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ABSTRACT 
Due to the increase in electricity consumption in recent years and the diversification of the energy matrix with 

the presence of Distributed Generation, the electric power systems are getting bigger and more complex. Thus, it 

is becoming increasingly common to use power flow calculation to improve transmission line quality and 

performance. The classic and iterative Newton-Raphson method is widely used to solve the power flow problem, 

where the system solution is obtained from the steady state of the network, however for systems that fall into the 

poorly conditioned category. It can present high computational cost and possible instability in the Jacobian 

matrix inversions within the iterative process, due to the dimensions of the systems. Therefore, this paper 

presents a comparative analysis between the classic Newton Raphson method and the methods of computational 

intelligence, Artificial Neural Networks and Genetic Algorithms, using the MATLAB® software, in order to 

evaluate their convergence velocity, voltage profile impacts and losses. For IEEE-6, modified IEEE-6, IEEE-30, 

modified IEEE-30, IEEE-57, and modified IEEE-57 systems, system changes are due to integration with 

distributed generation. 

Keywords - Artificial Neural Networks, Distributed Generation, Genetic Algorithms, Newton-Raphson, Power 

Flow. 
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I. INTRODUCTION 
The Distributed Generation (DG) that, 

according to INEE [1], refers to the production of 

energy close to consumption, has reached significant 

prominence in the energy market in recent years, 

bringing several benefits, such as the reduction of 

the main environmental impacts caused by the lines 

transmission, reduction in greenhouse gas emissions, 

diversification of the energy matrix, reduction of 

losses, in addition to allowing greater reliability in 

the energy system when they have an appropriate 

configuration. 

Despite the advantages presented, the 

integration of distributed generation with the power 

system can also mean an increase in complexity to 

solve the Power Flow (PF) problem and attest to the 

need for more efficient computational methods in 

aspects such as convergence time and lower losses 

[2]. 

To solve the Power Flow problem, for 

many decades, only traditional iterative methods 

have been widely used, including the Newton-

Raphson (NR) method and its decoupled versions 

[3]. These techniques seem to work well for 

operational points close to the nominal system 

conditions. However, the numerical performance of 

these methods varies inversely with the dimensions 

of the systems, that for the analysis of PF from 

systems with large dimensions, the method can 

present a high operational cost as well as find 

convergence difficulties, due to the sparse Jacobian 

matrix [4,5]. 

In order to optimize aspects such as 

convergence time and lower losses, which are 

fundamental during the planning process of the 

Electric Power System, over the years, new 

computational methods for solving the power flow 

have been proposed, among which stand out the use 

Artificial Neural Networks (ANNs) and Genetic 

Algorithms (GAs). 

In this context, Oliveira et. al. in [6] 

proposed the use of Artificial Neural Networks to 

solve the Power Flow problem for IEEE 6 and IEEE 

30 bus systems integrated with Distributed 

Generators, using multilayered architectures with 

Backpropagation and Extreme Learning Machine 

training. The application of the computational 

intelligence technique proved, based on the results of 

the systems, that the method could solve the 

problem, as well as minimize the losses of the 

systems. Alves in [7] also carried out an assessment 

of the impacts of Distributed Generation on voltage 

stability, depending on the location and generation 
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capacity, in which it was possible to highlight the 

relationship between the improvement in the voltage 

stability margin and the benefit in reducing losses 

caused by DG. Zarkovic in [8] presented an analysis 

in relation to active power losses, voltage drops and 

total harmonic distortion using Artificial Neural 

Networks for an IEEE 33 bus system with and 

without the presence of distributed generators. The 

results of the simulation also demonstrated a very 

good performance of the ANN to solve the problem 

of power flow. Tiwari et al. in [9] presented an 

analysis of voltage levels for the same system, 

comparing different training algorithms, using 

MATLAB® programming software. The best results 

were obtained with the Levenberg-Marquardt 

training methods and the Gradient Descent 

Backpropagation. Sousa in [10] proposed a PF 

analysis methodology for an IEEE-33 and IEEE-69 

bus system using Genetic Algorithms to estimate the 

maximum power injected by Distributed Generators, 

without compromising the voltage quality in the 

analyzed systems, that presented satisfactory results 

and the algorithm demonstrated to meet the 

objective of the research.  

Therefore, this article analyzes the impact 

of distributed generation on the electrical power 

system by comparing the classic Newton-Raphson 

method with computational intelligence methods 

Artificial Neural Networks and Genetic Algorithms, 

which were used to analyze the solution of the 

power flow in the IEEE-6, IEEE-30, IEEE-57 

systems and their respective modifications for each 

of the systems, using the insertion of the distributed 

generation in load buses. The paper is divided into 

theoretical basis, in topics 1 to 3; the methodology, 

in topic 4, with the application of computational 

methods to solve the power flow; results and 

discussions, in topic 5, and conclusion. 

 

II. POWER FLOW 
The calculation of the Power Flow in a 

power system essentially consists of determining the 

state of the network, the distribution of flows and 

some other quantities of interest (voltage levels in 

the bars, active and reactive powers) [11]. This type 

of study is necessary to plan and design future 

expansions of power systems, as well as to 

determine the operational conditions of existing 

systems. 

The basic equations of PF are obtained by 

imposing the conservation of the active and reactive 

powers in each node of the network, that is, the 

injected net power must be equal to the sum of the 

powers that flow through the internal components 

that have this node as one of their terminals. Where, 

four variables are associated with each system bus, 

in which two variables are known and two are 

calculated: P, net generation of active energy; Q, 

reactive power network; V, the magnitude of the 

voltage and θ, the voltage and the bus angle.  

Each bus in the system corresponds to two 

non-linear equations expressed by (1) and (2), where 

Pi corresponds to the active Power in bar i; Qi, 

reactive power at bus i; Vi, Voltage modulus at bus 

i; Vj, Voltage module at bus j; θij - Phase angle 

difference between bar i and bar j; Gij - Line 

conductance between bus i and bus j of the nodal 

admittance matrix and Bij, Line conductance 

between bus i and bus j of the nodal admittance 

matrix. 

 

III. ARTIFICIAL NEURAL NETWORKS 
Artificial Neural Network is a technique 

inspired by human brain function and is composed 

of basic processing units: artificial neurons. The 

artificial neural network applied to the power flow 

can be considered as a computational mathematical 

model. Once trained, the ANN quickly returns the 

solution, producing an output through direct 

arithmetic operations [12]. 

 

3.1 BACK PROPAGATION 

Multilayer perceptrons (MLP) have been 

successfully applied to solve many difficult 

problems, through their form of supervised training 

with a very popular algorithm known as 

backpropagation, which is a specific technique that 

back propagates the error from the output layer to 

the layer of entry, allowing the update of synaptic 

weights between the intermediate layers [13]. 

According to Silva et al. in [14], the 

algorithm consists of two phases: forward and 

backward. The first phase to be applied is “forward 

propagation”, in which a pattern is presented to the 

network's input layer and is propagated between the 

layers, until the response is produced by the output 

layer. In the second phase, backward, the output 

obtained is compared to the desired output for this 

standard and then the error is calculated. If it exists, 

the error is propagated from the output layer to the 

input layer and the synaptic weights are modified, in 

order to reduce its errors with each iteration. 

 

IV. GENETIC ALGORITHMS 
Genetic Algorithms are search and 

optimization methods inspired by the mechanisms of 

evolution of populations of living beings [15]. 

Flexibility has made Genetic Algorithms one of the 

most widespread techniques of Evolutionary 
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Computing, in addition to the relative simplicity of 

implementation and effectiveness in carrying out 

global search in different environments. 

The method of executing an GA consists of 

applying the principles of survival of the fittest 

individual, reproduction and mutation in a 

population with possible solutions to a problem, so 

that, during the iterations, successively, better results 

are obtained and closer to the optimal solution 

successively [16]; each iteration represents a 

generation of the population.  

 

V. METHODOLOGY 
The types of voltage magnitude control, 

generally represented in power flow programs, are 

control by reactive injection and tap adjustment 

(phase transformers) [11]. In this work, however, 

control is performed by active power injection, using 

Distributed Generators in IEEE-6, IEEE-30 and 

IEEE-57 bus systems, comparing the results 

obtained with MATPOWER©. The IEEE 6 bus 

system, in Fig. 1, has its transmission line 

parameters presented in [17]. Bus 1 corresponds to 

the slack bus; bus 2 is generation bus (PV) and buses 

3, 5 and 6 are load buses (PQ). The capacitor banks 

are connected to buses 4 and 6. The transformers are 

connected between buses 3-4 and 5-6. The IEEE-30 

system consists of 1 slack bus, 5 buses of fixed 

active power generation, 24 load buses, 37 

transmission lines, 4 transformers with variable taps. 

The transmission line parameters are shown in [18]. 

The IEEE-57 bus system has 1 slack bus, 6 PV buses 

and 50 PQ buses. The system parameters are shown 

in [19]. 

 

5.1 ARTIFICIAL NEURAL NETWORKS APPLIED TO THE 

SOLUTION OF THE POWER FLOW PROBLEM 

The Neural Network model used to solve 

the Power Flow problem was the MLP, since the 

ANN-MLP are capable of solving complex problems 

with a degree of relative difficulty similar or 

superior to the problem of non-linearity of the PF 

[5]. In this work, the ANN was trained using the 

Levenberg– Marquardt Backpropagation algorithm. 

The code was implemented using the functions of 

the MATLAB® software, in order to define the 

tolerance for the error, allowing the scanning 

between the minimum and maximum values for the 

DGs with a difference calculated equally between 

the values and same number of elements for all 

variables. 

 

 
Fig. 1 IEEE 6-bus system, [17]. 

 

The training scenarios were criated by 

inserting Distributed Generators in different load 

buses for the IEEE-6, IEEE-30 and IEEE-57 

systems, with minimal variations between the lower 

and upper limits of active power, as shown in Table 

1. The selection criteria defined for the initial 

allocation of generators were for the load buses, with 

the lowest voltage levels and with the highest 

demands. 

The input variables for ANN training are 

the active and reactive powers corresponding to each 

bus in the system. Meanwhile, the desired output 

variables (Target) are the voltage magnitudes and 

the angle of the power flow solution with DG, using 

the classic Newton-Raphson method. 

The architecture used was defined with an 

input layer with two variables, a hidden layer with 

the logistic-sigmoid function (logsig) of activation 

and an output layer with the linear function. The 

number of neurons in the hidden layer was obtained 

through tests and comparisons of the errors of the 

evidence data during the continuous training 

process, where the composition of the neurons of the 

hidden layer was varied dynamically and the 

networks that presented the lowest mean squared 

error were stored. The number of neurons in the 

hidden layer for each ANN as a function of the 

system is shown in Table 2. 

 

Table 1. Active power injection data for IEEE 6, 

30 and 57 bus systems. 
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5.2 GENETIC ALGORITHMS APPLIED TO THE 

SOLUTION OF THE POWER FLOW PROBLEM 

For the allocation of new DGs in the IEEE-

6, IEEE-30 and IEEE-57 systems, the genetic 

algorithm must evaluate the indicated locations and 

determine the capacity of each DG, such that the 

overall benefit for the systems is maximized. In this 

paper, Binary Genetic Algorithms were used, in 

which the points in the solution space are encoded as 

a 0 or 1 bit string within each individual.  

 

Table 2. Dimensions of neuron layers. 

 

The maximum number of generations was 

defined as the stopping criterion, this value being 

defined by trial and error. From the results obtained 

it was noticed that there would be no significant 

advantages in "evolving" populations for more than 

100 generations for the IEEE-6, IEEE-30 and IEEE-

57 systems, considering active losses as a parameter. 

The other parameters used in the configuration of the 

Genetic Algorithms are shown in Table 3. 

The individual is usually the most 

important component of the Genetic Algorithm, as it 

contains information about the parameters that must 

be optimized and, at the end of the process, indicates 

the best result obtained. For this work, individuals 

represent the values of active powers injected in up 

to n distributed generation connection buses, where 

n = 2 for the IEEE-6 bus system, n = 3 for the IEEE-

30 bus system and n = 5 for the IEEE-57 bus system. 

The positioning of the DGs is initially carried out at 

random, respecting the restrictions so that there is no 

allocation in repeated buses and generation buses. 

Individuals are generated within a search space 

delimited by the DG’s generation capacity, which 

ranges from 0 to 5 MW for systems with 6 and 30 

buses, and from 5 to 10 MW for the system with 57 

buses. 

 

Table 3. GA parameters for IEEE 6, 30 and 57 

bus systems. 

Parameter IEEE-6 IEEE-30 IEEE-57 

Population Size 35 100 150 

Crossover Rate 0,80 0,80 0,80 

Mutation Rate 0,01 0,01 0,01 

Max. iterations 100 100 100 

 

For a given individual, from the values 

obtained from voltage magnitude and phase angles, 

the total losses are given by (3), where: Nbr 

corresponds to the number of transmission stretches; 

gb, conductance of the transmission section; Vtb and 

Vfb, voltage modules (p.u.) on the terminal buses of 

section b; θfb and θtb, phase angles (radians) in the 

terminal buses of section b. 

Each individual will be evaluated according 

to the calculation presented by equation in (4), 

where Fit (i) represents the fitness of the i-th 

individual during the evolutionary process and Pt (i) 

the value of losses associated with configuration i. 

Since it is a minimization problem, fitness is 

inversely proportional to the system losses 

calculated in (3). 

     

VI. RESULTS AND DISCUSSIONS 
The algorithms were implemented in the 

MATLAB® software. The simulations were 

performed on a computer with the configurations of 

the Intel® Core ™ i3-3110M processor, 2.4 GHz; 

installed memory (RAM) of 4 GB; and 64-bit 

operating system.  
 

6.1 IEEE 6-BUS SYSTEM 

The ANN training data was combined in 626 

scenarios. The values of active losses were analyzed 

considering 1 DG fixed in bus 4, varying the values 

from 0 to 5 MW and another DG fixed in bus 6. Fig. 

2 shows a comparison between the NR, ANN and 

GA methods for the lowest losses obtained and the 

respective location of the DG.  

 

 
Fig. 2 Comparison between the methods applied to 

the IEEE-6 bus system. 

 

The active losses presented by the NR 

method without the presence of DG is 13.7056 MW. 

Therefore, there is a significant reduction in losses 

with the insertion of distributed generators.  
Fig. 3 presents the mean square error curve 

for the best model of the IEEE-6 bus system, where 

System Neurons of hidden layer 

IEEE-6 6 

IEEE-30 15 

IEEE-57 25 
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it is possible to observe the validation in 229 

periods, with an error of less than 10-15.  

Fig. 4 shows the active losses as a function 

of the number of generations obtained from the 

search carried out by the Genetic Algorithm for 

allocation of 1 DG. The value of active power for 

the Distributed Generation that generated the lowest 

loss (10.4171 MW) was 5 MW. Note that from 

generation 50, the lowest value is obtained and 

stabilized by the next generations. The 

computational cost presented by the genetic 

algorithm was 19 s, while the NR obtained the same 

loss value in 0.003990 s. The ANNs obtained, on 

average, a training time of 3 min for each scenario. 

However, after being trained, the result was obtained 

around 1s. 

 

Fig. 3 Mean Square Error for the best model of the 

IEEE-6 bus system. 

 

Fig. 4 Losses per generation for the IEEE-6 bus 

system. 

 

6.2 IEEE 30-BUS SYSTEM 

In the IEEE-30 system, training for ANN 

was carried out considering the insertion of 2 and 3 

DGs ranging from 0 to 5 MW, totaling 9261 

scenarios. According to Fig. 5, the best model for the 

solution of PF in IEEE-30 was obtained by inserting 

DG in buses 17 and 27 simultaneously. The results 

were obtained with the insertion of 2.5 MW in each 

DG in the bus, which resulted in a reduction of about  

 

6.4 MW in the system, since the value of losses 

without DG for IEEE-30 is 17.5570 MW. 

Scenarios were generated using the 

simultaneous variation of the active power of 3 

distributed generators, however, as the loss reduction 

was not significant compared to the use of 2 DGs, as 

can be seen in Fig. 5, we opted to perform analysis 

of losses between the methods used considering the 

insertion of 2 DGs. 

Fig. 5 Best scenarios for ANN with the insertion of 

Distributed Generators. 

 

Fig. 6 and Fig. 7 show the graphical 

behavior of magnitude and voltage angle for all 

buses in the IEEE-30 system, where the responses 

corresponding to the best scenarios of the NR, ANN 

methods appear parallel to each other, proving the 

training efficiency carried out at ANN. Note that in 

all buses the magnitudes of the voltages are within 

the minimum and maximum limits adopted, 0.9 p.u. 

and 1.1 p.u., respectively. 

Table 4 shows a comparison between the 

value of active and reactive losses and the 

computational cost that was required for each 

method. Although the GA presents lower losses, 

which were obtained with the allocation of DGs in 

buses 12 and 10, with the levels of active power of 

3.8824 MW and 3.8627 MW, respectively, the 

computational cost presented was higher than the 

other methods for the analyzed 30-bus system. 

 

6.3 IEEE 57-BUS SYSTEM 

Figure 8 shows the voltage magnitudes of 

the analyzed system without the insertion of 

distributed generators, where the buses, 18, 19, 25, 

26 and 31 show a voltage drop. As a result, 5 DGs 

were allocated to each of these buses, with the active 

power ranging from 5 to 10 MW.  
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Figure 9 presents a comparison between the 

NR, ANN and GA methods for the best scenarios 

obtained and the location of the distributed 

generators, where there is a significant reduction in 

losses that reached 47.7%, when compared to active 

losses without the DG insertion which is 48.4517 

MW. 

 

 
Fig. 6 Comparison between Voltage Magnitudes for 

the methods applied to the IEEE-30 bus system. 

 

Fig. 7 Comparison between voltage angles for the 

methods applied to the IEEE-30 bus system. 

 

Table 4. Comparison between the methods 

applied to the IEEE-30 bus system. 

Scenario 
Losses 

[MW] 

Losses 

[MVAR] 

Computacional 

Cost [s] 

ANN – DG, B* 

17, 27 

12,1992 50,5030 0,2388 

NR – DG, B* 

17, 27 

12,2001 50,5055 0,4443 

GA – DG, B* 

12,10 

12,2043 41,0754 523,51 

B* - short for Buses. 

 

For the NR and ANN methods, the 

insertion of 7.5 MW into each specified bus was 

considered, while the values of active power used by 

the GA were in DG-24 of 6.1176 MW, in DG-25 of 

5.5686 MW, in DG-28 of 5.8824 MW, in DG-29 of 

6.5882 and in DG-42 of 7.2157 MW. Thus, the best 

scenario obtained by GA for the IEEE-57 system 

presented active losses and reactive losses of 

25.3610 MW and 115.6038 MVAr, respectively. 

Fig. 10 shows the linear regression for the best 

scenario obtained with ANN, for the mean quadratic 

error with the validation in 207 epochs and error of 

the order of 10
-14

. The voltage magnitudes after the 

insertion of distributed generators are shown in Fig. 

11, in which the stabilization of the voltage levels 

for each bus can be observed within the voltage 

limits adopted in all methods. 

 

 

Fig. 8 Voltage Magnitudes for the IEEE-57 system 

without DG insertion. 

Fig. 9 Comparison of Active Losses between the 

methods applied to the IEEE-57 bus system. 
 

VII. CONCLUSIONS 
The results showed that the use of the 

solution method involving Genetic Algorithms 

obtained less losses in the allocation of distributed 

generators for all the systems analyzed, however, 

GA is the method that has the highest computational 

cost in comparison with the iterative method of 

classic NR and ANN trained with the 

Backpropagation algorithm, as it is a search and 

optimization method. 

The ANNs presented values of magnitude 

of voltage and losses close to that presented by the 

NR, which is the most widely used method for 
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solving the power flow, proving the efficiency of the 

training performed, in addition to the low 

computational cost, since once trained, the response 

returned by ANN is instant. Another advantage 

presented in its use is that, in practice, if the 

electrical system receives new equipment or a new 

generation, due to the ability to generalize the 

acquired knowledge, it is not necessary to carry out 

new training, making the process dynamic. 

 

 
Fig. 10 Linear Regression for the best model of the 

IEEE-57 bus system. 

 

 
Fig. 11 Voltage magnitudes for the IEEE-57 system 

with insertion of DGs. 

 

It is considered perceptible the reduction of 

losses in the systems due to the presence of 

distributed generation, the improvement in voltage 

profiles and possible load reductions in the network, 

thus allowing energy utilities to postpone certain 

reinforcement investments. Thus, for the planning of 

Electric Power Systems based on the solution of the 

PF problem, the ANN architecture with training, 

using the Backpropagation algorithm, will produce 

responses with low computational cost and with 

efficiency similar to the classic NR method.  

GA was able to provide the best power 

values for minimizing system losses, despite having 

a high computational cost, which is considered an 

important variable by the electrical system planning 

sector, especially with regard to restoration time, if 

the solution of the problem is necessary after a 

contingency situation. 
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