
Fatogoma DIARRASSOUBA, et. al. International Journal of Engineering Research and Applications 

www.ijera.com 

ISSN: 2248-9622, Vol. 10, Issue 9, (Series-V) September 2020, pp. 01-16 

 

 
www.ijera.com                                    DOI: 10.9790/9622-10090501161|P a g e  

 

 

 

 

 

Quantitative Structure-Property Relationship (QSPR) modeling 

of the second reduction potential of a family of 

Tetracyanoquinodimethane (TCNQ) molecules using descriptors 

of quantum chemistry 
  

Fatogoma DIARRASSOUBA
1
, KafoumbaBAMBA

1
, Mawa KONÉ

2
, 

AhissanDonatien EHOUMAN
1
, Koffi Kan Raymond KOUAMÉ

1
and Nahossé 

ZIAO
1
 

1
Laboratoire de Thermodynamique et Physico-Chimie du Milieu, UFR SFA, Université Nangui Abrogoua 02  

BP 801 Abidjan 02, Côte-d’Ivoire 
2
Laboratoire de Chimie Organique et de Substances Naturelles, UFR-SSMT, Université Félix Houphouët 

Boigny 

22 BP 582 Abidjan 22, République de Côte-d’Ivoire 

 

ABSTRACT: 
The general objective of this work was to model the second reduction potential of a series of 

Tetracyanoquinodimethane (TCNQ) molecules. With a database of twenty-eight (28) analogous TCNQ 

molecules, twenty molecules or about 2/3 of the database were used for the training set and eight molecules or 

about 1/3 of the database were used for the test set. The molecular descriptors were calculated after optimization 

and frequency calculation using the DFT method in 6-31G(d,p)basis set. Using statistical analysis methods, a 

QSPR model for predicting the second reduction potential dependent on the electrophilic index only was 

developed. The statistical and validation parameters linked to this model were determined and considered 

interesting. These various parameters revealed that this model can be used to effectively predict the second 

reduction potential of future TCNQ of this same family belonging to its domain of applicability at the 95% 

confidence level. 
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I. INTRODUCTION 
Coulomb intramolecular repulsion of 

electron donors and acceptors is a phenomenon that 

can prevent charge complexes from being excellent 

electrical conductors. Minimal Coulomb repulsion is 

required to reach a metallic state. Theoretical studies 

have suggested that extending the TCNQ π-system 

lowers Coulomb's intramolecular repulsion and thus 

maintains a metallic state in organic systems [1]. 

With regard to the TCNQ π-system in particular, the 

degree of this repulsion can be predicted based on 

the difference between the potential offirst reduction 

and that ofsecond reduction. Indeed, the difference 

between the first and second reduction potentials 

(∆E = E
1
-E

2
) is a measure of Coulomb repulsion. 

Here smaller ∆E values are desired asthey increase 

the electrical conductivity of the organic charge 

complex. However, one of the major concerns in the 

synthesis of organic charge complexes is that 

organic chemists are faced with the development of 

thermodynamically stable radical systems. Which is 

not an easy task. Hence,it requires alternative 

methods to experimentation. Among these methods, 

the Quantitative Structure-Property Relationship 

(QSPR) has become of great interest. It allows the 

physicochemical properties of a family of given 

molecules to be linked to their molecular structures. 

We can then explain the origin of these properties 

and predict them for other molecules of this same 

family whose experimental data are non-existent. 

QSPR models predicting the first reduction potential 

of the tetracyanoquinodimethane family have 

already been developed. They have even been the 

subject of publications by Peter W. Kenny [2] and F. 

Diarrassouba et al. [3]. However, up to date, there 

does not appear to be any study on QSPR modeling 

of the second reduction potential of this same family 

of molecules. Therefore, the main objective in this 

work is to develop a QSPR model predictive of the 

second reduction potential using quantum chemistry 
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descriptors based on an experimental database of 

twenty-eight (28) derivatives of 

Tetracyanoquinodimethane. 

 

II. MATERIAL AND METHODS 
2.1. Database 

In the development of the predictive QSPR 

model of the secondreduction potential, we 

considered a series of twenty-

eightTetracyanoquinodimethane derivatives codified 

TCNQ [4-11]. The choice of these molecules is due 

to the availability of their experimental 

secondreduction potentials. These properties have 

been all determined by cyclic voltammetry in 

acetonitrile. These molecules have constituted our 

database. Twenty of which (or about 2/3 of the 

database) were used for the training set and eight 

molecules (or about 1/3 of the database) were used 

for the test set. Table 1 presents these different 

molecules with their corresponding experimental 

second reduction potentials expressed in volts (V).  

 

Table 1.Series of studiedmolecules 

Training set 

Code[3] Molecule E
2
exp(V) Reference 

TCNQ_2 

N

N
N

N

CH3

CH3

 

-0.350  [4] 

TCNQ_3 

N

N
N

N

CH3

CH3

 

-0.365 [4] 

TCNQ_4 

N

N
N

N  

-0.214 [5] 

TCNQ_5 

NN

N N  

-0.480 [5] 

TCNQ_9 
O

N

N

O

N

N

 

-0.310 [5] 

TCNQ_12 
Se

N

N

Se

N

N

 

-0.250 [5] 



Fatogoma DIARRASSOUBA, et. al. International Journal of Engineering Research and Applications 

www.ijera.com 

ISSN: 2248-9622, Vol. 10, Issue 9, (Series-V) September 2020, pp. 01-16 

 

 
www.ijera.com                                    DOI: 10.9790/9622-10090501163|P a g e  

 

 

TCNQ_13 

S

S

N

N
N

N
 

-0.355  [5] 

TCNQ_14 S

S
N

N

S

N

N

 

-0.288  [5] 

TCNQ_15 

S

N

N

S

N

N  

0.090 [5] 

TCNQ_16 

S

N

N

S

N

N  

-0.050 [5] 

TCNQ_18 

N

N

N

N

N

N

N

CH3

 

-0.530 [5] 

TCNQ_19 

N

N

N

N

N

N

N

 

-0.490 [5] 

TCNQ_22 

N

N
N

NO

CH3

O

CH3  

-0.470 [6] 

TCNQ_23 

N

N
N

NF

FF

F

 

0.020 [6] 
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TCNQ_24 

NN

N N

N

S

N
N

N

 

-0.460  [10] 

TCNQ_28 

NN

N N  

-0.910 
 

[5] 

TCNQ_30 
S

N

N

S

N

N

 

-0.259 [5] 

TCNQ_31 
S

N

N

S
N

N  

-0.010 [5] 

TCNQ_34 

N

N
N

N

N

N

 

0.090  [5] 

TCNQ_36 

N

N
N

N  

-0.030 [5] 

Jeu de test 

TCNQ_1 

N

N
N

N

CH3  

-0.340 [4] 

TCNQ_8 

NN

N N

SS

 

-0.730  [5] 
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TCNQ_20 

N

N
N

NCl

 

-0.220  [6] 

TCNQ_21 

N

N
N

NF

F
 

-0.144  [8] 

TCNQ_27 

N

NN

N  

-0.410 

 

 

 [4] 

 

TCNQ_35 

NN

N N

N

S

N

 

-0.380  [11] 

TCNQ_39 

N

N
N

NF

 

-0.185  [7] 

TCNQ_40 

NN

N N

N

S

NN

S

N

 

-0.490 [9] 

 

2.2. Computational Theory Level and Softwares  

GaussView 5.0[12]software was used to 

represent the 3D structure and visualize the studied 

molecules. Then, Gaussian 09 software[13]was 

used for optimization and frequency 

calculation(Temperature 298.15 Kevin, pressure 1 

atmosphere, in vacuum). The theory level used is 

B3LYP/6-31G(d,p). As for 2D structures, they 

have been represented with chemsketch[14]. 

EXCEL[15]and XLSTAT[16]softwares were used 

for graphic representation and modeling 

respectively. For the calculation of the observation 

levers, the minitab 18[17]software was used. 

 

 

2.3. Statistical analysis 

To develop a QSPR model, a data analysis 

method is required. This method quantifies the 

relationship between the studied property and the 

molecular structure (descriptors). There are several 

methods to build a model and analyze its statistical 

data. But the method we used in our study is 

Simple Linear Regression (SLR) (a single 

explanatory variable). Generally speaking, the 

equation of the simple regression is of the form: 

Y = a0 + a1X    (1) 

with Y: studied property; 

X: explanatory variable in correlation with the 

studied property; 

a0, a1: model regression constants.  
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The selection of descriptors is a crucial step in 

QSPR modeling. In this study, the selection of 

descriptors was based on two criteria described as 

follows: 

 

 Criterion 1 

There must be a linear dependence relationship between the second reduction potential and the descriptors. 

Under these conditions, R ≥ 0.50[18]. R stands for the linear correlation coefficient of the line Eexp =

𝑓(Descripteuri). 

 Criterion 2 

The descriptors must be independent of each other. To do this, the partial correlation coefficient aij  between the 

descriptors i and j must be less than 0.70 ( aij < 0,70 )[18]. For a multilinear regression, the coefficients R and 

aij  are expressed as follows: 

R =
COV (X,Y)

SX .SY
  (2) and aij =

COV (Xi ,Xi )

Var (Xi )
  (3) 

The relationships 4, 5, 6 and 7 were used to calculate many statistical and validation parameters: 

ESS =  (Yi,cal − Y exp )2  (4) 

TSS =  (Yi,exp − Y exp )2  (5) 

RSS =  (Yi,exp − Yi,cal )2  (6) 

TSS = ESS + RSS    (7) 

where TSS: Total Sum of Squares; ESS: Extended Sum of Squares; RSS: Residual Sum of Squares. 

 Determination coefficient 𝐑𝟐[19] 
The determination coefficient is given by the following relationship:  

R2 = 1 −
 (Yi ,exp −Yi ,cal )2

 (Yi ,exp −Y exp )2 = 1 −
RSS

TSS
 (8)  

with R =  
 (Yi ,cal −Y exp )2

 (Yi ,exp −Y exp )2 =  
ESS

TSS
     (9) 

 Standard deviationS[20] 

It is an indicator of dispersion. It provides information on how the distribution of data is spread around the 

average. The closer its value is to 0, the better the adjustment and the more reliable the prediction will be. 

S =  
 (Yi ,exp −Yi ,cal )2

n−p−1
=  

RSS

n−p−1
  (10) 

 Adjusted determination coefficient (R
2
adjust)[21] 

It allows to measure the robustness of a model unlike R2.This coefficient is used in multiple regressions because 

it takes into account the number of parameters (descriptors) of the model. 

Radjust
2 = 1 −

 n−Intercept  

n−p−1
.

RSS

TSS
= 1 −

 n−Intercept  

n−p−1
. (1 − R2)  (11) 

 Fisher-Snedecor coefficient (F)[22] 

It allows to test the global significance of linear regression. The Fisher-Snedecor coefficient is related to the 

determination coefficient by the following relationship: 

F =
n−p−1

p
.

ESS

RSS
=

n−p−1

p
.

R2

1−R2  (12) 

 Kubinyi Criterion (FIT)[23] 

It measures the size or robustness of the model. The smaller the FIT, the more robust the model is, i.e. the model 

has more variables. 

FIT =
(n−p−1)

(n+P2)
.

R2

(1−R2)
  (13) 

 Cross-validation coefficient (𝐐𝐋𝐎𝐎
𝟐 )[24] 

It measures the accuracy of the prediction on the data of the training set. 

QLOO
2 = 1 −

 (yi ,exp −yi ,pred )2

  yi ,exp −y exp  
2 = 1 −

PRESS

TSS  
  (14) 

 Cross-validation criteria (PRESS)[24] 

The sum of the quadratic prediction errors, PRESS (Prediction Sum of Squares) is defined by the relationship: 

PRESS =  (yi,exp − yi,pred )2  (15) 

This criterion is used to select models with good predictive power. (we always look for the smallest PRESS). A 

standard deviation of error of prediction (SDEP) is calculated from PRESS: 

SDEP =  
 (yi ,exp −yi ,pred )2

n
=  

PRESS

n
  (16)  
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In these expressions, n is the number of molecules in the training set, p is the number of explanatory variables. 

𝐲𝐢,𝐞𝐱𝐩 and 𝐲𝐢,𝐩𝐫𝐞𝐝 are respectively the experimental and predicted values of property for molecule i and 𝐲 𝐞𝐱𝐩is 

average value of the property for the training set. 

 Todeschini’s parameter( 𝐑𝐏
𝟐𝒄 )[25] 

RP
2𝑐  is the corrected form of P.P. Roy’sparameter noted RP

2 [26].Itallows to know if the model is due to chance 

correlations or not. If this parameter is greater than 0.50, the model is assumed not due to a chance correlations. 

RP
2𝑐 = R R2 − Rr

2  (17) 

with Rr
2, the average value of Rri

2 of the models obtained with the randomized property.  

 External validation coefficient (𝐐𝐞𝐱𝐭
𝟐 )[27] 

It measures the accuracy of the prediction on the test set data. 

Qext
2 = 1 −

n

next

PRESS (test )

TSS
                                  (18) 

here, next refers to the number of test set compounds 

 

 Parameter (RMSEP)[27] 
External predictive ability of QSPR model may further be determined by root mean square error in prediction 

given by: 

RMSEP =  
 (yexp (test )−ypred (test ))2

next
   (19) 

 Roy K. and al. parameters ( 𝐫𝐦
𝟐   and∆𝐫𝐦

𝟐 )[28] 

For the acceptable prediction, the value of  ∆rm
2  should preferably be lower than 0.20 when the value of  rm

2    is 

more than 0.50. 

rm
2    =

(rm
2 +r′

m
2

)

2
   (20) 

∆rm
2 =  rm

2 − r′m
2    (21) 

hererm
2 = r2(1 −  r2 − r0

2)  (22) andr′m
2 = r2(1 −  r2 − r0

′2)  (23) 

The parameters r2 and r0
2are the determination coefficients between the observed and predicted values of the 

compounds (training set or test set) with and without intercept, respectively. The parameter r0
′2  bears the same 

meaning but uses the reversed axes.  

 External validation criteria or "Tropsha’s criteria"[24][29]. 

There are five such criteria: 
 Criterion 1: Rext

2 > 0.70 
 Criterion 2 : Qext

2 > 0.60 

 Criterion 3: 
 Rext

2 −R0
2 

Rext
2 < 0.1  and  0.85<k<1.15 

 Criterion 4: 
 Rext

2 −R0
′2 

Rext
2 < 0.1   and  0.85<k’<1.15 

 Criterion 5:  Rext
2 − R0

2 < 0.3  

where, Rext
2  : determination coefficient of molecules for the test set;R0

2 : determination coefficient of the 

regression between predicted and experimental values for the test set without intercept;R0
′2 : determination 

coefficient of the regression between experimental and predicted values for the test set without intercept;k: slope 

of the correlation line (values predicted according to the experimental values with intercept = 0); k’: slope of the 

correlation line (experimental values according to the predicted values with intercept = 0). Ouanlo Ouattaraet 

al.[30]reported that if at least 3/5 of the Tropsha’s criteria are verified, then the QSPR model developed is 

considered a successful model in predicting of the studied property. 

 

 Lever (hii)[31] 

The lever is a kind of distance from the barycentre of the points in the space of the explanatory variables. It 

identifies observations that are abnormally far from others. For observation i 

hii = xi(XTX)−1xi
T  (i=1,… , n)  (24) 

where xi is the line vector of the descriptors of compound i and X is the matrix of the model derived from the 

values of the descriptors of the training set. The index T refers to the transposed matrix/vector. The critical value 

of lever h* is, in general, set to 
3 (p+1)

n
[32], where n is the number of compounds in the training set and p is the 



Fatogoma DIARRASSOUBA, et. al. International Journal of Engineering Research and Applications 

www.ijera.com 

ISSN: 2248-9622, Vol. 10, Issue 9, (Series-V) September 2020, pp. 01-16 

 

 
www.ijera.com                                    DOI: 10.9790/9622-10090501168|P a g e  

 

 

number of model descriptors. If a compound has a residual and a lever that exceeds the critical value h*, this 

compound is considered outside the applicability domain of the developed model. 

 

2.4. Calculated molecular descriptors 

As part of our work, six (06) descriptors were calculated. These are: electronic energy (ET), dipole moment 

(μD), ionization potential (IP), electronic affinity (EA), electrophile index (ω) and the sum of the absolute value 

of the Mulliken charges (Q). Table 1 presents the different approaches to these descriptors. 

 

Table 1. List of molecular descriptors used 

Molecular descriptors  Notation Expressions 

Electronic energy ET  

Dipole moment μD  

Ionization potential[33] IP IP=-EHOMO 

Electronic affinity[33] EA EA=-ELUMO 

Electrophilicindex[34] ω ω =
𝜒2

2𝜂
 

Sum of the absolute value of the Mulliken charges[30] Q  

 

with  η =
IP−EA

2
[35]χ =

IP+EA

2
[36] 

 

III. RESULTS AND DISCUSSION 
 

3.1. Values of calculatedmoleculardescriptors 

The values of the six molecular descriptors are summarized in Table 2. 

Table 2. Values of calculateddescriptors 

Training set 

COMPOUND ET μD IP EA ω Q 

TCNQ_1 -757.2186 0.0007 7.1298 4.6219 13.7670 5.8730 

TCNQ_2 -835.8476 0.0014 7.0645 4.5302 13.2619 6.7581 

TCNQ_3 -1064.5157 0.0036 6.2638 4.5376 16.8964 7.2240 

TCNQ_4 -985.8761 6.1457 6.8895 4.2251 11.5914 5.6736 

TCNQ_5 -905.2187 0.0008 6.6228 4.4380 13.9988 6.6582 

TCNQ_6 -5553.5498 0.0003 6.5370 4.4094 14.0793 4.4161 

TCNQ_7 -1473.7483 0.0014 7.0441 4.5582 13.5381 4.7414 

TCNQ_8 -1948.1462 3.4780 6.6484 4.5253 14.7019 5.3336 

TCNQ_9 -1627.3871 6.9138 6.3604 4.8269 20.4026 5.4517 

TCNQ_10 -1627.3934 0.0008 6.6043 4.7253 17.0789 5.5583 

TCNQ_11 -1382.9963 5.5556 6.6141 3.8297 9.7933 9.7223 

TCNQ_12 -1574.7312 5.5486 6.5966 3.8085 9.7076 10.4844 

TCNQ_13 -907.6375 0.0018 6.8465 4.3152 12.3044 6.9352 

TCNQ_14 -1075.4622 0.0016 7.6118 5.2544 17.5554 5.3776 

TCNQ_15 -1370.7582 2.0047 7.4634 4.4573 11.8177 7.6879 

TCNQ_16 -1293.1709 8.3638 6.6323 3.3972 7.7736 6.9336 

TCNQ_17 -1551.1661 0.0001 6.5858 4.4714 14.4562 2.4880 

TCNQ_18 -1627.3928 6.1661 6.5087 4.7153 17.5607 5.6189 

TCNQ_19 -863.0285 0.0006 7.9057 5.5402 19.1068 5.5363 

TCNQ_20 -909.6358 0.0018 6.3906 4.8048 19.7592 5.3941 

Test set 
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TCNQ_21 -717.9018 1.2456 7.2245 4.7196 14.2385 5.0988 

TCNQ_22 -1627.3872 4.4817 7.2533 3.7080 8.4726 6.9263 

TCNQ_23 -1138.1647 0.4703 7.4028 4.9545 15.5928 4.3909 

TCNQ_24 -877.0332 0.0012 7.4926 5.0348 15.9630 5.1691 

TCNQ_25 -832.2260 3.7464 7.2008 4.5060 12.7141 5.2247 

TCNQ_26 -1185.0515 0.4964 7.4885 4.7109 13.3953 6.2528 

TCNQ_27 -777.8097 0.7489 7.4060 4.9333 15.3935 4.7732 

TCNQ_28 -1691.5156 0.0015 7.6401 4.4605 11.5131 8.0094 

 

3.2. Selection of molecular descriptors 

3.2.1. Submission of descriptors to selection criterion 1 

The molecular descriptors calculated were subjected to selection criterion 1 which stipulates that there 

must be a linear dependence relationship between the second potential reduction and the molecular descriptors. 

 

Table 3. Submission of molecular descriptors to selection criterion 1 

Equation Correlation coefficient 𝑹  Descriptor rejected if  𝑹 ≥ 𝟎. 𝟓𝟎 

𝐄𝐞𝐱𝐩
𝟐 = 𝒇(𝐄𝐓) 0.0413 rejected 

𝐄𝐞𝐱𝐩
𝟐 = 𝒇(𝛍𝐃) 0.3599 rejected 

𝐄𝐞𝐱𝐩
𝟐 = 𝒇(𝐈𝐏) 0.1004 rejected 

𝐄𝐞𝐱𝐩
𝟐 = 𝒇(𝐄𝐀) 0.8952 Retained 

𝐄𝐞𝐱𝐩
𝟐 = 𝒇(𝛚) 0.9592 Retained 

𝐄𝐞𝐱𝐩
𝟐 = 𝒇(𝐐) 0.4548 rejected 

 

Examination of the data in Table 3 shows that there is a linear dependence relationship between the second 

reduction potential and the descriptors EA and ω since their linear correlation coefficient exceeds 0.50. Thus, 

these two descriptors will be subject to selection criterion 2. 

 

3.2.2. Submission of molecular descriptors retained for selection criterion 2 

With regard to selection criterion 2, it stipulates that the molecular descriptors selected according to criterion 1 

must be independent of each other in pairs. 

 

Table 4. Submission of molecular descriptors to selection criterion 2 

Correlation between Coefficient 𝐚𝐢𝐣 Independent descriptors𝒂𝒊𝒋 < 0.70 

𝛚 et EA 6.3859 dependent 

 

Note in Table 4 that the partial correlation coefficient between the electronic affinity (EA) and the 

electrophilic index (ω) is much greater than 0.70. It is therefore clear that these two descriptors are dependent. 

These cannot exist in the same QSPR model. However, the electrophilic index which displays the highest linear 

correlation coefficient (|R| = 0.9592) with the property studied, will be used to establish a QSPR model with a 

single descriptor. 

 

3.3. Study of the developed model  

In the QSPR developedmodel, the potential of second theoretical reduction 

 (𝐄𝐭𝐡𝐞𝐨
𝟐 ) is dependent on the electrophilic index (ω) whose regression equation is:  

𝐄𝐭𝐡𝐞𝐨
𝟐 = −1.2799 + 0.0691 ∗ 𝛚 

The parameters regarding this equation are:  

n = 20  ;   R = 0.9592  ;   R2 = 0.9201  ; Radjusted
2 =0.9157  ;  S=0.0726  ;   F = 207.2814  ; 

FIT = 9.8705;  p − value <  0.0001;  TSS   =  1.1885 ;  ESS = 1.0935; α = 95% 

 
t p-value 

Constant -17,9626 < 0,0001 

ω 14,3973 < 0,0001 
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The sign of the coefficient of the 

explanatory variable ω is positive. This reflects the 

existence of a direct correlation between the 

explanatory variable (ω) and the dependent 

variable (second reduction potential). A compound 

with a high electrophilic index will necessarily 

have a high second reduction potential. Regarding 

the p-value, we see that its value is less than 0.001. 

Thus, the original constant and the explanatory 

variable have a highly significant influence on the 

second reduction potential. This high significance 

of the original constant and the explanatory 

variable (ω) is even confirmed by the very high 

value of the absolute value of the Student 

coefficient which is much higher than the critical 

value (tcritical=2,10)[37]. 

 

3.3.1. Internal validation of the model 

In the context of internal validation, the Leave-

One-Out (LOO) cross-validation technique and the 

Y-randomization test were used. 

 Leave-One-Out (LOO) cross validation 

This validation is carried out by omitting a 

molecule in each cycle. The statistical parameters 

related to the Leave-One-Out cross-validation are 

listed in Table 5. 

 

Table 5. Statistical parameters of the LOO cross validation of the model 

n 𝐐𝐋𝐎𝐎
𝟐  𝐫𝐦

𝟐   (𝐋𝐎𝐎) ∆𝐫𝐦
𝟐 (𝐋𝐎𝐎) PRESS SDEP 

20 0.8850 0.8445 0.0255 0.1366 0.0827 

 

The data in Table 5 indicate that the value 

of  QLOO
2 is satisfactory becauseQLOO

2 > 0.5[38]. 

This result also shows that our QSPR model is not 

too sensitive to this operation of removing a 

molecule and putting it back into the training set. In 

addition, out of 100 molecules in the training set, 

88.50 have their redox potentials predicted. The 

established model therefore has a high predictive 

capacity towards the molecules of the training set. 

This high predictive capacity is even confirmed by 

the low value of the SDEP (0.0827) which tends 

towards 0. This indicates that there is a good 

agreement between the observed values and the 

predicted values  by the model. 

 

 Model Y-randomization test 

To ensure that the developed QSPR model was not 

due to chance, we looked at the property of the 

randomization test. The calculated average 

statistical indicators are summarized in Table 6. 

 

Table 6. Average values of the model randomization parameters 

Randomizationparameter 𝐑𝐫
𝟐 𝐬𝐫 𝐅𝐫 𝐑𝐏

𝟐𝐜  

Average value 0.0682 0.2479 1.3957 0.8853 

 

According to the data in Table 6, the mean 

value of the coefficients of determination of the 

randomized models is very low (Rr
2 = 0.0682). 

This value means that on average, only 6.82% of 

experimental variance of second reduction potential 

is explained by the descriptor of the randomized 

model. As for the average standard deviation of the 

randomized models, we note a very high value 

compared to that of the non-randomized model. 

This indicates a strong dispersion of the points 

around the mean value. Whereas the mean Fisher 

coefficient  Fr = 1.3957, it is low compared to the 

significance level. Under these conditions, the 

regression equation of the randomized model is not 

significant.In view of the value of the Todeschini 

parameter, we see that its value is greater than 0.50 

( RP
2c = 0.8853). It is therefore clear that our 

established QSPR model is not due to chance 

correlations. 

 

3.3.2. External validation of the model 

External validation always concerns the 

molecules of the test set. Itregroups the molecules 

that were not used to build the model. Table 7 

reports the statistical parameters of the external 

validation of the model. 

 

 External validation parameters of the model 

Table 7. Statistical parameters of the external validation of the model 

 

next 𝐑𝐞𝐱𝐭
𝟐  𝐐𝐞𝐱𝐭

𝟐  𝐫𝐦
𝟐   (𝐭𝐞𝐬𝐭) ∆𝐫𝐦

𝟐 (𝐭𝐞𝐬𝐭) PRESS (test) RMSEP 

8 0.9839 0.9867 0.9251 0.0086 0.0063 0.0281 
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From the data in Table 7, it is clear that the established model has a very high predictive power because 𝐐𝐞𝐱𝐭
𝟐 = 

0.9867. This shows that out of 100 molecules in the test set, 98.67 have their second reduction potentials 

predicted by the model. Also, 98.39% of the experimental variance of the second reduction potential is 

explained by the descriptor of the model. To judge the performance of the QSPR model developed, other criteria 

were also checked. These are the external validation criteria or Tropsha criteria. Verification of the five (05) 

criteria ofTropsha. 

Criterion 1:Rext
2 = 0.9839 > 0.70 

Criterion 2:Qext
2 = 0.9867 > 0.60 

Criterion 3 :
 Rext

2 −R0
2 

Rext
2 = 0.0048 <0.1           and          k=0.9617 with0.85< 𝑘 < 1.015 

Criterion 4: 
 Rext

2 −R ′0
2 

Rext
2 = 0.0026 <0,1          and          k’=1.0360 with0.85< 𝑘 < 1.015 

Criterion 5 :  Rext
2 − R0

2 =0.0047<0.3 

We can see that all five (05) criteria ofTropsha are verified. Consequently, the model performs very well in 

predicting the second potential reduction. 

 Comparison between observed values and values predicted by the QSPR model from the ratio 

𝛕 =
𝐄𝐭𝐡𝐞𝐨

𝟐

𝐄𝐞𝐱𝐩
𝟐  

The performance of the model was also studied by comparing the ratio τ =
Eth eo

2

Eexp
2 of the test set. The values 

obtained are collated in Table 8. 

Values of the ratio τ =
Etheo

2

Eexp
2  

CODE Eexp Ethéo 𝝉 

TCNQ_21  -0.3400  -0.2962 0.8711 

TCNQ_22 -0.7300 -0.6945 0.9514 

TCNQ_23 -0.2200 -0.2026 0.9210 

TCNQ_24 -0.1440 -0.1770 1.2295 

TCNQ_25 -0.4100 -0.4015 0.9793 

TCNQ_26 -0.3800 -0.3544 0.9327 

TCNQ_27 -0.1850 -0.2164 1.1696 

TCNQ_28 -0.4900 -0.4845 0.9887 

In this table, we note that the values of the ratio τ =
Etheo

2

Eexp
2  are substantially equal to the unit. This shows 

that the model is very efficient in predicting the redox potential of the series of studied molecules and can be 

used to predict the second reduction potential of other TCNQ molecules of this same family. 

 

 Comparison between observed values and values predicted by the QSPR model from the regression 

curve 
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Figure 1. Dispersion diagram of the established model 

 

In Figure 1, we can see that the points tend to 

approach the regression line. This observation 

reveals that there is a good agreement between the 

observed values and the predicted values by the 

developed model. With regard to Figure 2, the 

curves of the observed values and of the theoretical 

values evolve in a similar manner since there is an 

almost superposition of these curves in particular 

for the test set. This confirms that there is a good 

agreement between the observed values and the 

predicted values  by the model. 

 

 
Figure 2. Similarity curves between predicted values  by the model and observed values 
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3.4. Statistical tests 

3.4.1. Shapiro-Wilk test [39] 

 

Table 9. Shapiro-Wilk test parameters 

W 0.9837 

p-value 0.9271 

𝟏 − 𝜶 0.05 

 

Interpretation of the test 

 

H0: The variable from which the sample comes 

follows a Normal law  

Ha: The variable from which the sample comes 

does not follow a Normal law 

Since the calculated p-value is greater than the 

threshold significance level 1-α = 0.05, we cannot 

reject the null hypothesis H0. The risk of rejecting 

the null hypothesis H0 when it is true represents 

92.71%. Thus, the sample follows a normal law. 

This normal distribution is even confirmed by the 

distribution of the points along the main diagonal 

(Figure 3). 

 

 
Figure 3.P-P plot graph(Eexp

2 )of the model 

 

3.4.2. Durbin-Watson test[40] 

Table 10. Parameters of the Durbin-Watson test 

U 1.9339 

p-value 0.4317 

𝜶 0.05 

 

Interpretation of the test 

 

H0: Residues are not autocorrelated  

Ha:The residues describe an AR (1) process (the 

residues are autocorrelated) 

Since the calculated p-value is greater than the 

threshold significance level 1-α = 0.05, we cannot 

reject the null hypothesis H0. The risk of rejecting 

the null hypothesis H0 when it is true is 43.17%. 

Therefore, the residuals are not autocorrelated and 

do not contain any information that could influence 

the prediction. This is confirmed by the random 

distribution of points in Figure 4. 
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Figure 4.Standardized residuals graph= f(Etheo

2 )of the model 

 

3.5. Applicability of the model 

The model's Applicability Domain (DA) was defined by analyzing the Williams diagram below (Figure 5). 

 

 
Figure 5. Williams diagram the model 

 

The analysis of Williams diagram shows 

that all the observations have standardized residues 

between -3σ and +3σ. In addition, the levers 

obtained are less than the threshold value h* = 0.3. 

This proves the absence of outliers. The results of 

the external validation and the domain of 

applicability show that the model can be used for the 

prediction of the second reduction potentials of 

future TCNQ belonging to its applicabilitydomain. 

 

IV. CONCLUSION 
Tetracyanoquinodimethane (TCNQ) 

molecules and existing TTF-TCNQ charge transfer 

complexes generally have remarkable redox and 

electrical properties. However, improving these 

properties or finding new molecules that still display 

more attractive properties remains a concern in 

scientific research. In this dynamic, we have carried 

out the work with the aim of developing a predictive 

QSPR model linking the second reduction potential 

from a series of Tetracyanoquinodimethane 

molecules analogous to quantum descriptors derived 

from the conceptual density functional theory. In the 

established model, the theoretical of second 

potential reduction is a function of the electrophilic 

index. This model displays interesting statistical 

parameters such like the Fisher coefficient (F = 

207.2814) which shows that the regression equation 

of the model is globally significant. In addition, the 

correlation coefficient (R = 0.9592) shows a strong 

correlation between the second potential reduction 

and the electrophilic index. The standard deviation 

(s = 0.0726) tends to 0, which shows a good fit and 

a high reliability of the prediction. Also, certain 
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statistical parameters reflect the high predictive 

capacity of this model. Indeed, the internal 

validation parameters (QLOO
2 = 0.8850; SDEP = 

0.0827) show that the model has an acceptable 

predictive capacity towards the molecules of the 

training set. As for the external validation 

parameters (Qext
2 = 0.9867; RMSEP = 0.0281), they 

reveal the model has a high predictive capacity 

towards molecules of the test set. The verification of 

the five (05)criteria ofTropsha shows that the model 

is validated and very efficient in predicting the 

potential for second reduction. This model is 

therefore suitable for predicting the second 

reduction potential of this same family of molecules 

belonging to its applicability domain. 
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