## **RESEARCH ARTICLE**

**OPEN ACCESS** 

# **Cordial Decomposition in Various Graphs**

# P.M.SUDHA<sup>1\*</sup>, P.SENTHILKUMAR<sup>2</sup> and S.VENGATAASALAM<sup>3</sup>

<sup>1</sup>Research Scholar, PG and Research Department of Mathematics, Government Arts and Science College, Kangeyam, Tiruppur – 638108, Tamil Nadu, India.

<sup>2</sup>Assistant Professor, PG and Research Department of Mathematics, Government Arts and Science College, Kangeyam, Tiruppur – 638108, Tamil Nadu, India.

<sup>3</sup> Professor, Department of Mathematics, Kongu Engineering College, Perundurai, Erode - 638060, Tamil Nadu, India.

### **ABSTRACT:**

The main goal of this paper is to introduce and investigate the results of cordial decomposition and cordial decomposition number  $\pi_c(G)$  of a graphs. Also investigate some bounds of  $\pi_c(G)$  in product graphs like Cartesian product, composition etc.

Keywords: Decomposition, labeling, cordial graphs, cordial decomposition and prime decomposition number.

| Date of Submission: 20-09-2021 | Date of Acceptance: 05-10-2021 |
|--------------------------------|--------------------------------|
|                                |                                |

#### I. INTRODUCTION

In this Chapter, we define cordial decomposition and cordial decomposition number  $\pi_C(G)$  of a graphs. Also investigate some bounds of  $\pi_C(G)$  in product graphs like Cartesian product, composition etc.

A bijection  $f: V(G) \rightarrow \{0,1\}$  is called binary vertex labeling of G(V, E) and f(v) is called the label of the vertex  $v \in G$  under f. For an edge e = uv. the induced edge labeling  $f^*: E(G) \rightarrow \{0,1\}$ given is by  $f^{*}(e) = |f(u) - f(v)|$ . Let  $v_{f}(0), v_{f}(1)$  be the number of vertices of G having labels 0 and 1 respectively under f and  $e_f(0), e_f(1)$  be the number of edges having labels 0 and 1 respectively under  $f^*$ . A graph G(V, E) is cordial if it admits cordial labelling. In this paper, we investigate the cordial decomposition for join and composition of some graphs.

# II. RESULTS ON CORDIAL DECOMPOSITION

In this work, we investigate the cordial labeling for join and composition of some graphs.

**Definition 2.1:** Let G(V, E) be a graph. A mapping  $f: V(G) \rightarrow \{0,1\}$  is called binary vertex labeling

of G(V, E) and f(v) is called the label of the vertex  $v \in G$  under f.

For an edge e = uv, the induced edge labeling  $f^*: E(G) \rightarrow \{0,1\}$  is given by  $f^*(e) = |f(u) - f(v)|$ . Let  $v_f(0), v_f(1)$  be the number of vertices of G having labels 0 and 1 respectively under f and  $e_f(0), e_f(1)$  be the number of edges having labels 0 and 1 respectively under  $f^*$ . A graph G(V, E) is cordial if it admits cordial labelling.

**Definition 2.2:** A decomposition of *G* is a collection  $\psi_C = \{H_1, H_2, \dots, H_r\}$  such that  $H_i$  are edge disjoint and every edges in  $H_i$  belongs to *G*. If each  $H_i$  is a cordial graphs, then  $\psi_C$  is called a cordial decomposition of *G*. The minimum cardinality of a cordial decomposition of *G* is called the cordial decomposition number of *G* and it is denoted by  $\pi_C(G)$ .

**Theorem 2.1.** The upper bounds of cordial decomposition number of the complete bipartite graph  $K_{m,n}$  is  $\pi_C(K_{m,n}) \leq (mn)$ .

**Proof:** The complete bipartite graphs  $K_{m,n}$  having the set of vertices  $V = \{\{u_i | 1 \le i \le m\} \cup \{v_j | 1 \le j \le n\}\}$ . Note that there is (m+n) vertices in  $K_{m,n}$ . The edge set . Therefore number of  $P_2$  in  $K_{m,n}$  is mn. Hence edges set  $E(K_{m,n}) = \left\{ u_i v_j \middle| 1 \le i \le m, 1 \le i \le n \right\}$   $\pi_C(K_{m,n}) \le (mn).$ 



**Example 2.1.** The cordial decomposition of the graph  $K_{3,4}$ 

**Figure 2.1.** The ordial decomposition of the graph  $K_{3,4}$ 

**Theorem 2.2:** The bounds of cordial decomposition number of the Brush graph  $B_n$  is  $(n+1) \le \pi_C(B_n) \le (2n-1)$ .

**Proof:** The Brush graph  $B_n$  constructed by the path  $P_n$  and n number of  $P_2$  paths. Therefore Brush graph  $B_n$  having the set of vertices  $V = \{u_i, v_i, 1 \le i \le n\}$ . Note that  $P_n$  and  $P_2$  be two cordialgraphs. This implies  $\psi_S \supseteq \{P_n \cup P_2 \cup P_2 ... \cup n \text{ times}\}$  and

 $|\psi_C| \ge |\{P_n \cup P_2 \cup P_2 \dots \cup n \text{ times }\}|$ . Hence we get  $\pi_C(B_n) \ge (n+1)$ .

The edge set is  $E = P_n \cup P_2 \cup ...n$  times  $P_2$ ,. Note that  $P_2$  a cordial graphs. Therefore number of  $P_2$  in  $B_n$  is  $S(P_n) + nS(P_2)$ . This implies  $|\psi_s| \le |S(P_n) + nS(P_2)|$ . Hence  $\pi_C(P_m + P_n) \le (2n-1)$ .







Figure 2.2: Cordial decomposition of Brush graph  $B_8$ 

**Theorem 2.3.** The bounds of cordial decomposition number of the ladder graph  $L_n$  is  $(n+2) \le \pi_C(L_n) \le (2n-1) + n.$ 

**Proof:** The ladder graph  $L_n$ , constructed by the graphs  $P_2$  and  $P_n$ . Therefore the graph  $L_n$  having the set of vertices  $V = \{u_1v_i, 1 \le i \le n\} \cup \{u_2v_i, 1 \le i \le n\}$ . Note that there is (2n) vertices in  $L_n$ . The graph  $L_n$  contains the n number of graphs  $P_2$  and 2 number of path  $P_n$ . Note that  $P_m$  and  $P_n$  be two cordial graphs. This implies

$$\begin{split} \psi_C &\supseteq \left\{ P_n \cup P_n \cup (n \text{ times } P_2) \right\} \text{and} \\ \left| \psi_C \right| &\ge \left| \left\{ P_n \cup P_n \cup (n \text{ times } P_2) \right\} \right|. \\ \text{Hence } \pi_C(L_n) &\ge (n+2). \end{split}$$

The edge set is  $E = S(P_n) \cup S(P_n) \cup n \text{ times } S(P_2)$ , Note that  $P_2$  a cordial graphs. Therefore number of  $P_2$  in  $(L_n)$  is  $S(P_n) + S(P_n) + n \text{ times } S(P_2)$ . This implies  $|\psi_C| \leq |S(P_n) + S(P_n) + n \text{ times } S(P_2)|$ . Hence  $\pi_C(L_n) \leq (2(n-1)+n)$ .





**Figure 2.3:** Cordial decomposition of the graph  $(L_0)$ 

**Theorem 2.4:** The bounds of cordial decomposition number of the shadow graph  $(D_2(P_n))$  is  $(4) \le \pi_C(L_n) \le 4(n-1).$ 

**Proof:** The shadow graph of path  $P_n(D_2(P_n))$ contains 2n vertices and 4(n-1) edges. Let  $v_1, v_2, v_3, \dots, v_n$  be the vertices of path  $P_n$ . In a  $P_n$ shadow graph there is an image of n vertices  $u_1, u_2, u_3, \dots, u_n$ . Therefore shadow  $(D_2(P_n))$ contains 2n vertices. There is a different 4 types of  $P_n$  in the shadow graph  $(D_2(P_n))$ .  $\psi_C \supseteq \{P_n \cup P_n \cup (4 \text{ times } P_2)\}$  and

$$\begin{split} |\psi_{C}| &\geq \left| \left\{ P_{n} \cup P_{n} \cup (4 \text{ times } P_{2}) \right\} \right|. & \text{Hence} \\ \pi_{C}(L_{n}) &\geq (4). \\ \text{The edge set of } (D_{2}(P_{n})) & \text{is} \\ E &= \left\{ \left( u_{i}u_{i+1} \middle| 1 \leq i \leq n \right) \right\} \cup \left\{ \left( v_{i}v_{i+1} \middle| 1 \leq i \leq n \right) \right\} \cup \\ \left\{ \left( u_{i}v_{i+1} \middle| 1 \leq i \leq n \right) \right\} \cup \left\{ \left( v_{i}u_{i+1} \middle| 1 \leq i \leq n \right) \right\} & \text{Note that} \\ P_{2} \text{ a cordial graphs. Therefore number of } P_{2} \text{ in} \\ (D_{2}(P_{n})) \text{ is } S(P_{n}) + S(P_{n}) + S(P_{n}) + S(P_{n}). \\ \text{This implies} \\ \left| \psi_{C} \right| &\leq \left| S(P_{n}) + S(P_{n}) + S(P_{n}) + S(P_{n}) \right|. & \text{Hence} \\ \pi_{C}(L_{n}) &\leq (4(n-1)). \end{split}$$







**Figure 2.4:** The cordial decomposition of shadow graph  $D_2(P_5)$ 

**Theorem 2.5:** A graph  $(P_m + P_n)$  is a join of two path cordial graphs with (m < n). The bounds of cordial decomposition number of the graph  $(P_m + P_n)$  is,  $3 \le \pi_C (P_m + P_n) \le (mn + m + n - 2)$ .

**Proof:**Let  $P_m$  and  $P_n$  be two path cordial graphs of order m and n (m > n) respectively and  $(P_m + P_n)$  is a join of  $P_m$  and  $P_n$  with edge set E. The graph  $(P_m + P_n)$  contains (m + n) vertices In the graph  $(P_m + P_n)$  there are graphs  $P_m$ ,  $P_n$  and the complete bipartite graphs  $K_{m,n}$ . Note that  $P_m$ and  $P_n$  be two cordial graphs and complete

bipartite graphs  $K_{m,n}$  cordial graph. This implies

$$\begin{split} \psi_{S} &\supseteq \left\{ P_{m} \cup P_{n} \cup K_{mn} \right\} \text{and} \\ \left| \psi_{S} \right| &\geq \left| \left\{ P_{m} \cup P_{n} \cup K_{mn} \right\} \right|. \text{ Note that the graphs} \\ P_{m} , P_{n} \text{ and } K_{m,n} \text{ are subtract divisor cordial graphs. Hence } \pi_{C}(P_{m} + P_{n}) \geq (3). \end{split}$$
The edge set is  $E = E_{1} \cup E_{2} \cup S(K_{m,n})$ , Here  $S(K_{m,n})$  is a size of a complete bipartite graph  $K_{m,n}$ . Note that  $P_{2}$  a cordialgraphs. Therefore number of  $P_{2}$  in  $(P_{m} + P_{n})$  is  $S(P_{m}) + S(P_{n}) + S(K_{m,n})$ . This implies  $\left| \psi_{S} \right| \leq \left| \left\{ S(P_{m}) + S(P_{n}) + S(K_{m,n}) \right\} \right|. \text{ Hence } \pi_{C}(P_{m} + P_{n}) \leq (mn + m + n - 2). \end{split}$ 

**Example 2.5.** The cordial decomposition of the graph  $(P_4 + P_6)$ 





**Figure 2.5:** The cordial decomposition of shadow graph  $(P_4 + P_6)$ 

**Theorem 2.6.** The bounds of cordial decomposition number of the composition of the graphs  $P_2$  and  $P_n$  is  $(n+2) \le \pi_C (P_2 \circ P_n) \le (2n-1) + n.$ 

**Proof:** The composition of the graphs  $P_2$  and  $P_n$ , constructed by the graphs  $P_2$  and  $P_n$ . Therefore the graph  $P_2 \circ P_n$  having the set of vertices  $V = \{u_1v_i, 1 \le i \le n\} \cup \{u_2v_i, 1 \le i \le n\}$ . Note that there is (2n) vertices in  $P_2 \circ P_n$ . The graph  $P_2 \circ P_n$  contains the n number of graphs  $P_2$  and 2 number of path  $P_n$ . Note that  $P_m$  and  $P_n$  be two cordialgraphs. This implies

$$\begin{split} \psi_C &\supseteq \left\{ P_n \cup P_n \cup (n \text{ times } P_2) \right\} \text{and} \\ \left| \psi_C \right| &\geq \left| \left\{ P_n \cup P_n \cup (n \text{ times } P_2) \right\} \right|. & \text{Hence} \\ \pi_C(P_2 \circ P_n) &\geq (n+2). \\ \text{The} & \text{edge} & \text{set} & \text{is} \\ E &= S(P_n) \cup S(P_n) \cup n \text{ times } S(P_2) \text{ , Note that} \\ P_2 \text{ a cordialgraphs. Therefore number of } P_2 \text{ in} \\ (P_2 \circ P_n) \text{ is } S(P_n) + S(P_n) + n \text{ times } S(P_2) \text{ .} \\ \text{Thisimplies} \\ \left| \psi_C \right| &\leq \left| S(P_n) + S(P_n) + n \text{ times } S(P_2) \right|. & \text{Hence} \\ \pi_C(P_2 \circ P_n) &\leq (2(n-1)+n). \end{split}$$







**Figure 2.6:** Cordial decomposition of the graph  $(P_2 \circ P_n)$ 

**Theorem 2.7:** The bounds of cordial decomposition number of the composition of the graphs  $P_2$  and  $C_n$  is  $(n+1) \le \pi_C (P_2 \circ C_n) \le (3n)$ . **Proof:** The composition of the graphs  $P_2$  and  $C_n$ , constructed by the graphs  $P_2$  and  $C_n$ . Therefore the graph  $(P_2 \circ C_n)$  having the set of vertices  $V = \{u_1v_i, 1 \le i \le n\} \cup \{u_2v_i, 1 \le i \le n\}$ . Note that there is (2n) vertices in  $(P_2 \circ C_n)$ . The graph  $(P_2 \circ C_n)$  contains the graphs 2 times  $C_n$  and n times  $P_2$ . Note that  $P_2$  and  $C_n$  be two cordial graphs. This implies  $\Psi_C \supseteq \{C_n \cup C_n \cup (n \text{ times } P_2)\}$  and  $|\Psi_C| \ge |\{C_n \cup C_n \cup (n \text{ times } P_2)\}|$ . Hence  $\pi_C(P_2 \circ C_n) \ge (n+2).$ 

The edge set is  $E = S(C_n) \cup S(C_n) \cup n \text{ times } S(P_2)$ , Note that  $P_2$  a cordial graphs. Therefore number of  $P_2$  in  $(P_2 \circ C_n)$  is  $S(C_n) + n \text{ times } S(P_2)$ . This implies  $|\psi_C| \leq |S(C_n) + n \text{ times } S(C_2)|$ . Hence  $\pi_C(P_2 \circ C_n) \leq (3n)$ .

**Example 2.7:** The cordial decomposition of the graph  $(P_2 \circ C_5)$ 



www.ijera.com



**Figure2.7:** Cordial decomposition of the graph  $(P_2 \circ C_5)$ 

**Theorem 2.8:** The bounds of cordial decomposition number of the composition of the graphs  $P_2$  and  $B_n$  is  $(n+1) \le \pi_C (P_2 \circ B_n) \le (3n).$ 

**Proof:** The composition of the graphs  $P_2$  and  $B_n$ , constructed by the two graphs  $P_2$  and  $B_n$ . Therefore the graph  $(P_2 \circ B_n)$  having the set of vertices

 $V = \{u_1v_i, 1 \le i \le n\} \cup \{u_2v_i, 1 \le i \le n\} \cup \{u_1w_i, 1 \le j \le n\} \cup \{u_2w_i, 1 \le j \le n\}$ 

Note that there is (4n) vertices in  $(P_2 \circ B_n)$ .

Note that  $P_2$  and  $B_n$  be two cordialgraphs. This

 $\Psi_C \supseteq \{B_n \cup B_n \cup (2n \text{ times } P_2)\}$  and implies  $|\psi_c| \ge |\{B_n \cup B_n \cup (2n \text{ times } P_2)\}|.$ Hence  $\pi_C(P_2 \circ B_n) \ge 2(n+1).$ The edge set is  $E = S(B_n) \cup S(B_n) \cup 2n \text{ times } S(P_2),$ Note that  $P_2$  a cordial graphs. Therefore number of  $P_2$ in  $(P_2 \circ B_n)$  is  $S(B_n) + S(B_n) + n$  times  $S(P_2)$ . This implies  $|\psi_c| \leq |S(B_n) + S(B_n) + 2n \text{ times } S(P_2)|.$ Hence  $\pi_{C}(P_{2} \circ B_{n}) \leq (6n-2).$ 

**Example 2.8:** The cordial decomposition of the graph  $(P_2 \circ B_4)$ 





**Figure 2.8:** Cordial decomposition of the graph  $(P_2 \circ B_4)$ 

#### **III. CONCLUSION**

In this paper we define cordial decomposition and cordial number  $\pi_C(G)$  of graphs. Also investigate some bounds of  $\pi_C(G)$  in product graphs like Cartesian product, composition etc. In future we will investigate the decomposition number in various labeling in graphs.

#### **REFERENCES:**

- [1]. P.M.Sudha and P.Senthilkumar, Decomposition of Product Path Graphs into Graceful Graphs, Turkish Journal of Computer and Mathematics Education, Vol. 12 No.10 (2021), pp.4719-4726.
- [2]. P.M.Sudha and P.Senthilkumar, Decomposition of Various Graphs into Sum Divisor Cordial Graphs, International Journal of Aquatic Science, ISSN: 2008-8019, Vol. 12, No. 03, (2021), pp.1211-1222.
- [3]. J. Barat and D. Gerbner, Edge-decomposition of graphs into copies of a tree with four edges, The Electronic Journal of Combinatorics, Vol. 21, 55, (2014), pp.1.
- [4]. J.C. Bermond and D. Sotteau, Graph decompositions and G-designs, Proc. 5th British Combint. Conf. (1975) pp.53-72.
- [5]. F. Botler, G.O. Mota, M.T.I. Oshiro, and Y. Wakabayashi. Decomposing highly edgeconnected graphs into paths of any given length. J. Combin. Theory Ser. B, 2016.
- [6]. A.Kotzig, Decompositions of a complete graph into 4k-gons, Matematicky Casopis. Vol. 15, (1965), pp. 229-233. (In Russian)
- [7]. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (International Symposium, Rome, July 1966), Gordon and Breach, New York and Dunod Paris, (1967), pp.349-355.

- [8]. A.Rosa, Labeling snakes, Ars Combinat., Vol., 3 (1977), pp. 67-74.
- [9]. A.Rosa, Cyclic Steiner triple systems and labelings of triangular cacti, Scientia Series A
  : Mathematical Sciences, Vol. 1 (1988), pp. 87-95.
- [10]. A.Rosa, On certain valuations of the vertices of a graph, Theory of Graphs. Gordon and Breach, New York; Dunod, Paris, 1967. Proceedings of the International Symposium in Rome.