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ABSTRACT 
In this paper a dynamic phasor estimation algorithm is discussed with the help of tensor product, the proposed 

algorithm can have many qualities for dynamic conditions, it can have great simplicity as well as great 

robustness for dynamic as well for pure sine waves, phasor estimation process follows some simple procedure 

based on tensor product and linear algebra. The  potential of proposed phasor estimation algorithm is tested for 

different dynamic/noisy events as per IEEE C37.118.1-2011 standards, by observing the results  it can be said 

that the algorithm can perform well for dynamic/noisy conditions, the great advantages of algorithm can be its 

simple procedure of implementation, it can also be based on simple equations, which can make it easy to realize. 

For signal conditions like ramp event, modulation event, step event, as well noisy event the propose algorithm 

can have tremendous robustness and performance. Its simplicity and robustness can make the algorithm best 

suited for Wide Area Monitoring for measuring current as well voltage signal having various disturbances. 

Index Terms: Tensor product, phasor measurement units, wide area monitoring, smart grids. 
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I. INTRODUCTION 
Now a days smart grid has become very 

important need for ensuring greater stability and 

reliability of power system, the performance of 

smart grid depends on WAM (Wide area 

measurement), as WAMS are important stages of 

smart grid, hence more focus is needed to get better 

efficiency and reliability of smart grids. Phasor 

measurement units are vital part of any WAM, 

PMU’S are used to get fundamental phasors from 

distorted as well pure sinusoidal waves, that means 

PMU’S are able to give  fundamental magnitude, 

phase, frequency as well as rate of change of 

frequency from a input signal. The input signal may 

be distorted from modulation event, frequency ramp 

event, noise event, and step events also. These all 

disturbances have been taken into account, and 

potential of the proposed algorithm is tested, as per 

IEEE C37.118.1-2011 standards.  

 

II. LITERATURE SURVEY 
There are numerous literatures [1], [2], [3], 

[4], [5], [6], [7], [8] present to estimate phasors for 

dynamic conditions, There are significant 

differences among them. The phasor estimation 

based on DFT and least error square algorithm are 

very old techniques and best suited for pure 

sinusoidal signal, but for dynamic events, the 

algorithm fails to get fundamental phasor, for 

dynamic events DFT and least square algorithms can 

be used with filters, then it will lead to huge cost 

requirement, all these demerits made above 

algorithms unsuitable for estimation of dynamic 

phasors. 

In [1], algorithm based on taylor series 

expansion is discussed, the dynamic phasor within 

an observation data window is approximated by 2
nd

 

order taylor expansion. 

In [2], a phasor estimation algorithm based 

on Hilbert transform and convolution is discussed, 

the algorithm is suitable for P-class PMU in 

protection application. In [3], dynamic phasor 

estimator based on subspace technique is proposed 

and high sampling rate and few modifications in the 

subspace-based techniques are suggested to estimate 

the voltage phasor with a fundamental frequency 

component without using antialiasing filter to the 

input signal. In [4], two fast and precise dynamic 

phasor estimation algorithms under oscillations and 

off nominal conditions are discussed, The methods 

use the signal model under these dynamic 

conditions, linearize them by using Taylor’s series 

expansion, and estimate the phasor using least 

squares technique. Frequency and its rate of change 

are also calculated using adjacent phasors with 

minimum complexity. The above discussed 

literatures introduce a model based algorithm, and 

that contains various complex steps to find out 

phasor phasor of the signal, with requiring large no. 

of samples which makes them difficult to use 

practically and would cost heavy price. 
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Hence keeping all these requirements in 

consideration a novel phasor estimation technique 

can be introduced, which would not require any 

filter for dynamic phasor estimation, also it will give 

very good performance and will be based on simple 

procedures. 

 

III. DYNAMIC PHASOR ESTIMATOR 
Tensors  were introduced in 1940s and 

1950s by G.kron for use in circuit theory only, 

tensors can also be used in areas of signal 

processing, image processing[1]. 

Here one of the properties of tensors is used 

for phasor estimation in PMU, normally tensors are 

multidimensional matrix having various 

informations. That property of tensor is used here to 

get fundamental informations from a signal, Here 

tensor product or kroncker product is discussed. 

Assume a sinusoidal wave 

 

X(t) = Xm sin(2πft + θ)                                                        

(1)                                                                    

 

Where X(t)=input signal, Xm =peak magnitude of the 

signal, θ=phase angle, f=fundamental frequency, 

t=time, 

To prove the algorithm Taking N=4 samples 

Assume 2πf = w 

In matrix form of above sine wave after sampling 

can be written as 

x n =

 
 
 
 
 

sin(θ)

sin(wn1 + θ)
sin(wn2 + θ)

sin(wn3 + θ)

sin(wn4 + θ) 
 
 
 
 

                                                         

(2)                                                                              

finding out Tensor product of equation (2) with itself 

 

x(n)⨂x(n) =

 
 
 
 
 

sin(θ)

sin(wn1 + θ)
sin(wn2 + θ)

sin(wn3 + θ)

sin(wn4 + θ) 
 
 
 
 

⨂

 
 
 
 
 

sin(θ)

sin(wn1 + θ)
sin(wn2 + θ)

sin(wn3 + θ)

sin(wn4 + θ) 
 
 
 
 

               

(3)                                                         

Size of tensor spectrum depends on number of 

samples taken like 

Signal has 1 × (N + 1) size 

Size of Tensor spectrum = 1 × 25 

T(n) =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

sin θ sin(θ)

sin θ sin(wn1 + θ)

sin θ sin(wn2 + θ)

sin θ sin(wn3 + θ)

sin θ sin wn4 + θ 

sin wn1 + θ sin θ 

sin wn1 + θ  sin(wn1 + θ)

sin wn1 + θ sin wn2 + θ 

sin wn1 + θ sin wn3 + θ 

sin wn1 + θ sin wn4 + θ 

sin wn2 + θ sin θ 

sin wn2 + θ sin wn1 + θ 

sin wn2 + θ sin wn2 + θ 

sin wn2 + θ sin wn3 + θ 

sin wn2 + θ sin wn4 + θ 

sin wn3 + θ sin θ 

sin wn3 + θ sin wn1 + θ 

sin wn3 + θ sin wn2 + θ 

sin wn3 + θ sin wn3 + θ 

sin wn3 + θ sin wn4 + θ 

sin wn4 + θ sin θ 

sin wn4 + θ sin wn1 + θ 

sin wn4 + θ sin wn2 + θ 

sin wn4 + θ sin wn3 + θ 

sin wn4 + θ sin wn4 + θ  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                 

(4)                                                                                              

 

And we are finding Tensor product of signal with 

itself, hence Tensor spectrum will have the size of 

1 × N2 
Generalized equation to find out samples 

containing fundamental phase in Tensor spectrum of 

sine wave with itself -Assume N samples are taken 

hence starting sample number =   N + 1 ×
N

2
 + 1 

Ending sample number   N + 1 ×
N

2
 + 1+N, 

Hence samples between starting sample and ending 

sample will contain fundamental signal 

Starting sample number =   4 + 1 ×
4

2
 + 1 = 11 

Ending sample number =   4 + 1 ×
4

2
 + 1+4 = 15 

Samples containing fundamental = 11
th

 ,12
th

 ,13
th

 

,14
th

 ,and 15
th

 of  T(n), Now adding the samples 

containing fundamental 

 

F(n)=sin wn2 + θ sin θ + sin wn2 +
θsinwn1+θ+ sinwn2+θsinwn2+θ 

+ sin wn2 + θ sin wn3 + θ + sin wn2 +
θsinwn4+θ                                                                                            

(5) 

 

Taking out  sin wn2 + θ  common from equation 

(5) we can re-write the equation (5) 
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F n = sin wn2 + θ [sin θ + sin wn1 + θ +
sin wn2 + θ + sin wn3 + θ + sin(wn4 + θ)]                 
(6) 

 

From equation (2) we can write equation (6) as 

F n = K x(n)                                                                   

(7)                                                                                                                                          

Where x(n)is fundamental sine wave, and K =
sin(wn2 + θ) will have some constant value 

 
Fig.1: Tensor spectrum with 4 samples 

 

From figure (1), it can be seen that the 

fundamental wave is contained within 11 to 15 

samples, the minimum value of that small spectrum 

is to be found out and location of that minimum 

value is to be tracked which gives relationship 

between phase angle and location of small spectrum. 

Like this if N=8 samples fundamental sine wave can 

be found in tensor spectrum by adding samples from  

Starting sample number =   8 + 1 ×
8

2
 + 1 = 33 

Ending sample number =   8 + 1 ×
8

2
 + 1+4 = 45 

Here tensor spectrum will have size of 1 × (9 ×
9)=1 × 81 

 
Fig.2: Tensor spectrum with 8 samples 

 

 

 
Fig.3: Tensor spectrum with 32 samples 

  

 
Fig.4: Fundamental view of tensor spectrum with 32 

samples 

 

In this paper N=256 is taken hence  

Starting sample number =   256 + 1 ×
256

2
 + 1= 

32897 

Ending sample number =   256 + 1 ×
256

2
 +

1+4= 33153 

Here tensor spectrum will have size of 

 

 1 × (257 × 257)=1 × 66049 

 

    Here F(n) can be found by adding samples from 

sample      

    number 32897 to sample number 33153 

 

 
Fig.5: Fundamental view of tensor spectrum with 

256 samples 

 

So it can be witnessed from above tensor spectrum 

that peak value of the spectrum is constant which is 
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square of fundamental magnitude taken, hence the 

magnitude can be found by taking square root of 

peak value of tensor spectrum and also by taking 

minimum value of F(n) and finding out its location 

in X-axis with respect to phase change, relation 

between phase change and location of small value of 

fundamental spectrum in X-axis can be obtained as it 

can be seen it gives linear relation. 

 

 
Fig.6: Location of small spectrum for pure sine 

wave 

 

Fig (6) shows the relation between change 

of location of fundamental spectrum with respect to 

phase angle variation for pure sinusoidal wave. It 

can be observed from fig (7),(8),(9),(10) that for 

dynamic signal also the algorithm gives linear 

relation with phase change which is desirable. 

 

TABLE-1 signals used 

Signals Equations 

Sine wave x t = Xm sin(2πft + θ) 
Step change 

event 
x t 

= Xm 1 + Kxs U1 t  sin(2πft

+ Kas U1 t + θ) 

Frequency 

ramp event 
x t = Xm sin(2πft + πRft

2

+ θ) 
Modulatio

n event 
x t 
= Xm  1 + Kxm sin(2πfm

+ θ) sin(2πft
+ Kam sin 2πfm t + θ) 

Noise 

event 
x t = Xsin 2πft + θ + ε 

 

In table (1) x(t)=input signal, Xm =peak magnitude 

of the signal, θ=phase angle, f=fundamental 

frequency, t=time, Kxm =modulation index, 

Kam =phase sensitivity, fm =modulation frequency, 

Rf=frequency ramp rate, Kxs =magnitude step size, 

Kas = phase step size, U1(t)=unit step signal, 

ε=Gaussian noise present in the signal 

 

TABLE-2 specifications used 

Parameter Notati

on 

Specificatio

ns 

Nominal 

magnitude 
Xm  5 volts 

Nominal 

frequency 
f 50Hz 

Phase angle θ 30 Degree 

Phase angle 

sensitivity 
Kam  0.1 

Modulation 

frequency 
fm  0.2 to 2 Hz 

Step change 

size 
Kxs  0.1 

Phase step 

size 
Kas  0.1 

Noise ε 15 db to 50 

db SNR 

 

In this work, the following specifications as 

shown in Table 2 are taken to test proposed phasor 

estimation algorithms. The proposed algorithm is 

able to estimate one phasor per cycle at a sampling 

rate of 256 samples per cycle. 

 

 
Fig.7: Change of location of small spectrum for 

frequency ramp event 

 

 
Fig.8: Change of location of small spectrum for 

noise event 
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Fig.9: Change of location of small spectrum for 

modualtion event 

 

 
Fig.10: Change of location of small spectrum for 

step event 

        

IV. CONCLUSION 

This paper presents potential of simplest 

and robust dynamic phasor estimation algorithm 

based on tensor product of signal with itself, the 

potential of algorithm has been successfully tested 

under compliance test recommended by IEEE 

C37.118.1-2011 standards. results shows that the 

algorithm can be suitable for dynamic phasor 

estimation and can also be suitable for pure 

sinusoidal wave, also this algorithm can avoid use of 

model based and complex algorithms still in use. 
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