
Manasa E, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 10, Issue 7, (Series-VI) July 2020, pp. 01-04

www.ijera.com DOI: 10.9790/9622-1007060104 1 | P a g e

Detecting Security Vulnerabilities and Gaps in Web Applications

with DevSecOps

Manasa E *, ** Dr. Jayaram M N
*(MTech Student, Department of E & C, JSS Science and technology University, Mysore)

** (Associate Professor, Department of E & C, JSS Science and technology University, Mysore)

ABSTRACT
With the internet being a common workplace, web applications which are stored in the remote server, delivered,

and serviced through the browser interface is used almost as a tool in every business. The surge in the use of web

applications is also leading to web application vulnerabilities. A security vulnerability in a web application refers

to a misconfiguration in the application code, web servers, application design flaws which an attacker can use to

gain full or partial access to the system and exploit the system. Web application vulnerabilities are encountered

due improper security headers, broken authentication, account lockout, Injection and Cross Site Request Forgery

attacks. Many tools are used to find such vulnerabilities from port level to application level. The concept is to

find vulnerabilities from the initial stages of the product cycle itself rather than finding at the end. For the same

purpose tools such as Nessus scanner for port level scanning, Zed Attack Proxy for application level of scanning

are used. Application specific test cases are written to find vulnerabilities which cannot be found using the tools.

This process can be termed as Development-security- operations in the big picture.

Keywords - Web-application vulnerabilities, Development-Security-Operations

--- ----------

Date of Submission: 10-07-2020 Date of Acceptance: 26-07-2020

--- ----------

I. INTRODUCTION
Every organization uses web application as

a most important gateway for its business. These

web applications are developed using various

technologies, frameworks, and programming

languages. Many times, third party libraries might be

included in the development methodologies. The

source code might be modified by a developer while

developing or testing the target application,

unintentionally leading to security vulnerabilities.

An update on the application might have also opened

several gateways of attacks for a hacker. While a

security engineer tries to cover these vulnerabilities

on the production environment by finding out

suitable mitigation methods, a hacker on the other

side tries to exploit these security vulnerabilities or

loopholes for personal gains [1]. Among the most

prevalent and critical web application vulnerabilities,

SQL and LDAP injection and Cross site Scripting

(XSS), XML External Entity (XEE), broken

authentication, weak encryption algorithms and

security misconfigurations take a significant part [2]

[7][8].

The detection of these vulnerabilities is

carried out using several methods. SQL injection and

XSS mitigations majorly include secure

implementation and Penetration testing processes [2]

[6]. Avoiding unsafe APIs and input sanitization are

major parts of secure implementation. A second

order vulnerability detection method is used also

used for vulnerability detection. In this method,

vulnerabilities are detected through two-time crawls.

The data from the first-time crawls is used as an

input to second time crawls [4]. Static analysis and

data mining techniques which include taint analysis,

data mining, code correction and feedback processes

are used for detecting and removing web application

vulnerabilities [5].

Web applications with high DevOps

(Development-Operations) standards may

sometimes lack in providing robust security and

compliance. The Software technologies and

Development Frameworks incorporated allows the

developer to perform considerable amount of

security checks and incorporate the same in the web

application [10]. These security checks should be

performed throughout the software development

lifecycle to find security vulnerabilities at each stage

rather than finding it at the production stage or at the

end of the lifecycle. Vulnerabilities found at the

development stages are easier to fix than those found

at the production stage. The process of implementing

security checks and vulnerability assessment can be

manual or automated. DevSecOps (Development-

Security-Operations) is an enhanced automated

software delivery pipeline to find security

RESEARCH ARTICLE OPEN ACCESS

Manasa E, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 10, Issue 7, (Series-VI) July 2020, pp. 01-04

www.ijera.com DOI: 10.9790/9622-1007060104 2 | P a g e

vulnerabilities and to reduce the attack surfaces and

downtime [11] [12].

The proposed system aims at a DevSecOps

model to find the vulnerabilities in the web

application through an automated process at three

levels. At the port level, Dynamic Application

Security Testing (DAST) tools such as Nessus

scanner is used. This scanner helps in identifying

open ports and the protocols running on it. For

scanning the vulnerabilities at the application level

open source tools such Zed attack Proxy or free

versions of Burp Suite can be used. Licensed

versions of Netsparker, Raipd7 are also available for

vulnerability scanning.

However, application specific

vulnerabilities which cannot be covered by DAST

and vulnerability scanning tools, can be covered

using application specific test cases. This can be

achieved by writing the test cases either through

specific frameworks or by using programming

languages. Extending this model for false positives,

tools such as Network Mapper (Nmap) can be used.

The gaps also include testing for protocols and

verification and penetration testing. The DAST

tools, vulnerability scanning tools and test suites are

together integrated in a Continuous Integration and

Continuous Deployment (CICD) pipelines using

Jenkins or Gitlab. This is run along with the build or

DevOps pipeline of the web application to find

security vulnerabilities at each level of the build

cycle. DevSecOps majorly depends on selecting

application specific tools and frameworks for

enabling security.

II. DEVSECOPS
DevSecOps mainly involves selecting

proper tools and Frameworks for the environment or

the web application involved. The major benefits of

DevSecOps involves enhanced automation in the

entire software delivery pipeline, which reduces

attack surfaces and downtime. It ensures proper

security and compliance is provided to the web

application with high development features. The

vulnerabilities or the attacks are pre-discovered

when security is integrated end to end. Figure 1

describes the typical DevSecOps workflow.

Fig1: Typical DevSecOps workflow

Step 1: The code is created within a version control

management system.

Step 2: The changes in the code are committed to the

system.

Step 3: The code is retrieved, and static code

analysis is done to identify possible vulnerabilities.

Step 4: Security configurations are applied to the

deployed application in the environment.

Step 5: The test automation suite is executed on the

application.

Step 6: The application tested for security

vulnerabilities are deployed in the production

environment and continuously monitored for active

security threats.

III. SECURITY INTEGRATION WITH

DEVSECOPS AND TOOLING

Fig 2: The proposed DevSecOps and tooling

model

In the proposed DevSecOps model as

shown in figure 2, the effort is to integrate security

end to end alongside development. The user enters

the IP address or build path of the web application

Manasa E, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 10, Issue 7, (Series-VI) July 2020, pp. 01-04

www.ijera.com DOI: 10.9790/9622-1007060104 3 | P a g e

into Jenkins CICD tool. The Jenkins tool is pre-

configured with jobs of specific tools used.

At the first level, port scanning is done

using Nessus scanner. This scanner performs a ping

test on the target application to find all the open

ports and the protocols running on it. It generates a

detailed report of the possible vulnerabilities and

suggests suitable mitigations for it. Sometimes, this

may include false positives. To cross check for false

positives Network Mapper (Nmap) can be used. A

detailed report is sent to the user for analysis. In the

second level, application specific tests are made.

This checks for security vulnerabilities which cannot

be covered with DAST or other vulnerability

scanners. A detailed report of the same is then sent

to the user. Along with application specific testing

this generates a detailed log which can be fed into

the web application scanner which is used in the

next stage. The selection of this web application

scanner depends on factors such as crawl strength of

the scanning engine, compliance standards and cost.

If open source scanners are to be considered, then

OWASP ZAP and free version of Burp Suite are

good options. However, licensed versions of

Netsparker, Rapid7 and Enterprise version of Burp

Suite are good options. The final vulnerability report

is sent to the user for analysis.

3.1 Web Application Specific Testing

Application specific testing is required to

test the application for source code, open API ends

and other vulnerabilities which cannot be covered by

tooling part. This can be done by selecting

appropriate frameworks or using certain

programming languages to write the test cases.

Certain frameworks and languages such as robot

framework, cucumber framework, cypress

framework, Ansible, selenium or PyTest and many

more can be considered.

Certain specific application testing may

include checking for exposed API end points of the

application, horizontal and vertical privilege

escalation, protocol verification. Account Lockout

testing ensures after certain number of trials the

application is not allowing the user with wrong

credentials to access it. Testing should also be

included for TLS and SSL, jump host, session

management, authorization, input validation, output

sanitization and cryptographic algorithms.

 HTTP security testing should be considered for

detailed checks on XSS – Protection: To check

if the browser if rendering pages infected by

XSS (Cross Site Scripting).

 X-Frame-Options: To avoid click jacking kind

of attacks.

 Strict -Transport-Security: To ensure

information transfer over secure channel

(HTTPS) and avoid man in the middle attacks.

 X-Content-Type-Options: To block certain type

of MIME requests.

Apart from application specific testing,

these tests also provide logs which can be used as

initial crawl information to trigger the vulnerability

scanner.

3.2 Web Application Vulnerability Scanning

Open source or commercial vulnerability

scanners such as OWASP ZAP, Netsparker, Rapid7

can be used. The logs from web application testing

are imported. This will provide first level of crawl

inputs. The crawling ability depends on the strength

of the scanner and crawling engine. Most of these

tools also provides the flexibility to modify the scan

policies which are the rules set to define the

scanning process and the attack strengths. These

tools also provide a detailed logging and reporting

feature. A detailed list of vulnerabilities found and

the mitigations for it are also suggested. The

scalability is different for each tool depending on

pricing options. The rate of false positives obtained,

and tuning features varies in each tool.

IV. RESULTS AND DISCUSSION
The proposed DevSecOps model finds

vulnerabilities in three stages which include

development and production. After each stage of

scanning and testing the report is sent to the user for

analysis. This method provides a larger coverage to

vulnerabilities and helps in reducing the attack

surfaces and downtime. A test application

‘WebGoat’ is used. The Nessus report contain a

detailed vulnerability repot on ports. The severity of

the vulnerabilities is segregated into Critical, High,

Medium, Low, and Informational sections as shown

in figure 3. The severity summary is followed by

detailed vulnerability assessment and mitigations.

Fig 3: Nessus Severity Summary

Manasa E, et. al. International Journal of Engineering Research and Applications

www.ijera.com

ISSN: 2248-9622, Vol. 10, Issue 7, (Series-VI) July 2020, pp. 01-04

www.ijera.com DOI: 10.9790/9622-1007060104 4 | P a g e

The web application testing results are used

as initial crawl logs to provide input and the

vulnerability scanner OWASP ZAP is fired. The

scan policies are tuned. This generates a detailed

vulnerability report with the risk levels like Nessus

reports as shown in figure 4. The risk summary is

also followed by vulnerability assessment and

mitigations.

Figure 4: OWASP ZAP summary of risks

V. CONCLUSION
DevSecOps is the need of the hour to bring

in development, security, and operations under one

roof. It helps in discovering vulnerabilities and

misconfigurations in the build process and fix it

rather than entering a final production stage and

fixing it. It is important to make security as an equal

consideration alongside development and to

integrate the security end to end. It is also a matter of

selecting right tools and appropriate Frameworks

and ensuring proper security checks at every stage.

Apart from the model proposed in the paper several

integrations such as Coverity, Hub and Black Duck

scanning process can be included for Static

Application Security Testing (SAST) and third-party

scans. Penetration Testing and verification of the

results, secure code implementation also adds on to

strengthen the application. Jira Integration can be

done to update the found issues. The product will be

more secure application which has security built into

it as an end to end process.

REFERENCES
[1]. K Nirmal, B Janet, R Kumar, Web

Application Vulnerabilities -The Hacker’s

Treasure, IEEE, International Conference on

Inventive Research in Computing

Applications (ICIRCA), 2018.

[2]. Huang, Hsiu-Chauan, Zhang Zhi-Kai, Cheng

Hao-Wen, Shieh Shiuhpyng Winston, Web

Application Security: Threats,

Countermeasures, and Pitfalls, IEEE

Computer Society, Vol – 50, Issue -6, June-

2017.

[3]. Mitropoulos, Dimitris, Louridas, Panos,

Polychronakis Michalis, keromytis, Angelos

Dennis, defending Against web Application

Attacks: Approaches, Challenges and

Implications, IEEE Transactions on

Dependable And Secure Computing, Vol –

16, No.2, March/April 2019.

[4]. Liu, Miau, Wang, And Bin, A Web Second-

Order Vulnerabilities Detection Method,

IEEE Transactions, Vol -6, 2018.

[5]. Medeiros, Iberia, Neves Nuno, Corriea,

Miguel, Detecting and Removing Web

Application Vulnerabilties with Static

Analysis and Data Mining, IEEE Transactions

on Reliability, Vol -65, No- 1, March – 2016.

[6]. Yusof, Imran Pathan, Al-Sakib Khan,

Mitigating Cross-Site Scripting Attacks with a

Content Security Policy, IEEE Computer

Society, Vol -49, Issue -3 , March -2016.

[7]. Jan, sadeeq, Panichella, Annibale, Arcuri,

Andrea, Briand, Lionel, Automatic

Generation of Tests to Exploit XML Injection

Vulerabilities in Web Applications, IEEE

Transactions on Software Engineering, Vol -

45, No – 4, April -2019.

[8]. Das, Debasish, Sharma, Uptal, D.K,

Bhattacharya, Detection of Cross-Site

Scripting Attack under Multiple Scenarios,

British Computer Society, The Computer

Journal, Vol- 58, No-4, 2015.

[9]. Srinivasan, Satish M, Sangwan, Raghvinder

S, Web App Security, A Comparison and

Categorization of Testing Frameworks, IEEE

Software, January/February 2017.

[10]. Liu, Miaq, Zhang, Boyu, Chen Wenbin,

Zhang And Xunlai, A Survey of Exploitation

and Detection Methods of XSS Vulerabilities,

IEEE Access, Vol -7,2019.

[11]. WhiteHat Security, Application Security

Testing as a Foundation for Secure DevOps,

White Paper, April 2016.

[12]. WhiteHat, 10.5 Things That Undermine A

Web Application Security Program, White

Paper.

