

(3)  generalized semi closed (gs closed) of scl 

A   U whenever A   U and U is open in X. 

(4)   -closed if A =   cl A where  

  cl A = {x X : cl(U)   A   , 

U    and x U } 

(5)   -closed if A =  cl A where 

  cl A = {x X; int cl (U)   A  , 

U    and x U } 

The complements of the above closed sets are 

respective open sets. 

 
Definition 2.3:A subset A of a topological space (X,

 ) is said to be (gs)* closed set if cl(A)   U 

whenever A U  and U is gs open. 

The complement of the above closed set is 

respective open sets. 

 

Definition 2.4: A function f: (X, )   (Y,  ) is 

said to be  
(1) gs continuous if f–1(U) is gs open in X, for 

every open set U of Y. 

(2)  continuous if f–1(U) is   open in X, for 

every open set U of Y. 

(3)  continuous if f–1(U) is  -open in X for 

every open set U of Y. 

 

Definition 2.5:Let (X,) and (Y, ) be topological 

spaces.  A function f : (X, )   (Y, ) is called 

(1) Somewhat continuous if for every U  

and f –1(U) , there exists an open set V in X such 
that  

V and V f–1(U) 

(2) Somewhat gs continuous if for every U  

and U  there exists gs open set V in X such that 

V and V f–1(U) 

(3) Somewhat  continuous if for every U  

and U , there exists a  open set V in X such that       

V and V f–1(U) 

(4) Somewhat  continuous if for every U  

and U , there exists a  open set V in X such that       

V and V f–1(U) 
(5) Somewhat (gs)* continuous if for every U 

 and U ,there exists a (gs)* open set V in X  

such that V and V f–1(U). 

 

 

III. SOMEWHAT G(gs)*CONTINUOUS 

FUNCTION 

Definition 3.1:Let (X, , G)and (Y, ) be any two 

topological spaces. A function f : X  Y is said to 

be somewhat G(gs)* continuous if for every U  

and f–1(U) , there exists G(gs)* open set V in X 
such that  

Vand V f–1(U) 
 

Example 3.2: Let X = {a, b} = Y 

 = {, X},  = {, {a}, Y} 
G = {{a}, X} 

Define f = (X, , G)  (Y, ) to be the identity 

function. 
f is somewhat G(gs)* continuous. 

 

Theorem 3.3: 
(1) Every somewhat continuous function is 

somewhat G(gs)* continuous. 

(2)  Every somewhat gs continuous function is 

somewhat G(gs)* continuous. 

(3) Every somewhat  continuous function is 
somewhat G(gs)* continuous. 

(4) Every somewhat  continuous function is 
somewhat G(gs)* continuous. 

(5) Every somewhat (gs)* continuous function 

is somewhat G(gs)* continuous. 

Proof: Obvious. 
The converse of the above statements neednot be 

true can be seen from the following example. 

 

Example 3.4:Let X = {a, b, c},  = {,  {a}, {a, b}, 
X} G = {{a, b}, X} 

Define f : (X, , G)  (X, ) by f (a) = c, f (b) = b, f 
(c) = a. 

f is somewhat G(gs)* continuous but not somewhat 

continuous as there exists no open set V  in X 

such that V f–1 ({a}) = {c} 
 

Example 3.5:Refer example 3.4 

f is somewhat G(gs)* continuous but not somewhat gs 

continuous as there exists no gs open set V  such 

that V f–1 ({a}) = {c} 
 

Example 3.6: Let X = {a, b, c}, = {, {a}, X},G = 
{{b, c}, X} 

Let f : (X, , G)  (X, ) be the identity function f is 

somewhat G(gs)* continuous but not somewhat  

continuous as there exists as there exists no  open 

set V  in X such that V f–1 ({a}) = {a} 
 

Example3.7:Refer example 3.6 

f is somewhat G(gs)* continuous but not somewhat  

continuous as there exists to  open set V  in X 

such that V f–1({a}) = {a} 
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Example 3.8: Refer example 3.6 

Define f to be f (a) = b, f (b) = c, f(c) = a f is 

somewhat G(gs)* continuous but not somewhat (gs)*  

continuous as there exists no (gs)* open set V  in 

X such that V f–1({a} = {c} 
 

Theorem 3.9:Let f = (X, , G)  (Y, ) and g : (Y, 

)  (Z, ) be any two functions.  If f is somewhat 
G(gs)* continuous and g is continuous function then 

g o f is somewhat G(gs)* continuous. 
 

Proof: Let U .  Let g–1(U) . As U  and g is 

continuous, g–1(U) .Suppose f –1g–1(U) .  Since 
by hypothesis f is somewhat G(gs)* continuous 

function, there exists a G(gs)* open set V such that V 

 and V f–1g–1(U) 

That is V  (g o f)–1(U) 
This completes the proof. 

 

Remark 3.10: In the above theorem, if f is 

continuous, and g is somewhat G(gs)* continuous, 

then it is not necessary that g o f is somewhat G(gs)* 

continuous. The following example serves the 
purpose. 

 

Example 3.11 :Let X = {a, b},  = {, X}, G = 

{{b}, X},  = {, X}, G´ = {{a}, X},  = {, {a}, 
X} 

Let f : (X, , G)  (X, ) be identity function g : (X, 

, G´)  (X, ) be identity function. 

f is continuous g is somewhat G(gs)* continuousg o f  
is not G(gs)*  continuous as there exists no G(gs)* 

open set V  in (X, , G) such that V  (g o f)–1 
({a}) = {a} 

 

Definition 3.12:Let M be a subset of a topological 

space (X, , G).  Then M is said to be G(gs)* dense in 
X, if there is no proper G(gs)* closed set C in X such 

that M  C  X. 
 

Theorem 3.13:Let f : (X, , G)  (Y, ) be a 
surjective function.  Then the following are 

equivalent. 

(i) f is somewhat G(gs)* continuous function. 

(ii) If C is closed subset of Y such that f–1(C)  
X, then there is a proper G(gs)* closed subset D of X 

such that D f–1(C) 
(iii) If M is G(gs)* dense subset of X, then f(M) 

is a dense subset of Y. 

Proof: (i)  (ii) 

Let C be a closed subset of Y such that f –1(C)  X.  
Then Y – C is open in Y such that f–1(Y – C) = X – 

f–1(C) .  By hypothesis (i) there exists a G(gs)* 

open set V in X such that V  and V f–1(Y – C) = 

X – f–1(C).  This implies X – V f –1(C) and X – V = 
D is G(gs)* closed in X. This proves (ii) 

(ii)  (iii) 
Let Mbe G(gs)* dense in X.  We have to show f(M) is 

dense in Y.  Suppose not, then there exists a proper 

closed set C in Y such that f(M)  C  Y.  Clearly f–

1(C)  X.  Hence by (ii), there exists a proper G(gs)* 

closed set D such that M f–1(C)  D  X. 
This contradicts the fact that M is G(gs)* dense in X.  

Hence (iii) 

(iii)  (ii) 
Suppose that (ii) is not true.  This means there exists 

a closed set C in Y such that f–1(C)  X.  But there is 

no proper G(gs)* closed set D in X such that f–1 (C)  
D. This means f–1(C) is G(gs)* dense in X.  But in 

(iii)  

f(f–1(C))  = C must be dense in Y, which is a 

contradiction to the choice of C 

(ii)  (i) 

Let U  and f–1(U) . Then Y – U is closed and f 
–1(Y – U) = X – f–1(U)  X. 
By hypothesis of (ii), there exists a proper G(gs)* 

closed set D such that D f–1(Y – U).  This implies 

X – D f–1(U) and X – D is G(gs)* open and X – D 

. 

Theorem 3.14:Let (X, , G) and (Y, ) be any two 
topological spaces, A be an open set in X and  

f : (A, /A)  (Y, ) be somewhat G(gs)* continuous 
function such that f (A) is dense in Y.  Then any 

extension F of f is somewhat G(gs)* continuous 

function. 

Proof: Let U be any open set in (Y, ) such that F–

1(U) .  Since f (A)  Y is dense in Y and U f (A) 

, it follows that F–1(U)  A .  That is f–1(U)  

A .  Hence by hypothesis on f, there exists a G(gs)* 

open set V in A  such that V  and V f–1(U) F–

1(U).  This implies F is somewhat G(gs)* continuous 

function. 

The intersection of two G(gs)* open sets need not in 

general a G(gs)* open set.  But in the following 
theorem we assume the intersection of two G(gs)* 

open sets is G(gs)* open. 

 

Theorem 3.15:Let (X, , G) and (Y, ) be any two 

topological spaces. X = A  B, where A and B are 
open sets in X. 

f : (X, , G)  (Y, ) be a function such that f/A 
and f/B are somewhat G(gs)* continuous function.  

Then f is somewhat G(gs)* continuous function. 

Proof: Let U be any open set in (Y, ) such that f –

1
(U) .  Then (f/A

–1
)(U)  or (f/B)

–1
(U)  or both 

(f/A)–1(U)  and (f/B)–1(U) . 

Case: 1 Let (f/A)–1(U)  
Since f is somewhat G(gs)* continuous, there exists a 

G(gs)* open set V in A such that V  and  
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V  (f/A)–1(U) f–1(U).  Since V is G(gs)* is open in 
A and A is open in X, V is G(gs)* open in X. Then f 

is somewhat G(gs)* continuous function. 

Case 2 : Let (f/B)–1(U) . The rest of the proof is 
similar to case : 1. 

Case 3: Let (f/A)–1(U)  and (f/B)–1(U) .  The 
proof follows from both the cases 1 and 2 then f is 

somewhat G(gs)* continuous function. 

 

Definition3.16 :A topological space X is to be G(gs)* 

separable, if there exists a countable subset B of X 

which is G(gs)* dense in X. 
 

Theorem 3.17:If f is somewhat G(gs)* continuous 

function from X onto Y and if X is G(gs)* separable 

then Y is separable. 

Proof:Let f : X  Y be somewhat G(gs)* continuous 
function such that X is G(gs)* separable.  Then by 

definition, there exist a countable subset B of X 

which is G(gs)* dense in X. Then by theorem 3.13, 

f(B) is dense in Y.  Since B is countable, f(B) is also 

countable which is dense in Y.  Hence Y is 

separable. 

 

Definition 3.18 :If X is a set and and are 

topologies for X, then  is said to be weakly 

equivalent to provided if U   and U , then 

there is an open set V in (X, ) such that V  and 

V  U and if U  and U , then there is an open 

set V in (X, , G) such that V  and V  U. 
 

Definition3.19:If X is a set and and are 

topologies for X, then  is said to be G(gs)* weakly 

equivalent to provided if U  and U , then 

there is a G(gs)* open set V in (X, , G) such that V 

 and V  U and if U  and U  then there is a 

G(gs)* open set V in (X, , G) such that V  and V 

 U. 
 

Theorem 3.20:Let f : (X, , G)  (Y, ) be 

somewhat continuous function and let * be a 
topology for X, which is G(gs)* weakly equivalent to 

.  Then the function f : (X, *, G)  (Y, ) is 
somewhat G(gs)* continuous function. 

Proof: Let U be any open sets in (Y, ) such that f–

1(U) .  Since by hypothesis f : (X, , G)  (Y, ) 
is somewhat continuous, by definition there exists 

an open set O in (x, , G) such that O  and O f –

1(U). Since O is an open set in (X, , G) such that O 

 and since by hypothesis,  is G(gs)* weakly 

equivalent to * by definition, there exists a G(gs)* 

open set V in (X, *, G) such that V  and V  O 

f–1(U). Thus for any open set U in (Y, ) such that 

f–1(U) , there exists a G(gs)* open set V in (X, *, 

G) such that V  and V f–1(U).  So f: (x, *, G)  

(Y, ) is somewhat G(gs)* continuous function. 
 

Theorem 3.21 :Let f : (X, , G)  (Y, ) be 

somewhat continuous surjection and let * be a 

topology for Y, which is weakly equivalent to . 

Then the function f : (X, , G)  (Y, *) is 
somewhat G(gs)* continuous function. 

Proof:Let U be any open set in (Y, *) such that f–

1(U)  which implies U .Since  and * are 
weakly equivalent, there exist an open set W in (Y, 

) such that W  and W  U.  Now, W is an open 

set such that W .  This implies f–1(W)  as f is a 

surjection.  Now, by hypothesis, f: (X, , G)  (Y, 

) is somewhat G(gs)* continuous function.  So, 

there exists a G(gs)* open set V in X such that V  

and V f–1(W).  Now, W  U implies f–1(W) f–

1(U).  So, we have V f–1(U), which implies f: (X, , 

G)  (Y, *) is somewhat G(gs)* continuous 
function. 

 

Definition 3.22:A function f: (X, )  (Y, , G) is 
said to be somewhat G(gs)* open function provided 

that for U  I and U , there exists a G(gs)* open 

set V in Y such that V  and V f(U). 
 

Example 3.23:Let X = {a, b, c},  = {, {a}, {a, b}, 
X} G = {{a},{a,b},{a,c}, X} 

Define f : (X, )  (X, , G) to be identify function f 
is somewhat G(gs)* open function. 

 

Theorem 3.24: 
(1)  Every somewhat open function is 

somewhat G(gs)* open. 

(2) Every somewhat (gs) open function is 

somewhat G(gs)* open. 

(3) Every somewhat G open function is 
somewhat G(gs)* open. 

(4) Every somewhat (gs)* open function is 

somewhat G(gs)* open. 

(5) Every somewhat  open function is 
somewhat G(gs)* open. 

(6) Every somewhat  open function is 
somewhat G(gs)* open. 
Proof: Obvious. 

Converse of the above statements need not be true 

can be seen from the following examples. 

 

Example 3.25:Refer example 3.6 

Define f : (X, )  (X, , G) by f (a) = b, f (b) = c, f 
(c) = a 

f is somewhat G(gs)* open but not somewhat open as, 

there exists no open V  in X such that  

V f({a}) = {b} 
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Example 3.26:Let X = {a, b, c},  = {,{a, b}, X} 
G = {{c},{a,c},{b,c},X} 

Define f : (X, )  (X, , G) by f (a) = c, f (b) = c, 
f(c) = b 

f is somewhat G(gs)* open but not somewhat gs open 

as there exists no gs open set V in X such that  

V f({a, b}) = {c} 
 

Example 3.27:Let X = {a, b, c} 

 = {, {a, b}, X} G = 
{{a},{b},{c},{a,b},{a,c},{b,c}, X} 

Define f: (X, ) (X, , G) by f (a) = a, f (b) = a, 
f(c) = b 

f is somewhat G(gs)* open but not somewhat G open 

as there exists no G open set V in X such that V 

f({a, b}) = {a} 
 

Example 3.28:Refer example 3.6 

Define f by f (a) = c, f (b) = b, f(c) = a 

f is somewhat G(gs)* continuous but not somewhat 

(gs)*  continuous as there exists no (gs)* open set 

V in X such that V f({a}) = {c} 
 
Example 3.29:Refer example 3.6 

Define f : (X, )  (X, , G) to be the identity 
function. 

f is somewhat G(gs)* open but not somewhat  open 

as there exists no  open set V  such that  

V f (a) = {a} 
 

Example 3.30:Refer example 3.6 

Definef :(X, )  (X, , G) to be the identity 
function f is somewhat G(gs)* open but not somewhat 

 open as there exists no  open set V such that V 

f(a) = {a} 
 

Theorem 3.31:If f : (X, )  (Y, ) is an open map 

and g : (Y, )  (Z, , G) is somewhat G(gs)* open 

map,then g o f : (X, )  (Z, , G) is somewhat 
G(gs)* open map. 

Proof: Let U   Suppose that U . 

Since f is an open map f (U) is open and f (U) .  

Since g is somewhat G(gs)* open map and f (U)  

such that f (U) , there exists G(gs)* open set V  

(Z, , G) such that V g (f (U)), which implies g o f 

is somewhat G(gs)* open. 
 

Theorem 3.32:If f : (X, )  (Y, , G) is a 
bijection, then the following are equivalent. 

(1) f is somewhat G(gs)* open map. 

(2) If C is a closed subset of X such that f (C)  
Y, then there exists a G(gs)* closed subset D of Y 

such that D  Y and D f (C) 

Proof:(1)  (2) 

Let C be any closed subset of X such that f (C)  Y. 

Then X – C is open in X and X – C . Since f is 
somewhat G(gs)* open, there exists a G(gs)* open set 

V  in Y such that Vf(X – C).  Put D = Y – V.  

Clearly D is G(gs)* closed in Y.  Let us prove D  Y. 

For if D = Y, then V =  a contradiction. 

Since V f (X – C), D = Y – V  Y – [f(X – C) = 
f(C)] 

(2)  (1) 
Let U be any nonempty open set in X.  Put C = X – 

U.  Then C is a closed subset of X and f(X – U) = 

f(C) = Y – f(U) implies f(C)  Y.  So, by (2), there is 

a G(gs)* closed subset D of Y such that D  Y and 

f(C)  D. Put V = Y – D. 

Clearly V is G(gs)* open and V .  Further, V = Y – 

D  Y – f(C) = Y – [Y – f(U)] = f(U). 
 

Theorem 3.33:Let f : (X, )  (Y, , G) be 
somewhat G(gs)* open function and A be any open 

subset of X.  Then f /A : (A, /A)  (Y, , G) is 
also somewhat G(gs)* open function. 

Poof: Let U /A such that U .  Since U is open 

in A and A is open in (X, ), U is open in (X, ). 

Since by hypothesis f : (X, )  (Y, , G) is 
somewhat G(gs)* open function, there exists a G(gs)* 

open set V in Y such that V  and V f(U).  Thus 

for any open set U in (A, /A) with U , there 

exists a G(gs)* open set V in Y such that V  and V 

 (f/A) (U). This implies f/A is somewhat G(gs)* 
open function. 

 

Theorem 3.34: Let (X, ) and (Y, , G) be any two 

topological spaces and X = A  B, where A and B 

are open subsets of X and f : (X, )  (Y, , G) be a 
function such that f/A and f/B are somewhat G(gs)* 

open.  Then f is also somewhat G(gs)* open function. 

Proof: Let U be any open subset of (X, ) such that 

U .Since X = A  B, either A  U  or B U 

 or both A  U  andB U  . Since U is 

open in (X, ), U  A is open is (X, /A) and U  B 

is open in (X, /B) 

Case : 1 Suppose that U  A , U  A is open in 

/A. Since by hypothesis, f/A is somewhat G(gs)* 

open function, there exists a G(gs)* open set V in (Y, 

, G) such that V  and V f (U  A) f(U). This 
implies f is somewhat G(gs)* open function. 

Case : 2 Suppose that U  B .  The rest of the 
proof is same as case : 1. 

Case : 3 Suppose that U  A  and U  B . 
Then f is obviously somewhat G(gs)* open function 

from case 1 and case 2. 
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