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ABSTRACT 
Due to the explosive growth of applications in the field of mobile ad hoc networks, and also the amount of data 

available in various forms, it is the need to develop reliable communication algorithms among the various sensor 

nodes. It is highly challenging to develop algorithms that are robust against the dynamic movements of the 

network nodes which results in a varied number of nodes in a clustered network of nodes. Besides, the design of an 

algorithm is further complicated as the nodes are suffering from retaining their energy due to communication 

among the nodes to transfer data. In this context, we have attempted to provide a solution based on a multivariate 

data analysis technique called principal component analysis to eliminate the redundant information that exists 

within the data itself and hence reduces the data transfer overhead, thereby minimizing the energy. Unlike other 

methods that use the standard procedure to select the eigenbasis based on the strength of eigenvalues, we explored 

Renyi entropy component analysis to select the best eigenbasis which helps in reducing the reconstruction error.  
The proposed method is validated on the dataset which is introduced in other similar recent works and proves the 

worthiness of the proposed approach. We have integrated the conventional incremental principal component 

analysis model with the Renyi entropy component analysis to select the best eigenbasis. The comparative analysis 

is also provided to exhibit the performance of the proposed method. 

Keywords - Energy Minimization, Incremental Principal Component Analysis, Mobile Adhoc Networks, Renyi 

Entropy Component Analysis.
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I. INTRODUCTION 

The data transfer among the network of 

nodes is one of the critical factors in mobile ad-hoc 

networks (MANET). Several attempts are made by 

the research community to optimize data transfer 

among the nodes. The data transfer is a critical factor 

since the nodes are randomly moving in different 

directions and the network infrastructure is highly 

dynamic and random. Achieving accurate and 
efficient data handling is one of the desired factors in 

mobile ad-hoc networks and as well to retain the 

energy among the nodes in the infrastructure-less 

network. It is a known fact that if the nodes are kept 

with more idle time, the lifetime of the node will be 

increased and hence attempts are made by the 

researchers to develop energy-efficient data transfer 

techniques suitable to the MANET environment. 

An ample amount of research has been 

developed in recent days to the development of data 

processing techniques appropriate for sensor 
networks [9, 31]. The wireless sensor networks 

(WSN) are known to be constrained by limited 

resources, in terms of energy, network data 

throughput, and computational power, and is true in 

the case of MANET also. The network capacity is 

inherently limited and hence the communication 

module is one of the constrained resource [27]. Also, 
wireless communication is an energy-consuming task 

and it is identified in many situations as the primary 

factor of lifetime reduction [1]. The data gathering 

schemes design which limit the transmitted data is 

recognized as a dominant issue for wireless sensor 

networks [9, 24, 31]. Similarly, data aggregation is a 

precarious factor in MANETs too. MANET although 

similar to wireless sensor networks on some of the 

aspects, the way it operates in the layered network 

architecture makes it different from wireless sensor 

networks. 
In static sensor networks and networks with 

stable links, data aggregation can be performed by 

routing along with fixed structures such as trees or 

network backbones [7, 10, 17, 21]. However, in 

MANETs, nodes mobility causes design issue as 

much complex problem and also incur 

communication overhead complexity due to random 

movement of nodes in the network topology [14]. 

Although flooding is one kind of solution which 

involves broadcasting of data from each node to 

every other node, the cost of data transfer is of O(N2), 
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where N is the number of nodes in the network. 

Therefore, in this paper, we explore a well-known 

multivariate data analysis technique called principal 

component analysis and the selection of principal 

component vectors is made based on entropy retained 

in the basis vectors unlike conventional approaches 

explored for data aggregation/ feature selection/ 

dimensionality reduction, etc. 
The emphasis of this paper is on computing 

order and duplicate unresponsive data aggregates and 

sending them to every node in a mobile ad-hoc 

network (MANET). We are specifically motivated by 

data aggregation requirements in extremely large 

scale mobile sensor networks such as networks of 

UAVs, military networks, the network of mobile 

robots, and dense vehicular networks, where the 

number of nodes is often several thousand. In order 

and duplicate insensitive synopsis, the same data can 

be aggregated multiple times but the result is 
unaffected. The MAX, MIN, and BOOLEAN OR are 

the natural examples of such duplicate insensitive 

data aggregation. 

In the wireless sensor network domain, it is 

found that data aggregation is one of the best 

solutions for optimal resource management including 

energy management in wireless sensor networks. The 

data aggregation is simply the combination of data 

that is sensed by various sensor nodes. Data 

aggregation technique used to decrease the amount of 

data transmitted to the base station tremendously. 

Generally, in MANETs, many sensor nodes 
communicate using wireless links and collaborate 

with each other. The data composed of each of the 

nodes interface with the gateway node after carrying 

out the aggregation of the data by diverse nodes. It is 

necessary to secure the data collected by such nodes. 

The security problems such as integrity of data, 

privacy, and newness in data aggregation become 

crucial when the MANET is implemented in a 

militant environment because of sensor node failures. 

The secure data aggregation schemes are categorized 

into hop by hop aggregation and end to end 
aggregation [25]. 

The problem of data aggregation has been 

well considered by the research community in the 

context of static sensor networks. It has been shown 

in the network aggregation techniques with spanning 

trees, network backbones are efficient and reliable 

solutions for the problem. However, in the context of 

a mobile ad-hoc network, such static routing 

structures possess instability and could potentially 

experience a high communication burden for 

maintenance. Flooding, neighborhood gossip, and 

spatial gossip are structure-free techniques for data 
aggregation. The Random walks and their cover times 

are also addressed to data aggregation problem with 

different types of static graphs [6, 16]. Different kinds 

of protocols have been devised to routing packets for 

facilitating data aggregation. Generally, users require 

competent aggregate functions. Generally, a sensor 

network contains a few thousands of low-cost sensors 

where each node is responsible to act an information-

source, sensing, and gathering data from the 

environment for a given task [22]. 

Some of the basic issues to be considered for 
data aggregation are as follows: 

• Nodes sense features over the complete network 

and route to nearby nodes. 

• A node can receive different kinds of the same 

message from several neighboring nodes. 

• Communication is usually performed in the 

aggregate. 

• Neighboring nodes report similar data. 

• Conglomerate data received from different 

sources and routes to remove redundancy. 

Data aggregation play very foremost role 
wireless sensor network. In recent times and also in 

current time researchers designed diverse data 

aggregation techniques through which the lifetime of 

the network increased significantly. Some of the 

techniques are depicted below: 

 Cluster-based aggregation 

 Tree-based aggregation 

 Network aggregation  

 Centralized aggregation  

Cluster-Based approach: Here, the entire 

network is separated into different clusters. A Cluster 

Head is designated in each cluster among different 
sensor nodes or cluster members. The nodes selected 

as a Cluster Heads are accountable for the data 

aggregation process received from group members 

and then communicate the outcome to the Base 

Station. 

Tree-Based Approach: This approach is 

apprehended by building an aggregation tree where 

Base Station is designated as roots and sensor nodes 

are considered as leaves. Every node has a parent 

node whose data are forwarded. The flow of data 

starts from sensor nodes (leaves) up to the Base 
Station (roots) and the aggregation is done by parent 

nodes [19]. 

In-Network Aggregation, the following are 

the approaches: 

 With size reduction: each node combines and 

compresses the data packets obtained from its 

neighbors to reduce the packet length which will 

be transmitted towards Base Station. 

 Without size reduction: is defined as the process 

of assimilating data packets received from 

diverse neighbors into a single data packet. The 
process of aggregating data packets received 

from diverse neighbors into a single data packet 

but unlike with the size reduction process, it is 

without processing the value of data. 
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Centralized Approach: In this strategy, the 

node sends data to a central node via the shortest 

possible route. These data are aggregated by the 

central node (header node) to reduce the redundancy. 

The collection of data from a MANET is a 

challenging problem. Due to limited resources such 

as energy, computational power, data storage, and 

bandwidth, it is necessary to develop a suitable 
technical decision while forwarding all the sensed 

information directly to a sink that does the 

corresponding processing. However, one need to 

consider the statistical characteristics.  

We consider a agreed group of sensor nodes, 

processing nodes, and sink nodes with paths leading 

from the sources to sinks through relay nodes. 

Generally, the node is battery-powered. Sources 

gather environmental parameters and form 

observations, which are forwarded to consumers for 

auxiliary processing. Two nodes exchange 
observations if they are within the communication 

range of each other. Because the communication-

range of a node is limited, nodes that are not in the 

communication range of some sink have their 

measurements delivered through relays. A relay can 

also perform sensing or receive data directly from a 

source, thus injecting such sensed/received data into 

the incoming observation from a preceding relay. A 

relay keeps memory and communication resources 

for each stream of observations. A source reserve 

resources only for sensing and forwarding. 

We study two distributed multivariate 
contextual information compression mechanisms, 

namely incremental PCA (i-PCA) and kernel entropy 

component analysis (k-ECA), which enhance the 

functionality of the Principal Component-based 

Context Compression model. Given the resource 

constraints in a MANET, i-PCA exploits the vector 

nature of the exchanged observations. The i-PCA 

makes use of the statistical interdependencies 

between the contextual parameters (components) for 

achieving energy efficiency. It aims to reduce the 

number of the components earlier to transmission 
once it discovers dependencies among them (learning 

phase). The compression in i-PCA is accomplished 

by the projection (prior to transmission) of the 

observations to a space of reduced dimensions. The 

aim of i-PCA and k-ECA is to prolong the lifetime of 

a MANET by improving energy efficiency through 

optimized compression. The eigenbasis of this space 

consists of the determined Principal Components 

(PC). PCs are obtained by the Principal Component 

Analysis (PCA) [11] method. 

Several models exploit preexisting 

knowledge on MANET topology to operate in an 
energy-efficient way. In the case of WSN, the model 

in [15] is based on de Bruijn and Voronoi diagrams 

for routing and data aggregation. This model requires 

training to construct the routing tables and, therefore, 

computational effort. Besides, the model in [26] uses 

data aggregation for removing data redundancy based 

on the sensed information attributes. The idea behind 

the model in Ren et al. [26] is that pieces of data 

produced by the same type of sensors demonstrate 

significant redundancy; thus, only data samples with 

the same attribute can be aggregated. This leads to the 
dynamic routing of pieces of data corresponding to 

the same attribute toward the sink. However, the 

entire knowledge of WSN topology is required to 

achieve attribute-aware data aggregation. In i-PCA 

and k-PCA, the entire topology and number of nodes 

of the MANET are completely unknown. In Arroyo-

Valles et al. [4], the nodes transmit only the 

statistically important messages and discard the rest. 

This imposes extra computation cost to infer which 

message is statistically important. Moreover, the 

discussed model will not take into consideration the 
energy cost per CPU instruction for evaluating the 

degree of significance for each received message. 

Furthermore, the model in [3] uses linear 

extrapolation approaches for forwarding univariate 

contextual values. In [12], each sensor node performs 

PCA by projecting its local data along the principal 

components and applies a clustering algorithm on this 

projection. Then, the node communicates compressed 

data to a Data Collection Point (DCP), which, by 

performing PCA on such data, produces global 

principal components. The DCP projects its data 

along the global principal components which are sent 
back to the sensor nodes to assist in subsequent 

compression. However, such a method considers a 

central process to define the groups, which may be 

overloaded if nodes were required to react to the 

definition of clusters, thus requiring DCP to 

communicate with all nodes [12]. 

The proposed model defines an adaptive 

scheme for estimating the span of the forwarding 

period for observations to minimize energy 

consumption due to data transmission and reception. 

The i-PCA and kernel-PCA deal with the statistical 
relations among contextual parameters and estimate 

the current observation vector in the upstream nodes 

every time a forwarding decision takes place. The 

considered models control not only the compression 

period but also the online learning phase. 

 

II. BACKGROUND ON PRINCIPAL 

COMPONENT ANALYSIS AND 

KERNEL ENTROPY COMPONENT 

ANALYSIS 
2.1 Principal Component Analysis 

The PCA is the best compression scheme 

that minimizes the mean squared error between the 

original images and their reconstructions for any 
given level of compression [13, 28]. The PCA is a 
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technique in statistical data analysis for data 

approximation and lossy compression.  

The eigenspace model is constructed as 

follows: 

Let T = 1, 2,... be a discretized time domain 

accounting for the sampling period at which the 

sensor measurements are collected. Each sensor 

(source) generates a stream of observations.  
Let x[t] = [(x1(t), x2(t), ... , xN(t)] ϵ RN be the 

N-dimensional (column) vector of measurements 

(observation) sensed by a source at time t ∈ T . Let 

XN×T be a matrix with elements xkt = xk[t] containing 

column-wise T observations of x[t], 1 ≤ t ≤ T . 

Let x be the average of all N training 

samples and represented as a column vector. Let U be 

a training matrix of size NxT defined as:  

X = [x1[t], – x , x2[t],  – x ,  … , xN[t],  – x ] ..(1) 

The training matrix X given in (1) contains 

one-dimensional column vectors of the reshaped 

mean-centered data. Each column vector is then 

represented as a point in a high dimensional vector 
space. However, a more number of training examples 

are required to get reliable and robust estimation 

about the nature of data distribution, which is often 

called as a curse of dimensionality. Besides, as the 

dimension of the covariance matrix Q defined by 

XX
T is very large (normally M>>N), computation of 

the eigenvectors of such a huge matrix is prohibitive 

and hence we have to initially compute the 

eigenvectors of Q  = XT
X which is of size NxN and 

subsequently the eigenvectors of Q are computed. 

The eigenvectors, i
e  and i

  be the 

corresponding eigenvalues Q  are determined by 

solving the well-known eigen-structure 

decomposition problem: 

iii
eQe 

 
…

(2) 

The eigenvectors, ei and the corresponding 

eigenvalues λi of Q are now computed as follows 

[20]. 

ii
 

 
…

(3) 

i

i

i
eUe



1


 

…

(4) 

However, we can have at most N number of 

eigenvectors using Eq. (4). Though all the T 

eigenvectors are required for exact data re-

construction, only a small number, k << N, is 

generally good enough to obtain the primary features 
of the objects. The k eigenvectors, corresponding to 

the k largest eigenvalues, constitute the eigenspace. It 

should also be noticed that the first N eigenvectors Q

are the first N eigenvectors vectors of X [20]. Thus 

eigenspace analysis can radically lessen the 

dimension (T) of the data to the eigenspace 

dimension (k) while keeping several of the most 

effective features that summarize the original data. 

We have shown in Fig. 1, a 2-D example of the PCA 

to illustrate dimensionality reduction. The 

eigenvector e1 is the principal component associated 

with the largest eigenvalue 1 for the dataset X, and 
the projection of Xi’s on e1 results in Yi’s which 
minimizes the error between the data points Xi’s and 

their projections Yi’s. 

For instance, we can keep (1) the Q largest 

eigenvalues, (2) all PCs whose eigenvalues exceed an 

absolute threshold, and (3) the largest PCs such that a 

specified fraction of “energy” in the eigenvalue 

spectrum is retained. The portion α of retained 

variance with the first Q PCs, which characterizes the 

accuracy of the approximation, is 

   
   

 
   

   
 
   

   ...... (5) 

 

 
Fig. 1. A 2D example of PCA. 

 

It is common practice in data analysis to 

retain the first k PCs such that α = 0.9; that is, to 

conserve 90% of the variance of the original signal. 

Having ordered column-wise matrix, approximations 

the set of vectors           by decreasing order of 

their eigenvalues    Eigen matrix are obtained by:  

                 ..... (6) 

The compressed column vector z

] refers to the vector of coordinates of 

      in {wi}1≤i≤k. This dimensionality reduction is 

lossy; thus, to measure the accuracy of        he 

reproduction error e[t] and the relative reproduction 

error are: 

 

                   

      
    

      
        ...(7) 

 

 

2.2 Incremental Principal Component Analysis 

PCA is a batch algorithm; that is, XN×T must 

be provided to the algorithm to produce the principal 
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components. The incremental PCA (i-PCA) technique 

incrementally updates the current eigenbasis (if 

necessary) on the reception of a new observation. 

Many algorithms have been proposed for IPCA [5, 8, 

23, 30]. 

We review here the method described in [8]. 

Consider a eigen-basis of k principal components in 

an N × T matrix e[t] at time t = T derived from the 

first T observations x(1), x(2), .., x(T) with       

 
 

 
       

   . Let y[t+1] ϵ RN be the new observation.  

Let Z[t+1] = WT(y[t+1] -      ) be its projection.  

The reproduction error is e[t + 1] = (y[t + 1] 

−      – W z[t + 1]. The vector W.z[t + 1] lies entirely 

within the subspace defined by the eigenvectors. The 

i-PCA estimates the new eigenvectors given the new 

observation y[t + 1]. Specifically, the i-PCA method 
in [8] includes an additional eigenvector if necessary. 

That is because, based on [8], the new eigen-basis 

might consist of either r = Q or r = Q+ 1 

eigenvectors. The (updated) new mean value and 

(updated) sample covariance matrix are then: 

         
 

   
                 

 
... (8) 

       
 

   
      

 

      
     

1      +1      
 

Consider that r = Q + 1. If it turns out that 

the additional eigenvalue is relatively small, it will be 

discarded (and the corresponding eigenvector at a 

later stage); thus, r = Q. The new eigenvectors must 

be a (Q+ 1) × (Q+ 1) rotation matrix R[t + 1] of the 

current eigenvectors plus some new orthogonal unit 

vector. Based on [8], the unit error vector of e[t+1] is 

an obvious choice for the additional unit vector, such 
that, 

      

   

      

        
                            

                                            

  

 

..(9) 

Hence, the new N × r matrix W[t + 1] of 

eigenvectors is: 

W[t+1] = [W[t]        ]R[t+1].   .... (10) 

with r = Q+ 1. The rotation matrix R[t+ 1] is the 

solution of the following “eigenproblem” of size 

(Q+1) × (Q+ 1) 

,         .... [11] 

w

here  

 

is a Q-dimensional zero column vector, and 

[t] is the diagonal Q× Q matrix of the Q first 

eigenvalues λk associated with each PC wk from W[t]. 

The solution of this problem yields the new 

eigenvalues directly in the (Q+ 1) × (Q+ 1) diagonal 

matrix        , and the corresponding new 

eigenvectors are computed from W[t + 1] in Equation 

(10). 

 

2.3 The Incremental PCA Model 

In this section, we describe the adoption of 
the IPCA method [8] for enhancing the basic PCA 

model. The proposed model hereafter referred to as i-

PCA, relaxes the assumptions of the basic PCA 

model, reduces the induced computational load and 

storage of the node, and updates the current 

eigenbasis according to new observations. i-PCA 

adopts online learning of the current eigenbasis on a 

new observation at node i. The i-PCA achieves 

simultaneously possible online learning and 

compression. At the beginning (i.e., t = 1, up to t = T 

), node i undergoes a learning phase as in basic 
model; that is, it receives, stores, and forwards the T 

first observations x[1],x[2],...,x[T ] to node j. At t = 

T, both nodes produce locally the Q first principal 

components using PCA (i.e., the (initial) N × Q 

matrix W[t] and mean(x)). 

 

Consider a new observation x[t] received by 

node i at t > T . Node i decides whether x[t] results in 

a change of the current eigen-basis or not. It projects 

x[t] onto the subspace a tolerance threshold defined 

by {wk}1≤k≤Q thus producing the error θ ∈ R+, then 
node e[t]= (xi[transmits the (compressed)] − 

mean(x)) − Wz[t]. If η[t] is less than z[t] to node j. 

Node j can then reconstruct the observation from its 

locally stored eigen-basis; that is, xˆ[t] = Wz[t]+ 

mean(x). If η[t] > θ (i.e., x[t] is not accurately 

represented by the current eigen-basis), then: node i 

forwards x[t] and updated x[t] to node j and both 

nodes update the eigen-basis through Equation (10) 

and maintain the new r first principal components 

with r = Q or r = Q+ 1 with respect to α. 

In i-PCA, there is no explicit learning and 
compression phase other than the initial learning 

phase. Node i incrementally learn the principal 

components from incoming observations if necessary 

and forwards compressed vectors once there is no 

change in the eigenbasis to θ. Node j reconstructs the 

observation with error e[t] if η[t] ≤ θ; otherwise, e[t] 

is +∞ (i.e., the error e[t] refers to the reconstruction of 

the observation from its locally stored eigenbasis). 

However, the selection of eigenbasis is based on the 

Renyi entropy component analysis which is described 

in the following section.  

 

2.4 Kernel Entropy Component Analysis 

The kernel PCA is one of the best data 

transformation approach known in the machine 

learning domain. Let X = [x1, x2,…,xN], where xi Є 
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Rd, i=1,…,N. The basic idea of kernel PCA is to map 

the input data X onto a feature space F via a nonlinear 

mapping ɸ and then perform a linear PCA in F.  

The non-linear map from input space to 

feature space is given by ɸ: Rd → F such that xt→ 

ɸ(xt), t=1,…,N. Let ɸ = [ɸ(x1), ɸ(x2), … , ɸ(xN)]. To 

perform PCA in F, we need to find an expression for 

the projection    
ɸ of ɸ onto a feature space 

principal axes αi, or onto a subspace, El spanned by 

the top l eigenvectors, which is achieved implicitly 

via the kernel function.  

The estimated covariance matrix of the 

mapped data ɸ(xi) in kernel PCA is defined as: 

  
 

 
            

 

 

   

 
…(1

2) 

And the corresponding eigenvalue problem is: 

λw = Cw. 

As     
 

 
                

   
     all solutions 

w with λ ≠ 0 lie in the span of  ɸ(x1), ɸ(x2), … , 

ɸ(xN). i.e., the coefficients αi (i=1,…,N) exist such 

that 

     

 

   

      
…(1

3) 

Then the following set of equations can be 

considered: 

λ(ɸ(xi).w) = (ɸ(xi).Cw) for all 

i=1,…,N 

…(1

4) 

 

Upon substituting (12) and (13) into (14) 

and by defining the NxN kernel matrix K by Kij = 
k(xi, xj) = ɸ(xi). ɸ(xj) produces an eigenvalue problem 

that can be expressed in terms of the dot products of 

two mappings. 

Solve  Nλα = Kα 

For nonzero eigenvalues λi and eigenvectors 

αi = (α1,…, αN)’ subject to normalization condition 

λiα
i.αi = 1. 

In kernel PCA, the top-most eigenvectors 

corresponding to the first few largest eigenvalues are 

used to transform the high dimensional feature vector 

to a lower dimensional feature vector. In the case of 
kernel ECA, it is the energy content that is being used 

in order to estimate the eigenvalues and Eigen vectors 

which are used for data transformation. The following 

section present the details in detail.  

 

2.4.1 Kernel Entropy Component Analysis for face 

feature extraction 

The Renyi quadratic entropy is given by  

                    … (15) 

 

where p(x) is the probability density 

function generating the data set, or sample, S = x1, x2, 

…, xN. Because of the monotonic characteristic of the 

logarithmic function, we consider the quantity: 

               … (16) 

The estimation of V(p) will be done using the 

Parzen window density estimator as given below. 

       
 

  
   

  ∈ 
       … (17) 

Here,          is the kernel centered at xt and 

width governed by the parameter σ.  

Hence,   

      
 

 
        

  ∈ 

 
 

  
 

  ∈ 

 

 
   

  ∈ 
        

  
 

  
     

…(18) 

 

Here, the element (t, t’) of the N x N kernel matrix K 

is kσ         and 1 is an (N x 1) vector containing all 

ones.  

Hence, the Renyi entropy is represented in 

terms of the eigenvalues and eigenvectors of the 

kernel matrix, which is decomposed as K = EDE
T. 

Here, D is the diagonal matrix having the eigenvalues 
λ1,λ2,…, λN and E is a matrix with the respective 

eigenvectors α1, α2,…,αN as columns. 

Rewriting the above, we have: 

       
 

  
       

    

 

   

 … (19) 

We can notice here that the eigenvalues and 

the associated eigenvectors contribute more to the 

estimation of entropy, which is the fundamental 
difference between Kernel ECA and kernel PCA. 

That is Eq. (19) discloses that the Renyi entropy 

estimator is composed of projections onto all the 

kernel PCA axes, however, only a principal axis αi 

for which λi ≠ 0 and   
   ≠ 0 subsidises to the entropy 

estimate. Hence, kernel ECA is defined as an l-

dimensional data transformation method got by 

projecting ɸ onto a subspace El spanned by l kernel 

PCA axes contributing maximum to the Renyi 

entropy estimate of the information. Therefore El is 

composed of a subclass of kernel PCA axes but not 

essentially those conforming to the top l eigenvalues.   

Hence in kernel ECA, for principal components, the 

projections of x are computed onto the eigenvectors 
in F which contributes more to Eq. (19). 

 

2.5 Time and Storage Complexity 

We first report on the time and storage 

complexity of PCA and i-PCA. The optimal linear 

scheme of PCA for reducing a set of T observations 

of dimension N to dimension Q involves computing 

the sample covariance matrix with O(TN2) time 
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complexity. The i-PCA is executed online using only 

one N-dimensional observation at a time with storage 

requirements O(Q2). Also, i-PCA is quite attractive in 

our case because its complexity is O(Q3); this 

corresponds to the solution of the eigen problem for a 

Q×Q matrix.  

The basic model needs O(TN) storage and 

O(TN2) time for the learning phase. It also requires 
O(Q) time for a compression period of length. The i-

PCA model requires O(TN) storage and O(TN2) time 

for the initial learning period of length T. After this 

period, i-PCA needs only O(Q2) storage, and its time 

complexity depends on the probability p = P(η[t] > 

θ). Hence, it needs O(pQ3) time for a horizon of 

length after the initial period. 

Finally, it should be stressed that the 

operation of the proposed schemes typically relies on 

a static topology with established routing paths. If a 

certain node fails, then a learning phase has to be 
initiated on the alternative path (determined through 

the underlying routing protocol) to render upstream 

nodes capable of handling the compressed stream. A 

similar remedy (i.e., rerouting) is assumed for the 

scenario of energy-failing nodes. 

III. PERFORMANCE AND 

COMPARATIVE ANALYSIS 
In this section, we study the performance of 

i-PCA integrated with k-ECA and also compared 

with the basic PCA model in terms of load gain and 

energy efficiency achieved due to the Renyi entropy 

component analysis. Moreover, we compare our 

models with the non-PCA-based model called as 

Threshold-sensitive Energy Efficient sensor Network 

(TEEN) model presented in [18] for completeness 

reasons, although the TEEN is proposed for wireless 

sensor networks. The TEEN is intended to be 

responsive to sudden changes of a measurable 
quantity. TEEN is based on a hierarchical structure of 

nodes: cluster nodes and simple sensor nodes. The 

nodes communicate the contextual data only to their 

immediate cluster-head, thus saving energy. A 

cluster-head node i agrees on forwarding a contextual 

value xk[t] to the upstream cluster-head node j based 

on two predefined tolerance thresholds: (1) the hard 

threshold k, which is an absolute value of the k-th 

contextual parameter, and (2) the soft threshold θk, 

which is a small relative change in the sensed xk[t] 

value. Node i forwards xk[t] to node j at t when xk[t] 

> k and the change in xk[t] is equal or greater than θk, 
where k is used for reducing the number of 

transmissions of contextual components by allowing 

node i to transmit only when the sensed contextual 

value xk[t] is in the range of interest. Besides, θk 

reduces the number of transmissions by further 

eliminating all transmissions that might have 

occurred when there is a minor change in xk[t], with 

xk[t] > k. TEEN, however, handles univariate 

contextual information. To objectively compare the 

performance of our models with TEEN, we apply 

TEEN for N-dimensional observations x. For 

comparison reasons, the soft threshold equals the 

tolerance threshold θ=θk, k=1,...,N in the experiments. 

Besides, k is defined as the average value of the 

lowest and the highest possible values of the k-th 

parameter, similarly to the performance evaluation of 
TEEN presented in [18]. 

As a reference model in terms of energy 

consumption, we refer to a model in which node i 

unconditionally forwards all received observations to 

node j without any additional processing. The 

reference model incurs no data inaccuracies (zero 

error). 

 

3.1 Performance Metrics and Parameters 

The total cost ct (in Joules) at time t is the 

cost incurred by node i transmitting x[t] or z[t] and by 
node j receiving x[t] or decompressing z[t]. Cost ct is 

recursively calculated as follows: 

            
    

      
     

   ... (20) 

where   
  and   

 are receive and transmit 

costs for x[t] or z[t], respectively. The   
  is the 

energy cost for the CPU instructions for the adopted 

algorithms. The   
  is the cost for node i transiting 

from idle to standby operational modes. We denote as 

the total cost for the REF model in which   = 0, since 

no processing is applied to observations. We define 

as load gain ratio a ∈ [0,∞) up to time T the 

communication load gain obtained from a model to 

reference model; that is, 

  
  

  
 
   .... (21) 

A value of a < 1 indicates a reduction of 

communication costs concerning REF. The lower the 
value is, the lower energy consumption is attained by 

a certain model. Moreover, we assess the benefit of a 

model by taking into account the mean relative 

reproduction error     up to time T; that is,  

    
 

 
      

    ....  (22) 

Also, let mt refer to the number of 

transmitted values at t by node i (i.e., mt = Q) if 

compression is in effect at instance t; otherwise mt = 

N. For a basic reference model, we obtain mt = N, ∀t. 
We define as mean data compression ratio δ up to T 

the quantity: 

   
 

 
 

 

  

 
    ... (23) 

A high δ value indicates the efficiency of a 

model in transmitting low-dimensional information. 

 

3.2 Datasets 

We have considered the data proposed as 

detailed below. The Trace T0 contains readings from 

real sensors distributed in a certain region for 

monitoring in-field temperature, relative humidity, 
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and wind direction/speed. Trace T0 has been collected 

from an experimental sensor deployment of the 

Sensor and Computing Infrastructure for 

Environmental Risks (SCIER) project. The 

observations that are processed in the nodes are of N 

= 7 dimensions. The Trace T1 refers to real sensor 

readings taken from a commercial vessel to monitor 

the ship's health condition. Trace T1 was collected 
from production installations of the Mari-Brain 

system used for online remote monitoring of ships 

based on sensor network installed onboard. The 

observations that are processed in the nodes are of N 

= 29 dimensions.  

 

Table-1. Characteristics of Datasets. 

Data set T0 Value 

Dimension of observation  

Number of observations 

Number of hours of sensing 

Sampling period  

Predictability 
 

Stationarity 

Sensor types 

N = 7 

4800 

400 

5 minutes 

high (avg. Hurst 
exponent 0.87) 

medium 

humidity, wind 

speed, 

temperature 

Data set T1 Value 

Dimension of observation  

Number of observations 

Number of hours of sensing 

Sampling period  

Predictability 

 

Stationarity 

Sensor types 

N = 29 

25920 

2160 

5 minutes 

low (avg. Hurst 

exponent 0.52) 

low 

propeller shaft 
torque, tank 

leak/fuel gauges, 

fuel flow speed, 

inclinometers, 

ground speed, 

depth, water 

speed, vessel 

head, wind angle, 

wind speed  

 

3.3Energy Model 

We adopted the energy consumption model 
from the Mica2 sensor board [He et al. 2004]. This 

energy model assumes energy of two AA batteries 

that approximately supply 2,200mAh with an 

effective average voltage of 3V. It has 20mA if 

running a sensing application continuously, which 

leads to a lifetime of 100 hours. The energy costs for 

lone CPU instructions (energy per instruction) and 

transmitting/receiving contextual values (energy per 

bit) are given in Table-2. 

 

Table-2. Energy Costs 

Node operation mode Energy cost 

Instruction execution 4nJ/instruction 

Idle – Stand by 9.6–0.33mJ/s 

Transmitting – Receiving 720–110nJ/bit 

Characteristics of i-PCA: We study certain 

characteristics of the proposed model, giving some 

insight into its behavior. Figure 1 shows the 

Probability Density Function (PDF) of the 

compression duration ∆t∗ for different θ values and T 

= 50 for trace T0. The i-PCA shortens the 

compression period once tolerance is relatively low 

and vice versa. 

  

 
Fig. 2. The probability density function of 

duration t∗ of i-PCA for different θ values and T = 

50 for Trace T0. 

 

Load Gain: Figures 3 and 4 present the a 

value against T for i-PCA (coupled with Renyi 

entropy component analysis) and the basic PCA 

model, taking the average for all θ values for traces 

T0 and T1, respectively. The value for i-PCA and the 

basic model is obtained for all and θ values, 

respectively. The i-PCA is very energy efficient for 
all T for both traces because it exploits the initial 

horizon only for constructing the (initial) eigenbasis 

and then updates the eigenbasis to IPCA. The a value 

for basic PCA increases with T as expected because, 

during the learning phase, basic PCA 

transmits/receives uncompressed observations. The 

proposed model is very energy efficient because, after 

the initial learning period, it transmits only 

compressed observations and even with high θ, it 

possesses energy efficiency, which indicates its 

applicability for MANET applications with low and 
high data accuracy requirements.  
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Fig. 3. Load gain α against horizon T for all 

models for Trace T0. 

 

We have made a comparative analysis with 

TEEN which assumes the highest load gain values for 

both traces compared to the proposed model since it 

does not exploit statistical dependencies among 
contextual values as the proposed models do and are 

agnostic of the error at the receiver end. The TEEN 

has the load gain 7.60, 16.6, 25.00 38.03 43..34 

48.98, and 6.00 7.95 8.34 9.46 11.23 13.32 

respectively for T0 and T1 traces. 

 
Fig. 4. Load gain α against horizon T for all 

models for Trace T1. 
 

IV. CONCLUSION 
In this work, we have proposed an 

incremental principal component analysis based 

model coupled with kernel entropy component 

analysis for energy minimization suitable to mobile 

ad-hoc networks. The data aggregation issue has been 

addressed here and successfully comes out with a 

new model that consumes less energy due to the 
dimensionality reduction of the data i.e., in terms of 

the number of bits being transferred through sensor 

nodes where they are constrained by battery life. The 

redundant information in a large amount of data is 

identified by exploring a well-known multivariate 

data analysis technique called principal component 

analysis and a variant of principal component 

analysis called incremental principal component 

analysis is explored suitable to the mobile ad-hoc 

network environment. Besides, we have also 

integrated the incremental principal component 

analysis with Renyi entropy component analysis 

which is useful in estimating the best eigenbasis, 

thereby accurate reconstruction of the data is possible 
at the receiving end (destination node). The proposed 

approach results in a low energy consumption model 

with controlled data accuracy (based on tolerance θ). 

Experimental results indicating the load gain which 

in-turn helps in saving the energy consumption are 

presented by considering the dataset used by many 

researchers. The comparative analysis with the 

recently proposed approaches reveals the 

performance of the proposed method. 
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